Details

Satellites for Atmospheric Sciences 2


Satellites for Atmospheric Sciences 2

Meteorology, Climate and Atmospheric Composition
1. Aufl.

von: Thierry Phulpin, Didier Renaut, Herve Roquet, Claude Camy-Peyret

142,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 29.12.2023
ISBN/EAN: 9781394264773
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>How can atmospheric variables such as temperature, wind, rain and ozone be measured by satellites? How are these measurements taken and what has been learned since the first measurements in the 1970s?</p> <p>What data are currently available and what data are expected in the future? The second volume of this encyclopedic book presents each field of application – meteorology, atmospheric composition and climate – with its main aims as well as the specific areas which can be addressed through the use of satellite remote sensing.</p> <p>This book presents the satellite products used for operational purposes as well as those that allow for the advancement of scientific knowledge. The instruments that are at their origin are described, as well as the processing, delivery times and the knowledge they provide. This book is completed by a glossary and appendices with a list of supporting instruments already in use.</p>
<p>Acknowledgments xiii</p> <p>List of Acronyms xv</p> <p>Introduction xxxiii<br /><i>Thierry PHULPIN</i></p> <p><b>Part 1 Meteorology 1</b></p> <p><b>Introduction to Part 1 3</b><br /><i>Hervé ROQUET</i></p> <p><b>Chapter 1 Operational Sounding of Thermodynamic Variables in the Atmosphere 9</b><br /><i>Thomas AUGUST</i></p> <p>1.1 Introduction 9</p> <p>1.2 Operational use of TIR and MW sounders 11</p> <p>1.2.1 Satisfying ever-more demanding users 11</p> <p>1.2.2 Clouds: an obstacle to sounding and a very useful geophysical product 17</p> <p>1.2.3 Demonstrating and maintaining product quality 19</p> <p>1.2.4 Different operational algorithmic strategies 22</p> <p>1.2.5 Application perspectives 25</p> <p>1.3 Acknowledgments 26</p> <p>1.4 References 27</p> <p><b>Chapter 2 Wind Observations 31</b><br /><i>Régis BORDE and Jean PAILLEUX</i></p> <p>2.1 Introduction 31</p> <p>2.2 AMVs 34</p> <p>2.2.1 Extraction of AMVs 34</p> <p>2.2.2 Current production and outlook 35</p> <p>2.3 3D winds derived from hyperspectral sounders 37</p> <p>2.4 Measuring wind from space using Doppler lidar 39</p> <p>2.4.1 Introduction 39</p> <p>2.4.2 Measurements from ALADIN lidar onboard Aeolus 40</p> <p>2.4.3 Culmination of a long process 41</p> <p>2.4.4 Situation in 2022 and outlook 42</p> <p>2.5 References 43</p> <p><b>Chapter 3 Surface Variables 47</b><br /><i>Jean-François MAHFOUF</i></p> <p>3.1 Observation of the Earth’s surface from space 47</p> <p>3.2 Energy balances at the surface and at the top of the atmosphere 49</p> <p>3.3 Ocean surfaces 50</p> <p>3.3.1 Surface temperature 50</p> <p>3.3.2 Surface wind 52</p> <p>3.3.3 Sea ice 54</p> <p>3.4 Continental surfaces 56</p> <p>3.4.1 Surface temperature 56</p> <p>3.4.2 Water content of soil 57</p> <p>3.4.3 Surface albedo 61</p> <p>3.4.4 Vegetation properties 62</p> <p>3.5 Snow-covered surfaces 64</p> <p>3.5.1 Spatial coverage and albedo 64</p> <p>3.5.2 Equivalent water content 65</p> <p>3.6 Expected changes 65</p> <p>3.7 References 66</p> <p><b>Chapter 4 The Assimilation of Satellite Data in Numerical Weather Prediction Systems 69</b><br /><i>Bill BELL, Jean-Noël THÉPAUT and John EYRE</i></p> <p>4.1 Introduction 69</p> <p>4.2 Early meteorological satellites 71</p> <p>4.3 Assimilation of satellite soundings 1970–2000 71</p> <p>4.3.1 Early sounding instruments 71</p> <p>4.3.2 Assimilation experience: 1970s 73</p> <p>4.3.3 Assimilation experience: early 1980s 73</p> <p>4.3.4 Problems arising in the late 1980s 74</p> <p>4.4 Relevant aspects of data assimilation theory 75</p> <p>4.5 The modern era (2000 to present) 77</p> <p>4.5.1 Assimilation strategies 77</p> <p>4.5.2 Advanced infrared sounders 79</p> <p>4.5.3 Microwave sounders and imagers 81</p> <p>4.5.4 Radiative transfer modeling 83</p> <p>4.5.5 Observation uncertainties 83</p> <p>4.5.6 Atmospheric motion vectors (AMVs) 84</p> <p>4.5.7 Scatterometers 86</p> <p>4.5.8 Radio occultation observations 87</p> <p>4.5.9 Impacts 89</p> <p>4.5.10 Reanalyses 91</p> <p>4.6 Summary and conclusion 91</p> <p>4.7 References 92</p> <p><b>Chapter 5 Nowcasting 97</b><br /><i>Thibaut MONTMERLE</i></p> <p>5.1 Introduction 97</p> <p>5.2 Satellite data for nowcasting 99</p> <p>5.2.1 Polar-orbiting satellites 99</p> <p>5.2.2 Geostationary satellites 100</p> <p>5.3 Observed phenomena 104</p> <p>5.3.1 Air mass instability 104</p> <p>5.3.2 Convective systems 104</p> <p>5.3.3 Characteristics of clouds 108</p> <p>5.3.4 Hydrometeors 109</p> <p>5.3.5 Wind 110</p> <p>5.4 Nowcasting of detected phenomena 111</p> <p>5.4.1 Method based on the tracking of structures 111</p> <p>5.4.2 Method based on image extrapolation 112</p> <p>5.4.3 Method based on artificial intelligence 112</p> <p>5.4.4 Use of numerical forecasting 114</p> <p>5.4.5 OBS-NWP fusion 115</p> <p>5.4.6 Probabilistic forecast 115</p> <p>5.5 Perspectives 116</p> <p>5.6 References 116</p> <p><b>Chapter 6 Observation and Monitoring of Tropical Cyclones from Space 119</b><br /><i>Frank ROUX</i></p> <p>6.1 Introduction 119</p> <p>6.2 Visible and infrared imagery 120</p> <p>6.3 Microwave imaging 122</p> <p>6.4 Microwave sounding 125</p> <p>6.5 Surface wind measurements 126</p> <p>viii Satellites for Atmospheric Sciences 2</p> <p>6.6 Ocean parameters 130</p> <p>6.7 Climatology of cyclones 131</p> <p>6.8 Conclusion 132</p> <p>6.9 References 133</p> <p><b>Part 2 Atmospheric Composition 137</b></p> <p><b>Introduction to Part 2 Air Composition and the Contribution from Satellite Observations 139</b><br /><i>Thierry PHULPIN and Claude CAMY-PEYRET</i></p> <p><b>Chapter 7 Reactive Tropospheric Chemistry 143</b><br /><i>Sarah SAFIEDDINE and Camille VIATTE</i></p> <p>7.1 Introduction 143</p> <p>7.2 Methane 144</p> <p>7.3 Reactive organic species 144</p> <p>7.3.1 Isoprene 146</p> <p>7.3.2 Other non-methane volatile organic compounds 146</p> <p>7.4 Reactive inorganic species 148</p> <p>7.5 Conclusion 150</p> <p>7.6 Acknowledgment 150</p> <p>7.7 References 150</p> <p><b>Chapter 8 Major Pollutants: Ozone and Fine Particulate Matter 153</b><br /><i>Juan CUESTA and Gaëlle DUFOUR</i></p> <p>8.1 Introduction 153</p> <p>8.2 Tropospheric ozone 154</p> <p>8.2.1 Beginnings of satellite-based tropospheric ozone observations 154</p> <p>8.2.2 Current capabilities for tropospheric ozone monitoring 155</p> <p>8.2.3 Multi-wavelength synergy for ozone pollution monitoring 157</p> <p>8.3 Pollution aerosols 158</p> <p>8.3.1 Optical thickness of pollution aerosols 159</p> <p>8.3.2 Altitude of pollution aerosols 161</p> <p>8.4 References 163</p> <p><b>Chapter 9 Desert Dust 167</b><br /><i>Juan CUESTA</i></p> <p>9.1 Introduction 167</p> <p>9.2 Qualitative satellite detection of desert dust 168</p> <p>9.3 Satellite observation of the optical depth of desert dust 170</p> <p>9.4 Vertical profiles of desert dust by spaceborne lidar 171</p> <p>9.5 3D distribution of desert dust by infrared spectrometer 173</p> <p>9.6 Conclusion 175</p> <p>9.7 References 176</p> <p><b>Chapter 10 Species Emitted by Fires 179</b><br /><i>Camille VIATTE and Pasquale SELLITTO</i></p> <p>10.1 Introduction 179</p> <p>10.2 Biomass burning gases 181</p> <p>10.2.1 Greenhouses gases 181</p> <p>10.2.2 Carbon monoxide (CO) 181</p> <p>10.2.3 Volatile organic compounds (VOCs) 182</p> <p>10.2.4 Ammonia (NH3) 183</p> <p>10.2.5 Nitrous acid (HONO) 183</p> <p>10.3 Biomass burning aerosols 183</p> <p>10.3.1 AOD observations with nadir-viewing instruments 183</p> <p>10.3.2 Extinction observations with limb-viewing instruments 184</p> <p>10.3.3 Lidar profiles observations 184</p> <p>10.4 Fire detection systems from space 184</p> <p>10.5 Conclusion 185</p> <p>10.6 Acknowledgments 185</p> <p>10.7 References 185</p> <p><b>Chapter 11 Stratospheric Chemistry 189</b><br /><i>Claude CAMY-PEYRET and Sarah SAFIEDDINE</i></p> <p>11.1 Introduction 189</p> <p>11.2 Stratospheric ozone chemistry 189</p> <p>11.2.1 Polar ozone depletion 190</p> <p>11.2.2 Antarctic ozone distribution 192</p> <p>11.2.3 Arctic ozone distribution 193</p> <p>11.3 Stratospheric chemistry of other species 193</p> <p>11.3.1 Chemistry of the stratosphere and models 194</p> <p>11.3.2 Radical processes and cycles for the major families 196</p> <p>11.3.3 The example of methane in the stratosphere 197</p> <p>11.4 Satellite measurements of trace species in the stratosphere 198</p> <p>11.5 Conclusion 200</p> <p>11.6 Acknowledgments 200</p> <p>11.7 References 200</p> <p><b>Part 3 Atmosphere and climate 203</b></p> <p><b>Introduction to Part 3 Atmosphere and Climate and the Contribution of Space 205</b><br /><i>Paul POLI</i></p> <p><b>Chapter 12 Climate Monitoring 209</b><br /><i>Paul POLI and Jörg SCHULZ</i></p> <p>12.1 General concepts about the climate 209</p> <p>12.1.1 What is climate? 209</p> <p>12.1.2 Is climate limited to atmospheric phenomena? 211</p> <p>12.1.3 A question for Nobel Prize laureates: is the climate stable? 213</p> <p>12.2 From space-based measurements to climate products 215</p> <p>12.2.1 Sensing the environment 215</p> <p>12.2.2 The role of space-based observations 217</p> <p>12.2.3 The concept of essential climate variables 218</p> <p>12.2.4 Observation-based products 220</p> <p>12.2.5 Model-assisted climate products 221</p> <p>12.3 Climate data records and uncertainty estimates 223</p> <p>12.3.1 Why reprocessing? 223</p> <p>12.3.2 Calibration 224</p> <p>12.3.3 Uncertainty 226</p> <p>12.4 The usage of climate data records in science and services 228</p> <p>12.5 Looking ahead 230</p> <p>12.6 References 231</p> <p>12.7 References of the data sources cited in Figure 12.1 232</p> <p><b>Chapter 13 Anthropogenic Greenhouse Gases: CO2 and CH4 235</b><br /><i>Cyril CREVOISIER</i></p> <p>13.1 Monitoring anthropogenic greenhouse gases 236</p> <p>13.1.1 Biogeochemical cycles 236</p> <p>13.1.2 Determination of gas sources and sinks 236</p> <p>13.1.3 The global observation network 237</p> <p>13.2 Contribution of spatial observation of greenhouse gases 238</p> <p>13.2.1 Specificities of greenhouse gas observation 238</p> <p>13.2.2 Particularly rich spatial programming 241</p> <p>13.3 Measurement techniques 242</p> <p>13.3.1 Passive observations in the infrared range 243</p> <p>13.3.2 Passive observations by solar reflection 245</p> <p>13.3.3 Passive observations by solar occultation 247</p> <p>13.3.4 Active observations using lidar 247</p> <p>13.4 From radiation measurement to gas flux at the surface 248</p> <p>13.4.1 From radiation measurement to gas concentrations 248</p> <p>13.4.2 From concentration to fluxes 250</p> <p>13.4.3 Main limitations 251</p> <p>13.5 Challenges for the future 252</p> <p>13.5.1 Towards the observation of anthropogenic emissions by spatial imagery 253</p> <p>13.5.2 Reducing spatio-temporal sampling biases 253</p> <p>13.5.3 Towards an operational greenhouse gas monitoring service 254</p> <p>13.6 References 255</p> <p><b>Chapter 14 Clouds and Water Vapor 259</b><br /><i>Hélène BROGNIEZ, Laurence PICON and Dominique BOUNIOL</i></p> <p>14.1 Atmospheric water cycle and climate 259</p> <p>14.2 Observations of water vapor 260</p> <p>14.2.1 Passive sensors 263</p> <p>14.2.2 Active sensors 265</p> <p>14.2.3 Homogenization and intercomparison 266</p> <p>14.3 Observation of cloud properties 267</p> <p>14.3.1 Observations using passive instruments 270</p> <p>14.3.2 Observations using active instruments 273</p> <p>14.3.3 Multi-instrument synergy for the establishment of cloud climatologies 277</p> <p>14.4 References 282</p> <p><b>Chapter 15 Precipitation 287</b><br /><i>Vincenzo LEVIZZANI and Christopher KIDD</i></p> <p>15.1 Need for global precipitation measurements 287</p> <p>15.2 Satellite observation of rainfall 289</p> <p>15.2.1 Visible/Infrared 290</p> <p>15.2.2 Passive microwave 291</p> <p>15.2.3 Radar 294</p> <p>15.2.4 Merged products 295</p> <p>15.3 Observation of solid precipitation 298</p> <p>15.4 Precipitation and the Earth water cycle 300</p> <p>15.5 References 303</p> <p>Appendices 307</p> <p>Appendix 1 309<br /><i>Claude CAMY-PEYRET</i></p> <p>Appendix 2 317<br /><i>Claude CAMY-PEYRET</i></p> <p>Appendix 3 327</p> <p>Appendix 4 341</p> <p>Glossary 347</p> <p>List of Authors 361</p> <p>Index 365</p> <p>Summary of Volume 1 369</p>
<p><b>Thierry Phulpin</b> is a senior expert in space missions for atmospheric sciences. He has been a researcher at Météo-France, Lannion, then program scientist on missions for meteorology (IASI, IASI-NG) and air quality (TRAQ, 3MI) at the CNES, Toulouse.</p> <p><b>Didier Renaut</b> is a meteorological engineer, now retired. He made his career at Météo-France, Paris, then at the CNES, Paris, where he was in charge of meteorological and climate programs. He has also worked in the field of scientific publishing.</p> <p><b>Hervé Roquet</b> is a meteorological engineer at Météo-France. After several years at the Space Meteorology Center of Météo-France in Lannion, he joined the Higher Education and Research Department of Météo-France in Saint-Mandé in 2017, where he is the deputy director.</p> <p><b>Claude Camy-Peyret</b> is currently emeritus scientist at Institut Pierre Simon Laplace, Paris. He is also a retired research director at the CNRS, Paris. From 1996 to 2008 he was the head of LPMAA at Sorbonne Université, Paris.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €