Details

Advances in Novel Formulations for Drug Delivery


Advances in Novel Formulations for Drug Delivery


1. Aufl.

von: Raj K. Keservani, Rajesh Kumar Kesharwani, Anil K. Sharma

191,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.01.2023
ISBN/EAN: 9781394167692
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>ADVANCES in NOVEL FORMULATIONS for DRUG DELIVERY</b> <p><b>The 27 chapters describe novel strategies for drug/nutraceutical delivery and embrace the development of formulations with herbal ingredients, while also highlighting disease therapeutics.</b> <p>Drug delivery technology has witnessed many advancements purported to cater to the customized needs of its ultimate beneficiaries—the patients. Today, dosage forms are not confined to conventional tablets, capsules, or injectables, but have evolved to cover novel drug carriers such as particulates, vesicles, and many others. Nanotechnological advancements have played a major role in this paradigm shift in ways of delivering active pharmaceutical ingredients. <p>A new dimension in the use of food as medicine has also gained prominence in recent years. A portmanteau of nutrition and pharmaceuticals is “nutraceuticals,” also known as functional foods and dietary supplements. The technologies which were earlier included in drug delivery have been attempted for the delivery of nutraceuticals as well. Herbal actives have received increased attention due to their low risk-to-benefit ratio. The field of drug delivery is quite dynamic in nature, as witnessed by its evolution from conventional dosage forms to nanotechnology-assisted drug products. A variety of formulations via different drug delivery routes have been developed to treat/cure/mitigate diseases or disorders. <p>This book, comprising of 27 chapters, is a thorough compilation of information relevant to drug delivery systems with an emphasis on products based on nanotechnology. <p><b>Audience</b> <p>Researchers, scientists, industry professionals, formulators and product developers, regulatory agencies in a variety of settings including novel drug delivery research laboratories, pharmaceutical, and pharmacy industries, biomedical sciences, food and nutraceuticals manufacturers, and nanotechnology.
<p>Preface xxiii</p> <p><b>Part I: Novel Drug Carriers and Therapeutics 1</b></p> <p><b>1 Nanoarchitectured Materials: Their Applications and Present Scenarios in Drug Delivery 3<br /> </b><i>Moreshwar P. Patil and Lalita S. Nemade</i></p> <p>1.1 Introduction 3</p> <p>1.2 Liposomes 4</p> <p>1.3 Nanoparticles 8</p> <p>1.3.1 Nanoparticles in Drug Delivery 9</p> <p>1.4 Nanoemulsions 10</p> <p>1.4.1 Advantages and Shortcomings of Nanoemulsions 10</p> <p>1.4.2 Application of Nanoemulsion in Drug Delivery 10</p> <p>1.5 Dendrimers 11</p> <p>1.5.1 Synthesis of Dendrimers 12</p> <p>1.5.2 Advantages of Dendrimers 12</p> <p>1.5.3 Applications of Dendrimers in Drug Delivery 12</p> <p>1.6 Aquasomes 15</p> <p>1.6.1 Properties of Aquasomes 15</p> <p>1.6.2 Application of Aquasomes in Drug Delivery 16</p> <p>1.7 Nanogel 16</p> <p>1.7.1 Properties of Nanogels 17</p> <p>1.7.2 Nanogels in Drug Delivery 17</p> <p>1.8 Quantum Dots 18</p> <p>1.8.1 Applications of Quantum Dots in Drug Delivery 19</p> <p>1.9 Carbon Nanotubes 19</p> <p>1.9.1 Features of Carbon Nanotubes 19</p> <p>1.9.2 Carbon Nanotubes in Drug Delivery 20</p> <p>References 20</p> <p><b>2 Nanopharmaceuticals for Drug Delivery 29<br /> </b><i>Swapnali Ashish Patil, Akshadha Atul Bakliwal, Vijay Sharad Chudiwal and Swati Gokul Talele</i></p> <p>2.1 Introduction 29</p> <p>2.2 What Are Nanopharmaceuticals and What Do They Do? 30</p> <p>2.3 Nanopharmaceuticals Importance 30</p> <p>2.4 Nanotechnology 30</p> <p>2.5 Pharmaceutical Companies and Nanotechnology 31</p> <p>2.6 Applications and Advantages of Nanopharmaceuticals as Drug Carriers 32</p> <p>2.7 Characteristics of Nanoparticles in Nanopharmaceuticals 32</p> <p>2.7.1 Particle Size 32</p> <p>2.7.2 Surface Properties of Nanoparticles 33</p> <p>2.7.3 Drug Loading 33</p> <p>2.7.4 Drug Release 34</p> <p>2.8 Targeted Drug Delivery 34</p> <p>2.9 Types of Nanoparticles 34</p> <p>2.10 Nanoparticle Preparation Methods 35</p> <p>2.11 Evaluation of Nanoparticles 35</p> <p>2.12 Efficiency of Drug Entrapment 37</p> <p>2.13 Particle Shape 37</p> <p>2.14 Size of the Particles 37</p> <p>2.15 Zeta Potential 37</p> <p>2.16 Rise of Nanopharmaceuticals 38</p> <p>2.17 Nanopharmaceuticals Approval Regulations (FDA Rules & Regulations) 39</p> <p>2.18 Conclusions and Prospects for the Future 40</p> <p>References 41</p> <p><b>3 Applications and Prospects of Nanopharmaceuticals Delivery 45<br /> </b><i>Hemant K. S. Yadav, Fejer Al mohammedawi and Rawan J. I. Abujarad</i></p> <p>3.1 Introduction 45</p> <p>3.2 Nanopharmaceuticals 46</p> <p>3.3 Development of Nanopharmaceuticals 46</p> <p>3.3.1 From Lab to the Marketplace 46</p> <p>3.3.2 Techniques 47</p> <p>3.3.3 Cost 47</p> <p>3.3.4 Ethics 48</p> <p>3.3.5 Nanopharmaceuticals Approval Regulations (FDA Rules & Regulations) 48</p> <p>3.4 Clinical Applications of Nanotechnology 49</p> <p>3.4.1 Diagnostic Applications 49</p> <p>3.4.1.1 Detection 50</p> <p>3.4.1.2 Protein Chips 50</p> <p>3.4.1.3 Individual Target Probes 50</p> <p>3.4.1.4 Nanotechnology as a Tool in Imaging 51</p> <p>3.4.1.5 Sparse Cell Detection 51</p> <p>3.4.2 Therapeutic Applications 51</p> <p>3.4.2.1 Surfaces 51</p> <p>3.4.2.2 Gene Delivery 51</p> <p>3.4.2.3 Drug Delivery 52</p> <p>3.4.2.4 Liposomes 52</p> <p>3.4.2.5 Nanotechnology in Orthopedic Applications 52</p> <p>3.4.2.6 Nanotechnology in Cardiac Therapy 53</p> <p>3.4.2.7 Nanotechnology in Dental Care 53</p> <p>3.4.2.8 Biomolecular Engineering 53</p> <p>3.4.2.9 Biopharmaceuticals 53</p> <p>3.5 Nanopharmaceuticals Delivery—Recent Applications 54</p> <p>3.5.1 Nanoparticulate Systems for Vaccine 54</p> <p>3.5.1.1 Polyanhydride-Based NPs 54</p> <p>3.5.1.2 Biodegradable Synthetic PLGA NPs 54</p> <p>3.5.1.3 Liposome-Based NPs 55</p> <p>3.5.1.4 Polysaccharide-Based NPs 55</p> <p>3.5.2 Chemotherapy 55</p> <p>3.5.2.1 Increasing the Concentration of Chemotherapeutic Agents in Tumor Tissue 56</p> <p>3.5.3 Drug/Gene Delivery 57</p> <p>3.5.3.1 Nanoparticles Used in Drug Delivery System 58</p> <p>3.5.3.2 Cellulose 59</p> <p>3.6 Nanotechnology in Neurodegenerative Disorders Treatment 59</p> <p>3.7 Future Perspective 59</p> <p>3.8 Issues with Current Nanopharmaceutical Concepts 60</p> <p>3.8.1 Large-Scale Manufacturing 60</p> <p>3.8.2 Biological Challenges 62</p> <p>3.8.3 Intellectual Property (IP) 62</p> <p>3.8.4 Biocompatibility and Safety 63</p> <p>3.8.5 Government Regulations 63</p> <p>3.9 Conclusion 64</p> <p>References 64</p> <p><b>4 Nanomedicine Regulation and Future Prospects 67<br /> </b><i>md Anwar Nawaz R., Darul Raiyaan G. I., Sivakumar K. and Kantha D. Arunachalam</i></p> <p>4.1 Introduction 67</p> <p>4.2 Importance of Regulation of Nanomedicine 68</p> <p>4.3 Regulatory Challenges Faced by Nanomaterial in Medicine 68</p> <p>4.3.1 Performing Various Functions 69</p> <p>4.3.2 Nanomedicine Classification Issues 69</p> <p>4.3.3 Variation in Size of the Particle 69</p> <p>4.3.4 Manufacturing Process 69</p> <p>4.3.5 Difficulties to Create CQA 70</p> <p>4.3.6 Nanotoxicology and Cellular Response 70</p> <p>4.3.7 Administering Right Doses 71</p> <p>4.3.8 Pharmacokinetics 71</p> <p>4.3.9 Developing Guidelines 71</p> <p>4.4 Nanomedicine Future Aspects 71</p> <p>4.5 Challenges that Threaten the Future of Nanomedicine 72</p> <p>4.5.1 Financial Crisis 72</p> <p>4.5.2 Lack of Confidence 72</p> <p>4.5.3 Potential Dangers 72</p> <p>4.5.4 Unsuccessful Patenting 73</p> <p>4.5.5 Breakdowns in the Pharmaceuticals and Financial Markets 73</p> <p>4.5.6 Limited Regulation 74</p> <p>4.6 Future Prospects for Nanomedicine 74</p> <p>4.6.1 Emerging Nanomaterials 75</p> <p>4.6.2 Personalized Nanomedicine 75</p> <p>4.6.3 Nanorobots and Nanodevices 75</p> <p>4.6.4 Orthopedic Augmentations and Cytocompatibility 76</p> <p>4.6.5 Cardiology and Nanotechnology 76</p> <p>4.6.6 Cancer and Nanotechnology 77</p> <p>4.6.7 Napt 77</p> <p>4.6.8 Gene, Protein, Lab-on-a-Chip Devices 78</p> <p>4.6.9 Polymeric Nanoparticles in Medicine 78</p> <p>References 79</p> <p><b>5 Nanotechnology Application in Drug Delivery for Medicinal Plants 81<br /> </b><i>Bui Thanh Tung, Duong Van Thanh and Nguyen Phuong Thanh</i></p> <p>5.1 Introduction 81</p> <p>5.1.1 Nanodrug Delivery Systems (NDDS) 81</p> <p>5.2 Nanoherbals 83</p> <p>5.2.1 <i>Cucuma longa </i>(Cucurmin) 83</p> <p>5.2.2 <i>Gingko biloba</i> 84</p> <p>5.2.3 <i>Artemisia</i> 85</p> <p>5.2.4 <i>Silybum marianum—Silymarin</i> 85</p> <p>5.2.5 <i>Salvia miltiorrhiza </i>(Danshen) 88</p> <p>5.2.6 <i>Glycyrrhiza glabra </i>(L.) 88</p> <p>5.2.7 <i>Camellia sinensis </i>(Green tea<i>)</i> 88</p> <p>5.2.8 <i>Camptotheca acuminata</i> 91</p> <p>5.2.9 <i>Leea indica</i> 91</p> <p>5.2.10 <i>Ziziphus mauritiana</i> (Malay apple) 91</p> <p>5.2.11 <i>Cuscuta chinensis</i> 91</p> <p>5.3 Conclusion 92</p> <p>References 92</p> <p><b>6 Nanosystems Trends in Nutraceutical Delivery 97<br /> </b><i>Aristote Buya</i></p> <p>6.1 Introduction 97</p> <p>6.2 Classification of Nutraceuticals 98</p> <p>6.3 Biopharmaceutical Issues Associated with Nutraceuticals 101</p> <p>6.4 Nanosystems for Delivery of Nutraceuticals 101</p> <p>6.4.1 Nanoemulsions 101</p> <p>6.4.2 Self-Emulsifying Systems 105</p> <p>6.4.3 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers 105</p> <p>6.4.4 Liposomes 106</p> <p>6.4.5 Polymeric Nanoparticles 107</p> <p>6.4.6 Inorganic Nanoparticles 107</p> <p>6.5 Challenges 108</p> <p>6.6 Market Potential 110</p> <p>6.7 Conclusion and Perspective 111</p> <p>References 111</p> <p><b>7 Nanoencapsulated Systems for Delivery of Phytopharmaceuticals 127<br /> </b><i>Jacqueline Renovato-Núñez, Luis Enrique Cobos-Puc, Ezequiel Viveros-Valdez, Anna Iliná, Elda Patricia Segura-Ceniceros, Raúl Rodríguez-Herrera and Sonia Yesenia Silva-Belmares</i></p> <p>7.1 Introduction 127</p> <p>7.1.1 Nanoencapsulation Techniques in Phytopharmaceuticals 128</p> <p>7.1.1.1 Physical-Chemical Techniques 129</p> <p>7.1.1.2 Chemicals Techniques 130</p> <p>7.1.1.3 Mechanical Techniques 131</p> <p>7.1.2 Characterization of Nanoencapsulates 132</p> <p>7.1.2.1 Morphological Characterization 132</p> <p>7.1.2.2 Physicochemical Characterization 134</p> <p>7.1.3 Nanoencapsulated Systems for Free Delivery of Phytopharmaceuticals 137</p> <p>7.1.4 Studies to Evaluate Phytopharmaceuticals Nanoencapsulates 141</p> <p>7.2 Conclusions 144</p> <p>References 145</p> <p><b>8 Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy 153<br /> </b><i>Karina Alexandre Barros Nogueira, Jéssica Roberta Pereira Martins, Thayane Soares Lima, Jose Willams Bandeira Alves Junior, Alanna Letícia do Carmo Aquino, Lorena Maria Ferreira de Lima, Josimar O. Eloy and Raquel Petrilli</i></p> <p>8.1 Introduction 153</p> <p>8.2 Liposomes for Topical Application 156</p> <p>8.2.1 Development of Liposomal Nanoparticles 156</p> <p>8.3 Liquid Crystals and Liquid Crystalline Nanodispersions for Topical Application 162</p> <p>8.3.1 Characterization Techniques 164</p> <p>8.4 Physical Methods Applied to Nanoparticles Delivery 165</p> <p>8.4.1 Sonophoresis 167</p> <p>8.4.2 Microneedles 168</p> <p>8.5 Conclusions and Perspectives 169</p> <p>Acknowledgements 169</p> <p>References 169</p> <p><b>9 Vesicular Drug Delivery in Arthritis Treatment 177<br /> </b><i>Nilesh Gorde, Sandeep O. Waghulde, Ajay Kharche and Mohan Kale</i></p> <p>9.1 Introduction 177</p> <p>9.2 Skin Penetration Pathways 178</p> <p>9.2.1 Intercellular Pathway 179</p> <p>9.2.2 Transcellular Pathway 179</p> <p>9.2.3 Appendgeal Pathway 179</p> <p>9.3 Principles of Drug Permeation Through Skin 180</p> <p>9.4 Problems Associated with Conventional Dosage Forms 180</p> <p>9.5 Novel Treatment Strategies for Arthritis 182</p> <p>9.5.1 Traditional Liposomes as Skin Drug Delivery Systems 183</p> <p>9.5.2 Transferosomes (Ultradeformable Liposomes) as Skin Drug Delivery Systems 183</p> <p>9.5.3 Ethosomes as Skin Drug Delivery Systems 184</p> <p>9.5.4 Niosomes as Skin Drug Delivery Systems 185</p> <p>9.6 Conclusion and Future Perspectives 187</p> <p>References 187</p> <p><b>10 Perspectives of Novel Drug Delivery in Mycoses 197<br /> </b><i>D. Maheswary, Kakithakara Vajravelu Leela and Sujith Ravi</i></p> <p>10.1 Introduction 197</p> <p>10.2 Role of Conventional Drugs in Antifungal Therapy 198</p> <p>10.3 Mechanism of Action of Conventional Antifungals 198</p> <p>10.4 Summary of Nanoparticles and Their Role in Antifungal Therapy 199</p> <p>10.4.1 Lipid Nanoparticles 199</p> <p>10.4.2 Liposome 200</p> <p>10.4.3 Transfersomes 200</p> <p>10.4.4 Transethosomes 200</p> <p>10.4.5 Solid Lipid Nanoparticles (SLN) 200</p> <p>10.4.6 Nanostructured Lipid Carriers (NLC) 200</p> <p>10.4.7 Polymer Lipid Hybrid Nanoparticles (PLN) 200</p> <p>10.4.8 Polymeric Nanoparticles 201</p> <p>10.4.9 Microsponge and Nanosponge Systems 201</p> <p>10.4.10 Polymeric Micelles 201</p> <p>10.4.11 Polymersomes 201</p> <p>10.4.12 Dendrimers 202</p> <p>10.4.13 Metallic Nanoparticles 202</p> <p>10.5 Other Drug Delivery Systems 202</p> <p>10.5.1 Niosomes 202</p> <p>10.5.2 Spanlastics 202</p> <p>10.5.3 Microemulsions and Nanoemulsions 202</p> <p>10.5.4 Silicon Dioxide Nanoparticles 203</p> <p>10.6 Conclusion 203</p> <p>References 203</p> <p><b>11 Nano-Based Drug Delivery in Eliminating Tuberculosis 207<br /> </b><i>Anusha Gopinathan, Shweta Sagar Naik, Leela K.V. and Sujith Ravi</i></p> <p>11.1 Introduction 208</p> <p>11.1.1 Latent and Active Tuberculosis 208</p> <p>11.1.2 Multidrug-Resistant Tuberculosis (MDR-TB) 209</p> <p>11.1.3 Extensively Drug-Resistant TB 209</p> <p>11.2 Antitubercular Therapy 209</p> <p>11.3 Therapies Based on Nanotechnology 211</p> <p>11.3.1 Nanoparticles for Anti-TB Therapy 211</p> <p>11.3.2 Advantages and Disadvantages of Nanoparticles 211</p> <p>11.3.3 Types of Nanoparticles and Their Characteristics 212</p> <p>11.3.3.1 TB Dendrimers 212</p> <p>11.3.3.2 Cyclodextrins 213</p> <p>11.3.3.3 Polymeric Micelles 213</p> <p>11.3.3.4 Liposomes 213</p> <p>11.3.3.5 Nanoemulsions 214</p> <p>11.3.3.6 Solid Lipid Nanoparticles 214</p> <p>11.3.3.7 Niosomes 214</p> <p>11.3.3.8 Polymeric Nanoparticles 214</p> <p>11.4 Routes of Administration of Nanoparticles 215</p> <p>11.4.1 Oral Administration of Nanoparticles 215</p> <p>11.4.2 Inhalational Administration of Nanoparticles 215</p> <p>11.4.3 Intravenous Administration of Nanoparticles 215</p> <p>11.4.4 Other Routes of Administration 216</p> <p>11.5 Conclusion 216</p> <p>References 216</p> <p><b>12 Promising Approaches in Drug Delivery Against Resistant Bacteria 219<br /> </b><i>Shweta Sagar Naik, Anusha G., KakithakaraVajravelu Leela and Sujith Ravi</i></p> <p>12.1 Introduction 219</p> <p>12.2 Drug Delivery Systems 220</p> <p>12.2.1 Microneedles 220</p> <p>12.2.2 Nanoparticles 221</p> <p>12.2.2.1 Inorganic Nanoparticles 222</p> <p>12.2.2.2 Polymer-Based Nanomedicines 222</p> <p>12.2.3 Lipid-Based Nanoformulations 223</p> <p>12.2.4 Stimuli-Responsive Nanocarriers 224</p> <p>12.2.4.1 Endogenous Stimuli 224</p> <p>12.2.4.2 Exogeneous Stimuli 225</p> <p>12.2.5 Nanogels 226</p> <p>12.2.6 Nanofibers 226</p> <p>12.2.7 Biomedical Implants 226</p> <p>12.2.8 Wound Dressing 227</p> <p>12.3 Biofilm Disruption 227</p> <p>12.4 Conclusion 227</p> <p>References 228</p> <p><b>13 Emulgels: A Novel Approach for Enhanced Topical Drug Delivery Systems 231<br /> </b><i>Shanti Bhushan Mishra, Shradhanjali Singh, Amit Kumar Singh, Anil Kumar Singh and Divya Rani Sharma</i></p> <p>13.1 Introduction 231</p> <p>13.2 Approaches Used for Topical Drug Delivery 232</p> <p>13.3 Factors Affecting Topical Absorption of Drug 233</p> <p>13.4 Drug Delivery Across the Skin 233</p> <p>13.5 Emulgels 234</p> <p>13.5.1 Types of Emulgels 234</p> <p>13.5.2 Advantages of Emulgel 235</p> <p>13.5.3 Rationale of Emulgel as a Topical Drug Delivery System 236</p> <p>13.5.4 Formulation Considerations 237</p> <p>13.5.5 Excipients Used in the Formulation of Emulgel 238</p> <p>13.5.5.1 Vehicle 238</p> <p>13.5.5.2 Emulsifying Agents 238</p> <p>13.5.5.3 Gelling Agent 242</p> <p>13.5.5.4 Penetration Enhancers 244</p> <p>13.5.5.5 Preservatives 245</p> <p>13.5.5.6 Antioxidants 245</p> <p>13.5.5.7 Humectant 246</p> <p>13.5.6 Formulation Methods 246</p> <p>13.5.7 Routes of Administration for Emulgel Formulation 248</p> <p>13.5.8 Evaluation of Emulgels 248</p> <p>13.5.8.1 Physical Appearance 252</p> <p>13.5.8.2 Spreading Coefficient 252</p> <p>13.5.8.3 Rheological Studies 252</p> <p>13.5.8.4 Globule Size and its Distribution in Emulgel 252</p> <p>13.5.8.5 Swelling Index 252</p> <p>13.5.8.6 Extrudability Study of Topical Emulgel (Tube Test) 253</p> <p>13.5.8.7 Skin Irritation Test (Patch Test) 253</p> <p>13.5.8.8 Drug Content Determination 253</p> <p>13.5.8.9 <i>In Vitro</i> Release/Permeation Studies 253</p> <p>13.5.8.10 <i>Ex Vivo</i> Bioadhesive Strength Measurement of Topical Emulgel (Mice Shaven Skin) 254</p> <p>13.5.8.11 Microbiological Assay 254</p> <p>13.5.8.12 Drug Release Kinetic Study 254</p> <p>13.5.8.13 Stability Studies 255</p> <p>13.5.9 Marketed Preparations 255</p> <p>13.5.10 Future Prospective of Emulgel as Topical Drug Delivery 256</p> <p>13.5.11 Therapeutic Profile of Emulgel 258</p> <p>13.6 Conclusions 258</p> <p>References 258</p> <p><b>14 Electrospun Nanofibers in Drug Delivery 263<br /> </b><i>Sathish Kumar Karuppannan, Saravannan Mani, Jayandra Bushion, Mohammed Junaid Hussain Dowlath and Kantha Deivi Arunachalam</i></p> <p>14.1 Introduction 263</p> <p>14.2 Electrospinning Setup 264</p> <p>14.3 Polymers Used to Produce Electrospun Nanofibers 264</p> <p>14.4 Drug Release 265</p> <p>14.5 Matrix Type NFs 266</p> <p>14.5.1 Monolithic 266</p> <p>14.5.2 Blended NFs 266</p> <p>14.6 Core-Shell Nanofibers 266</p> <p>14.6.1 Multimatrix Core-Shell NFs 267</p> <p>14.6.2 Reservoir Type Core-Shell NFs 267</p> <p>14.7 Electrospun Nanofiber for Drug Delivery Applications 267</p> <p>14.7.1 Nucleic Acid Delivery Using NFs 267</p> <p>14.7.2 Antibiotics Delivery Using NFs 268</p> <p>14.7.3 Vaginal Drug Delivery Using NFs 269</p> <p>14.7.4 Ocular Drug Delivery Using NFs 269</p> <p>14.7.5 Other Drug Delivery Using NFs 270</p> <p>14.8 Conclusion 271</p> <p>References 272</p> <p><b>Part II: Drug Carriers in Drug Delivery 279</b></p> <p><b>15 Role of Nanotechnology-Based Materials in Drug Delivery 281<br /> </b><i>Manasa R. and Mahesh Shivananjappa</i></p> <p>15.1 Introduction 281</p> <p>15.2 Nano-Based Drug Delivery Systems 282</p> <p>15.3 Types of Nanoparticles 282</p> <p>15.3.1 Polymeric Nanoparticles (PNPs) 282</p> <p>15.3.2 Dendrimers 284</p> <p>15.3.3 Polymeric Micelles 286</p> <p>15.3.4 Liposomes 288</p> <p>15.3.5 Quantum Dots (QDs) 290</p> <p>15.3.6 Nanocrystals 291</p> <p>15.3.7 Gold Nanoparticles 291</p> <p>15.3.8 Carbon Nanoparticles 294</p> <p>15.3.8.1 CNTs 294</p> <p>15.3.8.2 CNH 295</p> <p>15.3.8.3 Fullerenes 295</p> <p>15.3.9 Magnetic Nanoparticles (MNPs) 296</p> <p>15.4 Advantages of Nanoparticles 298</p> <p>15.5 Toxicity of Nanoparticles 299</p> <p>15.6 Conclusion 299</p> <p>References 299</p> <p><b>16 Nanomedicine Drug Delivery System 309<br /> </b><i>Akshada Atul Bakliwal, Swapnali Ashish Patil, Vijay Sharad Chudiwal, Swati Gokul Talele, Gokul Shravan Talele and Anil Govindrao Jadhav</i></p> <p>16.1 Introduction 309</p> <p>16.2 Background 312</p> <p>16.3 Five Overlapping Subthemes of Nanomedicine 312</p> <p>16.4 How Nanomedicine Work? 313</p> <p>16.5 Nanomedicine for Screening of Individuals with Serious Diseases 313</p> <p>16.6 Objectives of Nanomedicine 313</p> <p>16.7 Advantages of Nanomedicine 314</p> <p>16.8 Physiological Principles for Nanomedicines 315</p> <p>16.9 Nanotoxicology from Nanomedicines 315</p> <p>16.9.1 Health and Safety Issues 316</p> <p>16.9.2 Cell Death and Altered Gene Expression 316</p> <p>16.9.3 Cell Death and Gene Therapy 316</p> <p>16.9.4 Pseudoallergy and Idiosyncratic Reactions 317</p> <p>16.9.5 Cytotoxicity 318</p> <p>16.9.6 Implications for Nanotoxicology from Nonmedical Nanoparticles 318</p> <p>16.10 Nanomedicine Applications 318</p> <p>16.10.1 Analytical and Diagnostic Tools 318</p> <p>16.10.1.1 In Vitro Diagnostic Devices 319</p> <p>16.10.1.2 In Vivo Imaging 320</p> <p>16.10.2 Drug Delivery 320</p> <p>16.10.2.1 Micelles 321</p> <p>16.10.2.2 Nanoemulsions 321</p> <p>16.10.2.3 Solid Nanoparticles 321</p> <p>16.10.3 Regenerative Medicine 321</p> <p>16.11 Toxicological and Ethical Issues in Nanomedicine 322</p> <p>16.11.1 Toxicity Issues 322</p> <p>16.11.2 Ethical Issues 323</p> <p>16.12 Conclusions 323</p> <p>References 324</p> <p><b>17 Nanocarriers-Based Topical Formulations for Acne Treatment 327<br /> </b><i>Júlia Scherer Santos</i></p> <p>17.1 Introduction 327</p> <p>17.2 Acne Therapeutics 328</p> <p>17.2.1 Nanocarriers Toward Topical Acne Therapy 329</p> <p>17.3 Efficacy and Safety of Nanotechnology-Based Acne Therapeutics 330</p> <p>17.3.1 <i>Ex Vivo and In Vitro </i>Assays 331</p> <p>17.3.2 Animal Assays 332</p> <p>17.3.3 Clinical Assays 332</p> <p>17.4 Improvement of Acne Therapy by Nanocarrier-Based Formulations 332</p> <p>17.4.1 Conventional Drugs in Nanocarriers 334</p> <p>17.4.2 Alternatives Drugs in Nanocarriers 335</p> <p>17.5 Conclusion 336</p> <p>References 336</p> <p><b>18 Emerging Trends of Ocular Drug Delivery 341<br /> </b><i>Sora Yasri and Viroj Wiwanitkit</i></p> <p>18.1 Introduction 341</p> <p>18.2 Barriers to Ocular Drug Delivery 342</p> <p>18.3 Classical Drug Delivery Technology 342</p> <p>18.3.1 Anterior Segment 343</p> <p>18.3.2 Posterior Segment 343</p> <p>18.4 Novel Interventions for Ocular Drug Delivery 343</p> <p>18.4.1 Ocular Implants 343</p> <p>18.4.2 Punctum Plugs 344</p> <p>18.4.3 Drug-Eluting Contact Lenses 344</p> <p>18.4.4 Ocular Iontophoresis 345</p> <p>18.4.5 Intravitreal Implants 345</p> <p>18.4.6 Ocular Vaccination 346</p> <p>18.5 Applied Nanotechnology for Ocular Drug Delivery 346</p> <p>18.5.1 Nanomicelle 346</p> <p>18.5.2 Liposomes 347</p> <p>18.5.3 Chitosan-Based Nanoparticles 347</p> <p>18.5.4 Niosomes 347</p> <p>18.5.5 Nanospheres 347</p> <p>18.5.6 Nanocapsules 347</p> <p>18.5.7 Dendrimers 348</p> <p>18.5.8 Nanowafers 348</p> <p>18.5.9 Micronanosurgery for Ocular Drug Delivery 348</p> <p>18.6 Conclusion 348</p> <p>References 349</p> <p><b>19 Microspheres: An Overview on Recent Advances in Novel Drug Delivery System 355<br /> </b><i>Sarang Kumar Jain, Swati Saxena and Raj K. Keservani</i></p> <p>19.1 Introduction 355</p> <p>19.2 Advantages of Novel Drug Delivery System 356</p> <p>19.3 Classification of Novel Drug Delivery System 356</p> <p>19.3.1 Microspheres 356</p> <p>19.3.1.1 Types of Microspheres 356</p> <p>19.3.2 Ideal Properties of Microparticulate Carriers 357</p> <p>19.3.3 Polymers Used in Preparation of Microspheres 358</p> <p>19.3.4 Advantages of Microspheres 359</p> <p>19.3.5 Disadvantages of Microspheres 359</p> <p>19.3.6 Classification of Microspheres 359</p> <p>19.3.6.1 Bioadhesive Microspheres 359</p> <p>19.3.6.2 Magnetic Microspheres 359</p> <p>19.3.6.3 Floating Microspheres 360</p> <p>19.3.6.4 Radioactive Microspheres 360</p> <p>19.3.6.5 Polymeric Microspheres 360</p> <p>19.3.7 Method of Preparation of Microspheres 360</p> <p>19.3.7.1 Single Emulsion Technique 361</p> <p>19.3.7.2 Double Emulsion Method 361</p> <p>19.3.7.3 Polymerization Technique 362</p> <p>19.3.7.4 Phase Separation Coacervation Technique 362</p> <p>19.3.7.5 Spray Drying and Spray Congealing Method 363</p> <p>19.3.7.6 Solvent Evaporation Method 363</p> <p>19.3.8 Evaluation Parameters of Microspheres 364</p> <p>19.3.8.1 Particle Size and Shape 364</p> <p>19.3.8.2 Chemical Analysis by Electron Spectroscopy 364</p> <p>19.3.8.3 FTIR Spectroscopy 364</p> <p>19.3.8.4 Determination of Density 364</p> <p>19.3.8.5 Isoelectric Point Determination 364</p> <p>19.3.8.6 Entrapment Efficiency 364</p> <p>19.3.8.7 Angle of Contact 364</p> <p>19.3.8.8 Swelling Index 365</p> <p>19.3.8.9 Production Yield 365</p> <p>19.3.8.10 <i>In Vitro</i> Drug Release Study 365</p> <p>19.3.8.11 Drug Release Kinetics 365</p> <p>19.3.8.12 Stability Studies 365</p> <p>19.3.9 Applications of Microspheres 365</p> <p>References 366</p> <p><b>20 Drug Delivery Systems and Oral Biofilm 367<br /> </b><i>Elda Patricia Segura Ceniceros, Luis Méndez González, Reginaldo Tijerina, Eduardo Osorio Ramos, Francisco Javier Mendoza González, Verónica Leticia Rodríguez Contreras, Alejandra Isabel Vargas Segura and Luis Antonio Vázquez Olvera</i></p> <p>20.1 Introduction 368</p> <p>20.2 Oral Biofilm 369</p> <p>20.2.1 Biofilm Related Infections in The Oral Cavity 371</p> <p>20.2.1.1 Oral Biofilm and Periodontal Disease 371</p> <p>20.2.1.2 Oral Biofilm and Endodontic Infections 373</p> <p>20.2.1.3 Oral Biofilm and Dental Caries 373</p> <p>20.3 Drug Delivery Systems 374</p> <p>20.3.1 Nanoparticles 375</p> <p>20.3.2 Hydrogels 375</p> <p>20.3.3 Dendrimers 376</p> <p>20.4 Applications of Drug Delivery Systems for Treatment of Oral Biofilm Infection 376</p> <p>20.4.1 DDS and Dental Caries 377</p> <p>20.4.2 DDS and Periodontal Disease 378</p> <p>20.4.3 DDS and Other Oral Pathologies 378</p> <p>20.5 Conclusion 379</p> <p>References 379</p> <p><b>21 Oral Drug Delivery System: An Overview on Recent Advances in Novel Drug Delivery System 383<br /> </b><i>Sarang Kumar Jain, Ankita Sahu and Raj K. Keservani</i></p> <p>21.1 Introduction 383</p> <p>21.1.1 Oral Route 383</p> <p>21.1.2 Oral Health 385</p> <p>21.1.3 Oral Hygiene 386</p> <p>21.2 Oral Drug Administration Sites 387</p> <p>21.2.1 Oral Mucosal Drug Delivery System 387</p> <p>21.2.1.1 Physiology of Oral Mucosa 388</p> <p>21.2.1.2 Importance of Saliva and Mucin 388</p> <p>21.2.2 Buccal and Sublingual Drug Absorption 389</p> <p>21.3 Factors Affecting Drug Absorption 389</p> <p>21.3.1 Lipid Solubility, pH, and Degree of Ionization 390</p> <p>21.3.2 Molecule Weight and Size of Drug 390</p> <p>21.3.3 Formulation Physiochemical Properties Related Factors 390</p> <p>21.3.4 Permeability Enhancer 390</p> <p>21.4 Drug Delivery for Periodontitis 391</p> <p>21.4.1 Periodontal Pocket 391</p> <p>21.4.1.1 Classification of Periodontal Pockets According to their Morphology 391</p> <p>21.4.1.2 Classification of Periodontal Pocket According to the Involvement of Tooth Surfaces 392</p> <p>21.5 Oral Periodontitis Drug Delivery System 393</p> <p>21.5.1 Antibacterial DDS for Periodontitis 393</p> <p>21.5.2 Remineralizing DDS 393</p> <p>21.5.3 Inflammation Modulating and Alveolar Bone Repairing DDS for Periodontitis 394</p> <p>21.5.3.1 DDS for Peri-Implantitis 394</p> <p>21.6 Teeth Treatments 394</p> <p>21.7 Periodontal Local Drug Delivery 395</p> <p>21.8 Carriers of Oral and Periodontitis Drug Delivery System 395</p> <p>21.8.1 Hydrogel 396</p> <p>21.8.2 Dendrimers 396</p> <p>21.8.3 Chewing Gum 396</p> <p>21.8.4 Lozenges 397</p> <p>21.8.5 Tablets 397</p> <p>21.9 Mucoadhesive Drug Delivery System/Buccal Adhesive Drug Delivery System 397</p> <p>21.9.1 Patches and Films 398</p> <p>21.9.2 Oral Suspension 398</p> <p>21.9.3 Spray 398</p> <p>21.9.4 Liposome 398</p> <p>21.9.5 Nanoparticles 399</p> <p>21.9.6 Laminated Film 399</p> <p>21.9.7 Injectable Gels 399</p> <p>21.9.8 Fibers 399</p> <p>21.9.9 Strips and Compacts 399</p> <p>References 400</p> <p><b>22 Cancer Nanotheranostics: A Review 401<br /> </b><i>Ozge Esim and Canan Hascikek</i></p> <p>22.1 Introduction 401</p> <p>22.1.1 Lipid and Polymer-Based Nanosystems 403</p> <p>22.1.2 Magnetic Nanoparticles 413</p> <p>22.1.3 Quantum Dots (QD) 418</p> <p>22.1.4 Other Metal-Derived Nanoparticles 421</p> <p>22.2 Conclusion 425</p> <p>References 425</p> <p><b>23 Nanomedicine in Lung Cancer Therapy 433<br /> </b><i>Jagdale Swati C., HableAsawaree A. and ChabukswarAnuruddha R.</i></p> <p>23.1 Introduction 433</p> <p>23.2 Nanotechnology 434</p> <p>23.3 Nanomedicines for Lung Cancer Therapy 435</p> <p>23.3.1 Nanoparticles 436</p> <p>23.3.1.1 Gold and Silver Nanoparticles 436</p> <p>23.3.1.2 Solid Lipid Nanoparticles 437</p> <p>23.3.1.3 Inhalable Nanoparticles 437</p> <p>23.3.2 Micelles 437</p> <p>23.3.3 Dendrimers 439</p> <p>23.3.4 Liposome 439</p> <p>23.3.5 Carbon Nanotubes 440</p> <p>23.3.6 Quantum Dots 441</p> <p>23.3.7 Nanofibers 442</p> <p>23.3.8 Nanoshells 442</p> <p>23.4 Evaluation of Nanoformulations 442</p> <p>23.5 Application of Nanoformulations 443</p> <p>23.6 Marketed Therapies 444</p> <p>23.7 Challenges 445</p> <p>23.8 Potential 445</p> <p>23.9 Future Scope 446</p> <p>23.10 Conclusion 446</p> <p>References 446</p> <p><b>24 Delivering Herbal Drugs Using Nanotechnology 449<br /> </b><i>Manasa R. and Mahesh Shivananjappa</i></p> <p>24.1 Introduction 449</p> <p>24.2 Methods of Preparation of Nanoparticles 450</p> <p>24.3 Novel Drug Delivery Systems (NDDS) for Herbal Drugs 451</p> <p>24.3.1 Liposomes 451</p> <p>24.3.2 Phytosomes 454</p> <p>24.3.3 Transferosome 457</p> <p>24.3.4 Niosomes 458</p> <p>24.3.5 Ethosomes 459</p> <p>24.3.6 Dendrimers 459</p> <p>24.3.7 Self-Nanoemulsifying Drug Delivery System (SNEDDS) 462</p> <p>24.3.8 Self-Micro Emulsifying Drug Delivery System (SMEDDS) 463</p> <p>24.4 Conclusion 464</p> <p>References 464</p> <p><b>25 Nanoherbals Drug Delivery System for Treatment of Chronic Asthma 473<br /> </b><i>Harsh Yadav, Satish Dubey, Naureen Shaba Khan and Ashwini Kumar Dixit</i></p> <p>25.1 Introduction 474</p> <p>25.2 Mechanism of Asthma Physiopathology 474</p> <p>25.3 Asthma Etiology 475</p> <p>25.4 Severity of Asthma 475</p> <p>25.5 Asthma Phenotypes 475</p> <p>25.6 Asthma Epidemiology 476</p> <p>25.7 Asthma Treatment 476</p> <p>25.7.1 Adverse Effects of Current Treatment Techniques 477</p> <p>25.8 Need of Natural Products as Alternative 477</p> <p>25.9 Selected Medicinal Plants in Asthma Treatment 478</p> <p>25.9.1 <i>Piper betel Linn</i> 478</p> <p>25.9.2 <i>Bacopa monnieri L.</i> 479</p> <p>25.9.3 <i>Momordica charantia</i> 479</p> <p>25.9.4 <i>Ficus bengalensis (Linn.)</i> 479</p> <p>25.9.5 <i>Clerodendrum serratum (Linn.) </i>Moon 479</p> <p>25.10 Potentials of Nanotechnology in Asthma Drug Delivery 479</p> <p>25.11 Nanoherbals as Asthma Drug Delivery System 482</p> <p>25.12 Future Prospectus of Nanoherbal Drug Delivery 483</p> <p>25.13 Conclusion 484</p> <p>References 484</p> <p><b>26 Nutrients Delivery for Management and Prevention of Diseases 491<br /> </b><i>Darul Raiyaan G. I., Sameera Khathoon A. and Kantha D. Arunachalam</i></p> <p>26.1 Introduction 491</p> <p>26.2 Nutrients in Management and Prevention of Disease 492</p> <p>26.2.1 Herbal Nutrients 492</p> <p>26.2.2 FDA Regulations on Herbal Drugs 493</p> <p>26.3 Phenolic Nutraceuticals 493</p> <p>26.3.1 Polyphenols and Neurodegeneration 494</p> <p>26.3.2 Polyphenols and Brain Tumors 494</p> <p>26.3.3 Phenols and Other Cancer Treatments 494</p> <p>26.3.4 Phenols and Hepatotoxicity 495</p> <p>26.3.5 Clinical Trials 496</p> <p>26.3.6 Curcumin 496</p> <p>26.4 Routes for Nutrients Delivery 497</p> <p>26.4.1 Oral Route 497</p> <p>26.4.2 Intranasal Delivery 497</p> <p>26.4.3 Transdermal Route 497</p> <p>26.5 Nanoparticle-Based Nutrients Delivery System 498</p> <p>26.5.1 Nanostructured Lipid Carriers (NLCs) 498</p> <p>26.5.2 Solid Lipid Nanoparticles (SLNs) 499</p> <p>26.5.3 Liposomes 499</p> <p>26.5.4 Nanocrystals 499</p> <p>26.5.5 α-Lactalbumin 500</p> <p>26.5.6 Carbon Nanotubes 500</p> <p>26.5.7 Nanocochleates 500</p> <p>26.5.8 Nanosized Self-Assembled Liquid Structures 500</p> <p>26.5.9 Polysaccharide-Based Nanoscale Delivery of Nutrients 500</p> <p>26.5.10 Chitosan 501</p> <p>26.5.11 Alginate 501</p> <p>26.5.12 Pectin 502</p> <p>26.5.13 Gum Arabic 502</p> <p>26.5.14 Cashew Gum 503</p> <p>26.6 Protein-Based Nanoscale Delivery of Nutrients 503</p> <p>26.6.1 Zein 503</p> <p>26.6.2 Gliadin 503</p> <p>26.6.3 Soy Protein Isolates (SPI) 504</p> <p>26.6.4 Whey Protein 504</p> <p>26.6.5 Casein 505</p> <p>26.6.6 Other Proteins 505</p> <p>26.7 Micelles 505</p> <p>26.8 Advantages of Nanomaterials in Nutraceuticals 507</p> <p>26.9 Safety and Toxicity of Nanostructures Applied in Food Systems 509</p> <p>26.10 Conclusion 509</p> <p>References 509</p> <p><b>27 Nanonutraceuticals for Drug Delivery 521<br /> </b><i>Charu Gupta and Dhan Prakash</i></p> <p>27.1 Introduction 521</p> <p>27.2 Approaches to Enhance Oral Bioavailability of Nutraceuticals 522</p> <p>27.2.1 Protection of Labile Compounds 523</p> <p>27.2.2 Extension of Gastric Retention Time 523</p> <p>27.2.3 Intonation of Metabolic Activities 523</p> <p>27.3 Carriers for Nutraceutical Delivery 523</p> <p>27.3.1 Nanoparticles for Nutraceuticals Delivery 524</p> <p>27.3.2 Solid Lipid Nanoparticles (SLNs) for Nutraceutical Delivery 524</p> <p>27.3.3 Niosomes 525</p> <p>27.3.4 Nanospheres 525</p> <p>27.3.5 Nanoliposomes 525</p> <p>27.3.6 Nanofibers 526</p> <p>27.3.7 Nanoemulsion 526</p> <p>27.4 Nanotechnology in Food Sector 527</p> <p>27.4.1 Nanotechnology in Nutraceuticals 527</p> <p>27.4.2 Nanotechnology in Medications 528</p> <p>27.4.3 Commercial Nanonutraceuticals 533</p> <p>27.4.4 Nanosized Self-Assembled Structured Liquids 534</p> <p>27.5 Delivery of Nutraceuticals 536</p> <p>27.5.1 In-Feed or Oral Nanodelivery 536</p> <p>27.5.2 Dermal Delivery 537</p> <p>27.5.3 Ophthalmic Delivery 537</p> <p>27.6 Constraints in Nanodrug Delivery Systems 537</p> <p>27.7 Conclusion 537</p> <p>Acknowledgments 538</p> <p>References 538</p> <p>Index 541</p>
<p><b>Raj K. Keservani, MPharm</b>, is an associate professor in the Faculty of B. Pharmacy, CSM Group of Institutions, Prayagraj, India. He has more than 12 years of academic (teaching) experience from various institutes in India in pharmaceutical education. He has published more than 30 peer-reviewed papers in the field of pharmaceutical sciences in national and international journals, 1 patent, 43 book chapters, three co-authored books, and 19 edited books. His research interests include nutraceutical and functional foods, novel drug delivery systems (NDDS), transdermal drug delivery/drug delivery, health science, cancer biology, and neurobiology. <p><b>Rajesh Kumar Kesharwani, PhD</b>, is an associate professor in the Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India. He has more than 11 years of research and 9 years of teaching experience in various institutes in India. He has authored more than 55 peer-reviewed articles, 24 book chapters, and 15 edited books. His research fields of interest are medical informatics, protein structure and function prediction, computer-aided drug designing, structural biology, drug delivery, cancer biology, nano-biotechnology, and biomedical sciences. <p><b>Anil K. Sharma, M.Pharm., PhD</b>, is an assistant professor (Pharmaceutics) at the School of Medical and Allied Sciences, GD Goenka University, Gurugram, India. He has experience of more than 13 years in academics. He has published 30 peer-reviewed papers in the field of pharmaceutical sciences in nationally and internationally reputed journals as well as 16 book chapters and 15 edited books. His research interests encompass nutraceutical and functional foods, novel drug delivery systems (NDDS), drug delivery, nanotechnology, health science/life science, and biology/cancer biology/neurobiology.
<p><b>The 27 chapters describe novel strategies for drug/nutraceutical delivery and embrace the development of formulations with herbal ingredients, while also highlighting disease therapeutics.</b> <p>Drug delivery technology has witnessed many advancements purported to cater to the customized needs of its ultimate beneficiaries—the patients. Today, dosage forms are not confined to conventional tablets, capsules, or injectables, but have evolved to cover novel drug carriers such as particulates, vesicles, and many others. Nanotechnological advancements have played a major role in this paradigm shift in ways of delivering active pharmaceutical ingredients. <p>A new dimension in the use of food as medicine has also gained prominence in recent years. A portmanteau of nutrition and pharmaceuticals is “nutraceuticals,” also known as functional foods and dietary supplements. The technologies which were earlier included in drug delivery have been attempted for the delivery of nutraceuticals as well. Herbal actives have received increased attention due to their low risk-to-benefit ratio. The field of drug delivery is quite dynamic in nature, as witnessed by its evolution from conventional dosage forms to nanotechnology-assisted drug products. A variety of formulations via different drug delivery routes have been developed to treat/cure/mitigate diseases or disorders. <p>This book, comprising of 27 chapters, is a thorough compilation of information relevant to drug delivery systems with an emphasis on products based on nanotechnology. <p><b>Audience</b> <p>Researchers, scientists, industry professionals, formulators and product developers, regulatory agencies in a variety of settings including novel drug delivery research laboratories, pharmaceutical, and pharmacy industries, biomedical sciences, food and nutraceuticals manufacturers, and nanotechnology.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €