Details

Concentrating Solar Thermal Energy


Concentrating Solar Thermal Energy

Fundamentals and Applications
1. Aufl.

von: Gilles Flamant

126,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.09.2022
ISBN/EAN: 9781394169696
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The Sun, our star, has inspired the research of many scientists and engineers and brings hope to many of us for a paradigm shift in energy. Indeed, the applications of solar energy are manifold, primarily because it concerns both light and heat. Photovoltaic (PV) conversion is the most well-known among these, but other modes of conversion include photochemical, photobiological, photoelectrochemical, thermal and thermochemical.<br /><br />This book covers the entire chain of conversion from the Sun to the targeted energy vector (heat, electricity, gaseous or liquid fuels). Beginning with the state of the art, subsequent chapters address solar resources, concentration and capture technologies, the science of flows and transfers in solar receivers, materials with controlled optical properties, thermal storage, hybrid systems (PV-thermal) and synthetic fuels (hydrogen and synthetic gas).<br /><br />Written by a number of experts in the field, Concentrating Solar Thermal Energy provides an insightful overview of the current landscape of the knowledge regarding the most recent applications of concentrating technologies.
<p>Introduction xi<br /><i>Gilles FLAMANT</i></p> <p><b>Chapter 1. Solar Power Plants: State of the Art 1<br /></b><i>Gilles FLAMANT</i></p> <p>1.1. Introduction 1</p> <p>1.2. History 3</p> <p>1.3. Various configurations of solar power plants 7</p> <p>1.4. Paradigm of solar power plants, optimum temperature – concentration factor 10</p> <p>1.5. Parabolic trough solar power plants 14</p> <p>1.6. Solar power plants with linear Fresnel concentrators 20</p> <p>1.7. Tower power plants 23</p> <p>1.8. Dish–Stirling modules 29</p> <p>1.9. Perspectives: deployment, capacity factor, costs, environmental impact and new concepts 31</p> <p>1.9.1. Commercial deployment 31</p> <p>1.9.2. Capacity factor 33</p> <p>1.9.3. Cost of electricity 34</p> <p>1.9.4. Environmental impact 37</p> <p>1.9.5. Technological evolutions and new generations (GEN3) 37</p> <p>1.10. Conclusion 40</p> <p>1.11. References 40</p> <p><b>Chapter 2. Solar Resource Management, Assessment and Forecasting 45<br /></b><i>Stéphane THIL and Stéphane GRIEU</i></p> <p>2.1. Measurement and assessment of the solar resource 45</p> <p>2.1.1. Earth–Sun pair 45</p> <p>2.1.2. Extra-terrestrial solar irradiance 50</p> <p>2.1.3. Solar irradiance interaction with the atmosphere 51</p> <p>2.1.4. Components of solar irradiance and associated instruments 57</p> <p>2.2. Forecasting of direct normal irradiance 66</p> <p>2.2.1. Definitions and needs of an operator of CSP plant 67</p> <p>2.2.2. The main DNI forecasting techniques 68</p> <p>2.2.3. Intra-hour DNI forecasting models 71</p> <p>2.3. Conclusion 77</p> <p>2.4. Nomenclature 78</p> <p>2.5. References 79</p> <p><b>Chapter 3. Optics of Concentrating Systems 85<br /></b><i>François HÉNAULT, Benjamin GRANGE and Quentin FALCOZ</i></p> <p>3.1. Introduction 85</p> <p>3.2. History 86</p> <p>3.2.1. From Archimedes to 19th century 86</p> <p>3.2.2. 1950–1980: First industrial installations 88</p> <p>3.3. Performances and limitations 90</p> <p>3.3.1. Specification of a solar concentrator 90</p> <p>3.3.2. Collected power 92</p> <p>3.3.3. Three definitions of concentration 93</p> <p>3.3.4. Maximal concentration – Stefan’s law 97</p> <p>3.3.5. Solar concentrator-specific errors 99</p> <p>3.3.6. Concentration losses and the “golden rule” of solar concentration 107</p> <p>3.4. Optical qualification of parabolic trough concentrators 110</p> <p>3.4.1. Definitions 110</p> <p>3.4.2. Methodology 111</p> <p>3.4.3. Example 113</p> <p>3.5. The heliostat fields of tower power plants 114</p> <p>3.5.1. Description 114</p> <p>3.5.2. Optical losses 115</p> <p>3.5.4. Simulations of heliostat fields 119</p> <p>3.6. Conclusion 121</p> <p>3.7. References 122</p> <p><b>Chapter 4. Solar Receivers 125<br /></b><i>Benjamin GRANGE</i></p> <p>4.1. Introduction 125</p> <p>4.2. Absorber tubes for linear concentrators 125</p> <p>4.2.1. Description 125</p> <p>4.2.2. Thermal losses 127</p> <p>4.3. Solar receivers for tower power plants 128</p> <p>4.3.1. Description 128</p> <p>4.3.2. Receivers in the commercial tower power plants 129</p> <p>4.3.3. Emerging designs 133</p> <p>4.3.4. Thermal losses 139</p> <p>4.3.5. Thermal model of solar receivers 143</p> <p>4.4. Conclusion 147</p> <p>4.5. References 148</p> <p><b>Chapter 5. Heat Transfer Fluids for Solar Power Plants 151<br /></b><i>Gilles FLAMANT</i></p> <p>5.1. Introduction 151</p> <p>5.2. Review of thermal transfer physics 152</p> <p>5.3. Fluids, stability and properties 154</p> <p>5.3.1. Thermal stability of heat transfer fluids 154</p> <p>5.3.2. Physical properties of heat transfer fluids 156</p> <p>5.4. Fluid–wall heat transfer coefficients 159</p> <p>5.4.1. Flow conditions 159</p> <p>5.4.2. Correlations 159</p> <p>5.4.3. Heat transfer coefficients 160</p> <p>5.5. Solutions being developed 164</p> <p>5.5.1. Reduction of the melting temperature of salts 164</p> <p>5.5.2. Increase of the maximum working temperature 165</p> <p>5.6. Conclusion 166</p> <p>5.7. References 166</p> <p><b>Chapter 6. Numerical Simulations of Flows and Heat Transfers of Solar Receivers 169<br /></b><i>Françoise BATAILLE, Adrien TOUTANT and Dorian DUPUY</i></p> <p>6.1. Introduction 169</p> <p>6.2. Modeling approaches 172</p> <p>6.2.1. Direct numerical simulation 173</p> <p>6.2.2. Thermal large-eddy simulation 174</p> <p>6.2.3. RANS (Reynolds averaged Navier–Stokes equations) 175</p> <p>6.2.4. Correlations 176</p> <p>6.3. Direct numerical simulation and thermal large-eddy simulation 177</p> <p>6.3.1. Geometry 177</p> <p>6.3.2. Direct numerical simulation equations 178</p> <p>6.3.3. DNS results 179</p> <p>6.3.4. Equations of the thermal large-eddy simulation 180</p> <p>6.3.5. LES results 182</p> <p>6.4. Dynamic and thermal couplings – physical approach 185</p> <p>6.4.1. Analysis of integral quantities 186</p> <p>6.4.2. Analysis in the spatial domain 187</p> <p>6.4.3. Analysis in the spectral domain 192</p> <p>6.5. Conclusion 196</p> <p>6.6. References 197</p> <p><b>Chapter 7. Materials for Concentrated Solar Power 199<br /></b><i>Audrey SOUM-GLAUDE and Antoine GROSJEAN</i></p> <p>7.1. Introduction 199</p> <p>7.2. Optical properties of materials 200</p> <p>7.2.1. Spectral properties 200</p> <p>7.2.2. Solar performance 201</p> <p>7.3. Reflective components: solar mirrors 202</p> <p>7.3.1. Optical performance indicator: solar reflectance 202</p> <p>7.3.2. Materials and structures of solar mirrors 203</p> <p>7.3.3. Aging and durability of solar mirrors 206</p> <p>7.4. Transparent components: protective glass 207</p> <p>7.4.1. Optical performance indicator: solar transmittance 207</p> <p>7.4.2. Materials and structures of protective glass 208</p> <p>7.4.3. Aging and durability of antireflective glasses 212</p> <p>7.5. Absorbing components: solar absorbers 212</p> <p>7.5.1. Optical performance indicators for solar absorbers 212</p> <p>7.5.2. Materials and structures of solar absorbers 218</p> <p>7.5.3. Aging and durability of solar absorbers 222</p> <p>7.6. Conclusion 224</p> <p>7.7. References 224</p> <p><b>Chapter 8. Thermal Energy Storage 229<br /></b><i>Aubin TOUZO, Quentin FALCOZ and Gilles FLAMANT</i></p> <p>8.1. Introduction 229</p> <p>8.1.1. Advantages related to thermal energy storage 229</p> <p>8.1.2. An overview of thermal energy storage 230</p> <p>8.1.3. Integration of storage in the solar power plant dimensioning 231</p> <p>8.2. Two-tank molten salt storage 232</p> <p>8.2.1. Examples of existing power plants 232</p> <p>8.2.2. Operating principle 233</p> <p>8.2.3. Materials employed 234</p> <p>8.2.4. Economic advantage 234</p> <p>8.2.5. Drawbacks of molten salt storage systems 235</p> <p>8.3. Thermocline storage 235</p> <p>8.3.1. Examples of solar power plants with thermocline storage 236</p> <p>8.3.2. Operating principle 238</p> <p>8.3.3. Modeling 239</p> <p>8.3.4. Integration challenges in a solar power plant 240</p> <p>8.3.5. Storage materials 242</p> <p>8.3.6. Life cycle analysis 245</p> <p>8.3.7. Economic considerations 245</p> <p>8.4. Processes with steam accumulator 245</p> <p>8.4.1. Existing power plants 245</p> <p>8.4.2. Operating principle 247</p> <p>8.4.3. Drawbacks 248</p> <p>8.5. Solar power plant with particle receiver 249</p> <p>8.6. Research and development of latent heat processes 250</p> <p>8.6.1. PCM exchanger 250</p> <p>8.6.2. PCM encapsulation 251</p> <p>8.6.3. Principle 251</p> <p>8.6.4. Drawbacks of phase change materials 252</p> <p>8.7. Thermochemical storage 253</p> <p>8.8. Comparison of the cost of stored solar power 253</p> <p>8.9. Conclusion 256</p> <p>8.10. References 256</p> <p><b>Chapter 9. Hybrid PV–CSP Systems 259<br /></b><i>Alexis VOSSIER and Joya ZEITOUNY</i></p> <p>9.1. Introduction 259</p> <p>9.2. Hybrid strategies 261</p> <p>9.3. Non-compact hybrid strategies 262</p> <p>9.4. Compact hybrid strategies 263</p> <p>9.4.1. High-temperature approach 264</p> <p>9.4.2. Spectral splitting 270</p> <p>9.4.3. Performance-based comparison of the main hybrid strategies 273</p> <p>9.4.4. Hybrid PV-TS systems 274</p> <p>9.5. Innovative hybrid systems 276</p> <p>9.5.1. Mixed hybrid systems 276</p> <p>9.5.2. Luminescent solar converters 278</p> <p>9.5.3. Very high temperature thermal energy storage coupled with photovoltaic conversion 279</p> <p>9.6. Conclusion 281</p> <p>9.7. References 281</p> <p><b>Chapter 10. Synthetic Fuels from Hydrocarbon Resources 283<br /></b><i>Sylvain RODAT and Stéphane ABANADES</i></p> <p>10.1. Introduction to solar fuels 283</p> <p>10.2. Conversion of carbonaceous materials using solar energy 285</p> <p>10.2.1. Solar cracking and reforming of hydrocarbons 285</p> <p>10.2.2. Solar pyrolysis and gasification of solid carbonaceous materials 294</p> <p>10.3. Conclusion and perspectives 299</p> <p>10.4. References 300</p> <p><b>Chapter 11. Solar Fuel Production by Thermochemical Dissociation of Water and Carbon Dioxide 303<br /></b><i>Stéphane ABANADES and Sylvain RODAT</i></p> <p>11.1. Introduction 303</p> <p>11.2. Direct H2O and CO2 thermolysis 304</p> <p>11.3. Thermochemical cycles 306</p> <p>11.3.1. Principle 306</p> <p>11.3.2. Cycles with volatile oxides 308</p> <p>11.3.3. Non-volatile oxide cycles 312</p> <p>11.3.4. Non-stoichiometric oxide cycles 313</p> <p>11.3.5. Solar reactor concepts for cycle implementation 316</p> <p>11.4. Conclusion 322</p> <p>11.5. References 323</p> <p>List of Authors 329</p> <p>Index 331</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €