Details

Handbook of In Vivo Chemistry in Mice


Handbook of In Vivo Chemistry in Mice

From Lab to Living System
1. Aufl.

von: Katsunori Tanaka, Kenward Vong

160,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 27.12.2019
ISBN/EAN: 9783527344413
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals <br> <br> This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. <br> <br> The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. <br> <br> -Completely covers current techniques of in vivo chemistry performed in live animals <br> -Describes general information about commonly used live animal experiments and detection methods <br> -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release <br> -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications <br> <br> Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries. <br>
<p><b>1 Summary of Currently Available Mouse Models </b><b>1<i><br /> </i></b><i>Ami Ito, Namiko Ito, Kimie Niimi, Takashi Arai, and Eiki Takahashi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Origin and History of Laboratory Mice 2</p> <p>1.3 Laboratory Mouse Strains 3</p> <p>1.3.1 Wild-Derived Mice 3</p> <p>1.3.2 Inbred Mice 4</p> <p>1.3.3 Hybrid Mice 4</p> <p>1.3.4 Outbred Stocks 8</p> <p>1.3.5 Closed Colony 8</p> <p>1.3.6 Congenic Mice 8</p> <p>1.4 Mutant Mice 9</p> <p>1.4.1 Spontaneous 9</p> <p>1.4.2 Transgenesis 9</p> <p>1.4.3 Targeted Mutagenesis 11</p> <p>1.4.4 Inducible Mutagenesis 13</p> <p>1.4.5 <i>Cre–loxP </i>System 13</p> <p>1.4.6 CRISPR/Cas9 System 15</p> <p>1.5 Resources of Laboratory Strains 16</p> <p>1.6 Germ-Free Mice 16</p> <p>1.7 Gnotobiotic Mice 18</p> <p>1.8 Specific Pathogen-Free Mice 18</p> <p>1.9 Immunocompetent and Immunodeficient Mice 18</p> <p>1.10 Mouse Health Monitoring 19</p> <p>1.11 Production and Maintenance of Mouse Colony 19</p> <p>1.11.1 Production Planning 19</p> <p>1.11.2 Breeding Systems and Mating Schemes 19</p> <p>1.12 Mating 21</p> <p>1.13 Gestation Period 21</p> <p>1.14 Parturition 21</p> <p>1.15 Parental Behavior and Rearing Pups 21</p> <p>1.16 Growth of Pups 22</p> <p>1.17 Reproductive Lifespan 23</p> <p>1.18 Record Keeping and Colony Organization 23</p> <p>1.19 Animal Identification 24</p> <p>1.20 Animal Models in Preclinical Research 24</p> <p>References 29</p> <p><b>2 General Notes of Chemical Administration to Live Animals </b><b>33<i><br /> </i></b><i>Ami Ito, Namiko Ito, Takashi Arai, Eiki Takahashi, and Kimie Niimi</i></p> <p>2.1 Introduction 33</p> <p>2.2 Restraint 34</p> <p>2.2.1 One-Handed Restraint 34</p> <p>2.2.2 Two-Handed Restraint 34</p> <p>2.3 Substances 34</p> <p>2.3.1 Substance Characteristics 34</p> <p>2.3.2 Vehicle Characteristics 35</p> <p>2.3.3 Frequency and Volume of Administration 36</p> <p>2.3.4 Needle Size 37</p> <p>2.4 Anesthesia 37</p> <p>2.4.1 Inhaled Agents 38</p> <p>2.4.2 Injectable Agents 38</p> <p>2.5 Euthanasia 40</p> <p>2.6 Administration 41</p> <p>2.6.1 Enteral Administration 42</p> <p>2.6.1.1 Oral Administration 42</p> <p>2.6.1.2 Intragastric Administration 42</p> <p>2.6.2 Parenteral Administration 42</p> <p>2.6.2.1 Subcutaneous Administration 44</p> <p>2.6.2.2 Intraperitoneal Administration 44</p> <p>2.6.2.3 Intravenous Administration 46</p> <p>2.6.2.4 Intramuscular Administration 46</p> <p>2.6.2.5 Intranasal Administration 46</p> <p>2.6.2.6 Intradermal Administration 46</p> <p>2.6.2.7 Epicutaneous Administration 46</p> <p>2.6.2.8 Intratracheal Administration 51</p> <p>2.6.2.9 Inhalational Administration 51</p> <p>2.6.2.10 Retro-orbital Administration 52</p> <p>References 53</p> <p><b>3 Optical-Based Detection in Live Animals </b><b>55<i><br /> </i></b><i>Mikako Ogawa and Hideo Takakura</i></p> <p>3.1 Introduction 55</p> <p>3.1.1 Basics of Luminescence 55</p> <p>3.1.2 Appropriate Wavelengths for Live Animal Imaging 56</p> <p>3.1.3 Advantages and Disadvantages of <i>In Vivo </i>Optical Imaging 58</p> <p>3.2 Fluorescence Imaging in Live Animals 58</p> <p>3.2.1 Fluorescent Molecules for Live Animal Imaging 58</p> <p>3.2.2 How to Detect Fluorescence in Live Animals? 61</p> <p>3.2.3 Activatable Probes 62</p> <p>3.2.4 Microscope 68</p> <p>3.2.5 Application of Fluorescence Imaging to Drug Development 68</p> <p>3.3 Luminescence Imaging in Live Animals 69</p> <p>3.3.1 Luminescence Systems for Live Animal Imaging 70</p> <p>3.3.1.1 Firefly/Beetle Luciferin–Luciferase System 70</p> <p>3.3.1.2 Coelenterazine-Dependent Luciferase System 76</p> <p>3.3.1.3 Chemiluminescence System 82</p> <p>3.3.2 How to Detect Luminescence in Live Animals? 84</p> <p>3.3.3 Luciferase-Based Bioluminescence Probes for <i>In Vivo </i>Imaging 84</p> <p>3.4 Summary 87</p> <p>References 87</p> <p><b>4 Ultrasound Imaging in Live Animals </b><b>103<i><br /> </i></b><i>Francesco Faita</i></p> <p>4.1 Introduction 103</p> <p>4.2 High-Frequency Ultrasound Imaging 105</p> <p>4.3 Ultrasound Contrast Agents 109</p> <p>4.4 Photoacoustic Imaging 112</p> <p>4.5 Preclinical Applications 115</p> <p>4.5.1 Cardiovascular 115</p> <p>4.5.2 Oncology 120</p> <p>4.5.3 Developmental Biology 121</p> <p>References 123</p> <p><b>5 Positron Emission Tomography (PET) Imaging in Live Animals </b><b>127<i><br /> </i></b><i>Xiaowei Ma and Zhen Cheng</i></p> <p>5.1 Introduction 127</p> <p>5.2 Brief History of PET 128</p> <p>5.3 Principles of PET 129</p> <p>5.4 Small-Animal PET Scanners 133</p> <p>5.5 PET Imaging Tracers 134</p> <p>5.5.1 Metabolic Probe 134</p> <p>5.5.2 Specific Receptor Targeting Probe 135</p> <p>5.5.3 Gene Expression 136</p> <p>5.5.4 Specific Enzyme Substrate 137</p> <p>5.5.5 Microenvironment Probe 137</p> <p>5.5.6 Biological Processes 138</p> <p>5.5.7 Perfusion Probes 140</p> <p>5.5.8 Nanoparticles 140</p> <p>5.6 PET in Animal Imaging 141</p> <p>5.6.1 PET in Oncology Model 141</p> <p>5.6.1.1 Cancer Diagnosis 142</p> <p>5.6.1.2 Personal Treatment Screening 142</p> <p>5.6.1.3 Therapeutic Effect Monitoring 143</p> <p>5.6.1.4 Radiotherapy Planning 144</p> <p>5.6.1.5 Drug Discovery 144</p> <p>5.6.2 PET in Cardiology Model 145</p> <p>5.6.3 PET in Neurology Model 146</p> <p>5.6.4 PET Imaging in Other Disease Models 147</p> <p>5.7 PET Image Analysis 147</p> <p>5.8 Outlook for the Future 148</p> <p>Reference 149</p> <p><b>6 Single-Photon Emission Computed Tomographic Imaging in Live Animals </b><b>151<i><br /> </i></b><i>Yusuke Yagi, Hidekazu Kawashima, Kenji Arimitsu, Koki Hasegawa, and Hiroyuki Kimura</i></p> <p>6.1 Introduction 151</p> <p>6.2 SPECT Devices Used in Small Animals 152</p> <p>6.2.1 Innovative Preclinical Full-Body SPECT Imager for Rats and Mice: γ-CUBE 155</p> <p>6.2.2 Innovative Preclinical Full-Body PET Imager for Rats and Mice: β-CUBE 156</p> <p>6.2.3 Innovative Preclinical Full-Body CT Imager for Rats and Mice: X-CUBE 156</p> <p>6.2.4 Animal Monitoring: Its Importance and Overview of MOLECUBES’s Integrated Solution to Advance Physiological Monitoring 157</p> <p>6.2.5 Selected Applications Acquired on the CUBES 157</p> <p>6.2.5.1 SPECT Imaging with γ-CUBE 158</p> <p>6.2.5.2 PET Imaging with β-CUBE 158</p> <p>6.2.5.3 CT Imaging with X-CUBE 161</p> <p>6.3 Characteristics of SPECT Radionuclides and SPECT Imaging Probes 162</p> <p>6.3.1 Characteristics of SPECT Radionuclides 162</p> <p>6.3.2 Characteristics of SPECT Imaging Probes 162</p> <p>6.4 Radiolabeling 163</p> <p>6.4.1 Characteristic of Radiolabeling 164</p> <p>6.4.2 Radiolabeling with Technetium-99m 164</p> <p>6.4.3 Radiolabeling with Iodine-123 and Iodine-131 171</p> <p>6.4.4 Radioactive Iodine Labeling for Small Molecular Compounds 171</p> <p>6.4.5 Aromatic Electrophilic Substitution Reaction 171</p> <p>6.5 <i>In Vivo </i>Imaging of Disease Models 172</p> <p>6.5.1 Imaging of Central Nervous System Disease 173</p> <p>6.5.1.1 Alzheimer’s Disease 173</p> <p>6.5.1.2 Parkinson’s Disease 174</p> <p>6.5.1.3 Cerebral Ischemia 176</p> <p>6.5.2 Imaging of Cardiovascular Disease 177</p> <p>6.5.2.1 Atherosclerotic Plaque 177</p> <p>6.5.2.2 Myocardial Ischemia 177</p> <p>6.5.2.3 Imaging of Cancer 178</p> <p>6.6 Conclusions 179</p> <p>References 180</p> <p><b>7 Radiotherapeutic Applications </b><b>185<i><br /> </i></b><i>Koki Hasegawa, Hidekazu Kawashima, Yusuke Yagi, and Hiroyuki Kimura</i></p> <p>7.1 Introduction 185</p> <p>7.2 Radionuclide Therapy in Tumor-Bearing Mice 186</p> <p>7.2.1 Radiotherapy with β-Emitting Nuclides 186</p> <p>7.2.2 Radiotherapy Using α-Emitting Nuclides 188</p> <p>7.3 Radiolabeling Strategy 191</p> <p>7.3.1 Labeled Target Compounds 191</p> <p>7.3.2 211At-Labeled Compounds 192</p> <p>7.3.3 Chelating Agents for <sup>90</sup>Y, <sup>177</sup>Lu, <sup>225</sup>Ac, <sup>213</sup>Bi 193</p> <p>7.3.4 Peptides for Radionuclide Therapy 195</p> <p>7.3.4.1 Octreotate (TATE) and [Tyr<sup>3</sup>]-Octreotide (TOC) 195</p> <p>7.3.4.2 NeoBOMB1 196</p> <p>7.3.4.3 Pentixather 196</p> <p>7.3.4.4 PSMA-617 196</p> <p>7.3.4.5 Minigastrin 196</p> <p>7.3.5 Antibodies for Radionuclide Therapy 197</p> <p>7.3.5.1 Lintuzumab 197</p> <p>7.3.5.2 Rituximab 197</p> <p>7.3.5.3 Trastuzumab 197</p> <p>7.3.6 Examples of Radiotherapeutic Agents and Target Diseases 197</p> <p>7.4 Radiotheranostics 200</p> <p>7.4.1 Radiotheranostics Probe 200</p> <p>7.4.2 Our Approach to Radiotheranostic Probe Development 202</p> <p>7.4.3 Expectations and Challenges in Radiotheranostics 202</p> <p>7.4.4 Boron Neutron Capture Therapy (BNCT) 203</p> <p>7.4.5 Current Status of BNCT Drugs 204</p> <p>7.4.5.1 4-Borono-L-Phenylalanine (BPA) 204</p> <p>7.4.5.2 Sodium Borocaptate (BSH) 204</p> <p>7.5 Conclusion 205</p> <p>References 205</p> <p><b>8 Metabolic Glycan Engineering in Live Animals: Using Bio-orthogonal Chemistry to Alter Cell Surface Glycans </b><b>209<i><br /> </i></b><i>Danielle H. Dube and Daniel A.Williams</i></p> <p>8.1 Introduction 209</p> <p>8.2 Overview of Metabolic Glycan Engineering 210</p> <p>8.2.1 Origin of Metabolic Glycan Engineering 210</p> <p>8.2.2 Expansion of the Methodology to Include Unnatural Functional Groups and Bio-orthogonal Elaboration 213</p> <p>8.3 Bio-orthogonal Chemistries that Alter Cell Surface Glycans 216</p> <p>8.3.1 Bio-orthogonal Chemistries Amenable to Deployment in Live Animals 216</p> <p>8.3.2 Bio-orthogonal Chemistries Amenable to Deployment on Cells 221</p> <p>8.4 Permissive Carbohydrate Biosynthetic Pathways 223</p> <p>8.4.1 Deployment of Unnatural Monosaccharides in Mammalian Cells 223</p> <p>8.4.2 Unnatural Sugars that Label Glycans on Bacterial Cells 225</p> <p>8.5 Cell- and Tissue-Specific Delivery of Unnatural Sugars 226</p> <p>8.5.1 Harness Inherent Differences in Carbohydrate Biosynthesis 227</p> <p>8.5.2 Metabolically Label Cells <i>Ex vivo </i>Before Introducing Them <i>In vivo </i>227</p> <p>8.5.3 Label Tissues or Organs <i>In vivo </i>Before Analyzing them <i>Ex vivo </i>229</p> <p>8.5.4 Employ Tissue-Specific Enzymes to Release Monosaccharide Substrates 229</p> <p>8.5.5 Deliver Monosaccharide Substrates via Liposomes 231</p> <p>8.5.6 Use Tissue-Specific Transporters to Induce Monosaccharide Uptake 234</p> <p>8.6 Applications of Metabolic Glycan Labeling in Mice 234</p> <p>8.6.1 Imaging Glycans in Mice 234</p> <p>8.6.2 Covalent Delivery of Therapeutics in Mice 236</p> <p>8.7 Beyond Mice: Metabolic Glycan Engineering in Diverse Animals 237</p> <p>8.7.1 Zebra Fish 237</p> <p>8.7.2 Worms 239</p> <p>8.7.3 Plants 240</p> <p>8.8 Conclusions and Future Outlook 240</p> <p>8.8.1 Metabolic Glycan Engineering Offers a Test Bed for Bio-orthogonal Chemistries 240</p> <p>8.8.2 New Bio-orthogonal Reactions Could Transform the Field 241</p> <p>8.8.3 Basic Questions About Glycans Within Living Systems Remain Unanswered 241</p> <p>Acknowledgments 241</p> <p>References 241</p> <p><b>9 <i>In Vivo </i>Bioconjugation Using Bio-orthogonal Chemistry </b><b>249<i><br /> </i></b><i>Maksim Royzen, Nathan Yee, and Jose M. Mejia Oneto</i></p> <p>9.1 Introduction 249</p> <p>9.1.1 IEDDA Chemistry Between <i>trans</i>-Cyclooctene and Tetrazine 249</p> <p>9.1.2 Synthesis of New Tetrazines and Characterization of Their Reactivity 251</p> <p>9.1.3 Second Generation of IEDDA Reagents 251</p> <p>9.1.4 Bond-cleaving Bio-orthogonal “Click-to-Release” Chemistry 251</p> <p>9.2 <i>In Vivo </i>Applications of IEDDA Chemistry 251</p> <p>9.2.1 Pretargeting Approach for Cell Imaging 252</p> <p>9.2.2 Pretargeting Approach for <i>In Vivo </i>Imaging 256</p> <p>9.2.3 Application of the Pretargeting Strategy for <i>In Vivo </i>Radio Imaging 259</p> <p>9.2.4 <i>In Vivo </i>Drug Activation Using Bond-cleaving Bio-orthogonal Chemistry 260</p> <p>9.2.5 Reloadable Materials Allow Local Prodrug Activation 265</p> <p>9.2.6 Reloadable Materials Allow Local Prodrug Activation Using IEDDA Chemistry 266</p> <p>9.2.7 Controlled Activation of siRNA Using IEDDA Chemistry 272</p> <p>9.3 Future Outlook 274</p> <p>References 277</p> <p><b>10 <i>In Vivo </i>Targeting of Endogenous Proteins with Reactive Small Molecules </b><b>281<i><br /> </i></b><i>Naoya Shindo and Akio Ojida</i></p> <p>10.1 Introduction 281</p> <p>10.2 Ligand-Directed Chemical Ligation 282</p> <p>10.2.1 Ligand-Directed Tosyl Chemistry 282</p> <p>10.2.2 Ligand-Directed Acyl Imidazole Chemistry 284</p> <p>10.2.3 Other Chemical Reactions for Endogenous Protein Labeling 287</p> <p>10.3 Labeling Chemistry of Targeted Covalent Inhibitors 287</p> <p>10.3.1 Michael Acceptors 290</p> <p>10.3.2 Haloacetamides 293</p> <p>10.3.3 Activated Esters, Amides, Carbamates, and Ureas 295</p> <p>10.3.4 Sulfur(VI) Fluorides 297</p> <p>10.3.5 OtherWarheads and Reactions 300</p> <p>10.4 Conclusion 301</p> <p>References 302</p> <p><b>11 <i>In Vivo </i>Metal Catalysis in Living Biological Systems </b><b>309<i><br /> </i></b><i>Kenward Vong and Katsunori Tanaka</i></p> <p>11.1 Introduction 309</p> <p>11.2 Metal Complex Catalysts 310</p> <p>11.2.1 Protein Decaging 310</p> <p>11.2.2 Protein Bioconjugation 311</p> <p>11.2.3 Small Molecule – Bond Formation 319</p> <p>11.2.4 Small Molecule – Bond Cleavage 324</p> <p>11.3 Artificial Metalloenzymes 332</p> <p>11.3.1 ArMs Utilizing Naturally Occurring Metals 332</p> <p>11.3.2 ArMs Utilizing Abiotic Transition Metals 335</p> <p>11.4 Concluding Remarks 340</p> <p>References 343</p> <p><b>12 Chemical Catalyst-Mediated Selective Photo-oxygenation of Pathogenic Amyloids </b><b>355<i><br /> </i></b><i>Youhei Sohma and Motomu Kanai</i></p> <p>12.1 Introduction 355</p> <p>12.2 Catalytic Photo-oxygenation of Aβ Using a Flavin–Peptide Conjugate 357</p> <p>12.3 On–Off Switchable Photo-oxygenation Catalysts that Sense Higher Order Amyloid Structures 358</p> <p>12.4 Near-Infrared Photoactivatable Oxygenation Catalysts: Application to Amyloid Disease Model Mice 363</p> <p>12.5 Closing Remarks 367</p> <p>References 368</p> <p><b>13 Nanomedicine Therapies </b><b>373<i><br /> </i></b><i>Patrícia Figueiredo, Flavia Fontana, and Hélder A. Santos</i></p> <p>13.1 Introduction 373</p> <p>13.2 Engineering Nanoparticles for Therapeutic Applications 375</p> <p>13.2.1 Physicochemical Properties of NPs 375</p> <p>13.2.2 Surface Functionalization 379</p> <p>13.2.3 Stimuli-Responsive Nanomaterials 381</p> <p>13.2.4 Route of Administration 384</p> <p>13.3 Nanomedicine Platforms 384</p> <p>13.3.1 Lipidic Nanoplatforms 384</p> <p>13.3.2 Polymer-Based Nanoplatforms 389</p> <p>13.3.3 Inorganic Nanoplatforms 391</p> <p>13.3.4 Biomimetic Cell-Derived Nanoplatforms 393</p> <p>13.4 Conclusions 394</p> <p>References 395</p> <p><b>14 Photoactivatable Targeting Methods </b><b>401<i><br /> </i></b><i>Xiangzhao Ai, Ming Hu, and Bengang Xing</i></p> <p>14.1 Introduction 401</p> <p>14.2 UV Light-Responsive Theranostics 403</p> <p>14.2.1 UV Light-Triggered Photocaged Strategy 403</p> <p>14.2.2 UV Light-Mediated Photoisomerization Strategy 405</p> <p>14.3 Visible Light-Responsive Theranostics 408</p> <p>14.4 Near-Infrared (NIR) Light-Responsive Theranostics 410</p> <p>14.4.1 NIR Light-Mediated Drug Delivery Approach 411</p> <p>14.4.2 NIR Light-Mediated Photodynamic Therapy (PDT) Approach 415</p> <p>14.4.3 NIR Light-Mediated Photothermal Therapy (PTT) Approach 419</p> <p>14.5 Conclusion and Prospects 421</p> <p>Acknowledgment 423</p> <p>References 423</p> <p><b>15 Photoactivatable Drug Release Methods from Liposomes </b><b>433<i><br /> </i></b><i>Hailey I. Kilian, Dyego Miranda, and Jonathan F. Lovell</i></p> <p>15.1 Introduction 433</p> <p>15.1.1 Light-Sensitive Liposomes 434</p> <p>15.2 Mechanisms of Light-Triggered Release from Liposomes 435</p> <p>15.2.1 Light-Induced Oxidation 435</p> <p>15.2.2 Photocrosslinking 436</p> <p>15.2.3 Photoisomerization 438</p> <p>15.2.4 Photocleavage 440</p> <p>15.2.5 Photothermal Release 442</p> <p>References 444</p> <p><b>16 Peptide Targeting Methods </b><b>451<br /> </b><i>Ruei-Min Lu, Chien-Hsun Wu, Ajay V. Patil, and Han-Chung Wu</i></p> <p>16.1 Introduction 451</p> <p>16.2 Identification of Targeting Peptides 452</p> <p>16.2.1 Natural Ligands and Biomimetics 452</p> <p>16.2.2 Phage Display Peptide Library Screening 454</p> <p>16.2.3 Synthetic Peptide Library Screening 458</p> <p>16.3 Therapeutic Applications of Targeting Peptides 460</p> <p>16.3.1 Therapeutic Peptides 460</p> <p>16.3.1.1 Naturally Occurring Peptides 464</p> <p>16.3.1.2 Peptide Conjugates 464</p> <p>16.3.2 Drug Delivery 465</p> <p>16.3.2.1 Peptide–Drug Conjugates 465</p> <p>16.3.2.2 Peptide-Targeted Nanoparticles 467</p> <p>16.4 Molecular Imaging Mediated by Targeting Peptides 469</p> <p>16.4.1 Optical Imaging 470</p> <p>16.4.1.1 Targeting Peptides for Tumor Imaging 471</p> <p>16.4.1.2 Integrin α<i><sub>v</sub></i>β<sub>3</sub> – RGD Tripeptide Targeting Probes: 471</p> <p>16.4.1.3 Near-Infrared Imaging 472</p> <p>16.4.2 Positron Emission Tomography 472</p> <p>16.4.3 Magnetic Resonance Imaging 473</p> <p>16.5 Summary and Future Perspectives 474</p> <p>References 475</p> <p><b>17 Glycan-Mediated Targeting Methods 489</b><i><br /> Kenward Vong, Katsunori Tanaka, and Koichi Fukase</i></p> <p>17.1 Introduction 489</p> <p>17.2 Liver and Liver-Based Disease Targeting 491</p> <p>17.2.1 Parenchymal Cell Targeting 492</p> <p>17.2.2 Nonparenchymal Cell Targeting 498</p> <p>17.3 Immune System Targeting 501</p> <p>17.3.1 Alveolar Macrophage Targeting 503</p> <p>17.3.2 Peritoneal Macrophage Targeting 503</p> <p>17.3.3 Dendritic Cell Targeting 504</p> <p>17.3.4 Brain Macrophage Targeting 504</p> <p>17.4 Bacterial Cell Targeting 505</p> <p>17.5 Cancer Targeting 506</p> <p>17.5.1 Natural Monosaccharide-Based Methods 506</p> <p>17.5.2 Synthetic Sugars 508</p> <p>17.5.3 Complex Glycan Scaffold 511</p> <p>17.6 Concluding Remarks 514</p> <p>References 514</p> <p>Index 531</p>
<p><b><i>Katsunori Tanaka, PhD,</i></b> <i>is a Chief Scientist at the Biofunctional Synthetic Chemistry Laboratory at RIKEN, Japan, and a Professor of Chemistry at the Alexander Butlerov Institute of Chemistry, Kazan Federal. He received numerous honors and awards for his research work, including the Chemical Society of Japan Lectureship Award (twice), the Eisai Award in Synthetic Organic Chemistry, and the American Chemical Society Division of Carbohydrate Chemistry, Horace S. Isbell Award.</i> <p><b><i>Kenward Vong, PhD,</i></b> <i>is a Postdoctoral Fellow at RIKEN in Japan.</i>
<p><b>Provides timely, comprehensive coverage of in vivo chemical reactions within live animals</b> <p>This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. <p>The <i>Handbook of In Vivo Chemistry in Mice: From Lab to Living System</i> introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. <ul> <li>Completely covers current techniques of in vivo chemistry performed in live animals</li> <li>Describes general information about commonly used live animal experiments and detection methods</li> <li>Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release</li> <li>Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications</li> </ul> <p><i>Handbook of In Vivo Chemistry in Mice: From Lab to Living System</i> will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €