Details

Data Analysis and Related Applications, Volume 1


Data Analysis and Related Applications, Volume 1

Computational, Algorithmic and Applied Economic Data Analysis
1. Aufl.

von: Konstantinos N. Zafeiris, Christos H. Skiadas, Yiannis Dimotikalis, Alex Karagrigoriou, Christiana Karagrigoriou-Vonta

126,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.08.2022
ISBN/EAN: 9781394165490
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The scientific field of data analysis is constantly expanding due to the rapid growth of the computer industry and the wide applicability of computational and algorithmic techniques, in conjunction with new advances in statistical, stochastic and analytic tools. There is a constant need for new, high-quality publications to cover the recent advances in all fields of science and engineering.<br /><br />This book is a collective work by a number of leading scientists, computer experts, analysts, engineers, mathematicians, probabilists and statisticians who have been working at the forefront of data analysis and related applications. The chapters of this collaborative work represent a cross-section of current concerns, developments and research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with related applications.
<p>Preface xvii<br /><i>Konstantinos N. ZAFEIRIS, Yiannis DIMOTIKALIS, Christos H. SKIADAS, Alex KARAGRIGORIOU and Christiana KARAGRIGORIOU-VONTA</i></p> <p><b>Part 1 1</b></p> <p><b>Chapter 1. Performance of Evaluation of Diagnosis of Various Thyroid Diseases Using Machine Learning Techniques 3<br /></b><i>Burcu Bektas GÜNEŞ, Evren BURSUK and Rüya ŞAMLI</i></p> <p>1.1. Introduction 3</p> <p>1.2. Data understanding 5</p> <p>1.3. Modeling 6</p> <p>1.4. Findings 8</p> <p>1.5. Conclusion 10</p> <p>1.6. References 10</p> <p><b>Chapter 2. Exploring Chronic Diseases’ Spatial Patterns: Thyroid Cancer in Sicilian Volcanic Areas 13<br /></b><i>Francesca BITONTI and Angelo MAZZA</i></p> <p>2.1. Introduction 14</p> <p>2.2. Epidemiological data and territory 16</p> <p>2.3. Methodology 18</p> <p>2.3.1. Spatial inhomogeneity and spatial dependence 18</p> <p>2.3.2. Standardized incidence ratio (SIR) 19</p> <p>2.3.3. Local Moran’s I statistic 21</p> <p>2.4. Spatial distribution of TC in eastern Sicily 22</p> <p>2.4.1. SIR geographical variation 22</p> <p>2.4.2. Estimate of the spatial attraction 24</p> <p>2.5. Conclusion 25</p> <p>2.6. References 26</p> <p><b>Chapter 3. Analysis of Blockchain-based Databases in Web Applications 31<br /></b><i>Orhun Ceng BOZO and Rüya ŞAMLI</i></p> <p>3.1. Introduction 31</p> <p>3.2. Background 32</p> <p>3.2.1. Blockchain 32</p> <p>3.2.2. Blockchain types 32</p> <p>3.2.3. Blockchain-based web applications 33</p> <p>3.2.4. Blockchain consensus algorithms 33</p> <p>3.2.5. Other consensus algorithms 34</p> <p>3.3. Analysis stack 34</p> <p>3.3.1. Art Shop web application 34</p> <p>3.3.2. SQL-based application 34</p> <p>3.3.3. NoSQL-based application 35</p> <p>3.3.4. Blockchain-based application 35</p> <p>3.4. Analysis 36</p> <p>3.4.1. Adding records 36</p> <p>3.4.2. Query 38</p> <p>3.4.3. Functionality 39</p> <p>3.4.4. Security 39</p> <p>3.5. Conclusion 41</p> <p>3.6. References 41</p> <p><b>Chapter 4. Optimization and Asymptotic Analysis of Insurance Models 43<br /></b><i>Ekaterina BULINSKAYA</i></p> <p>4.1. Introduction 43</p> <p>4.2. Discrete-time model with reinsurance and bank loans 44</p> <p>4.2.1. Model description 44</p> <p>4.2.2. Optimization problem 45</p> <p>4.2.3. Model stability 46</p> <p>4.3. Continuous-time insurance model with dividends 48</p> <p>4.3.1. Model description 48</p> <p>4.3.2. Optimal barrier strategy 49</p> <p>4.3.3. Special form of claim distribution 50</p> <p>4.3.4. Numerical analysis 54</p> <p>4.4. Conclusion and further research directions 55</p> <p>4.5. References 56</p> <p><b>Chapter 5. Statistical Analysis of Traffic Volume in the 25 de Abril Bridge 57<br /></b><i>Frederico CAEIRO, Ayana MATEUS and Conceicao VEIGA de ALMEIDA</i></p> <p>5.1. Introduction 57</p> <p>5.2. Data 58</p> <p>5.3. Methodology 60</p> <p>5.3.1. Main limit results 60</p> <p>5.3.2. Block maxima method 61</p> <p>5.3.3. Largest order statistics method 62</p> <p>5.3.4. Estimation of other tail parameters 63</p> <p>5.4. Results and conclusion 63</p> <p>5.5. Acknowledgements 65</p> <p>5.6. References 65</p> <p><b>Chapter 6. Predicting the Risk of Gestational Diabetes Mellitus through Nearest Neighbor Classification 67<br /></b><i>Louisa TESTA, Mark A. CARUANA, Maria KONTORINAKI and Charles SAVONA-VENTURA</i></p> <p>6.1. Introduction 67</p> <p>6.2. Nearest neighbor methods 69</p> <p>6.2.1. Background of the NN methods 69</p> <p>6.2.2. The <i>k</i>-nearest neighbors method 70</p> <p>6.2.3. The fixed-radius NN method 70</p> <p>6.2.4. The kernel-NN method 71</p> <p>6.2.5. Algorithms of the three considered NN methods 72</p> <p>6.2.6. Parameter and distance metric selection 74</p> <p>6.3. Experimental results 75</p> <p>6.3.1. Dataset description 75</p> <p>6.3.2. Variable selection and data splitting 75</p> <p>6.3.3. Results 76</p> <p>6.3.4. A discussion and comparison of results 78</p> <p>6.4. Conclusion 79</p> <p>6.5. References 79</p> <p><b>Chapter 7. Political Trust in National Institutions: The Significance of Items’ Level of Measurement in the Validation of Constructs 81<br /></b><i>Anastasia CHARALAMPI, Eva TSOUPAROPOULOU, Joanna TSIGANOU and Catherine MICHALOPOULOU</i></p> <p>7.1. Introduction 82</p> <p>7.2. Methods 83</p> <p>7.2.1. Participants 83</p> <p>7.2.2. Instrument 84</p> <p>7.2.3. Statistical analyses 85</p> <p>7.3. Results 87</p> <p>7.3.1. EFA results 87</p> <p>7.3.2. CFA results 88</p> <p>7.3.3. Scale construction and assessment 91</p> <p>7.4. Conclusion 94</p> <p>7.5. Funding 95</p> <p>7.6. References 95</p> <p><b>Chapter 8. The State of the Art in Flexible Regression Models for Univariate Bounded Responses 99<br /></b><i>Agnese Maria DI BRISCO, Roberto ASCARI, Sonia MIGLIORATI and Andrea ONGARO</i></p> <p>8.1. Introduction 100</p> <p>8.2. Regression model for bounded responses 101</p> <p>8.2.1. Augmentation 102</p> <p>8.2.2. Main distributions on the bounded support 103</p> <p>8.2.3. Inference and fit 106</p> <p>8.3. Case studies 107</p> <p>8.3.1. Stress data 107</p> <p>8.3.2. Reading data 110</p> <p>8.4. References 112</p> <p><b>Chapter 9. Simulation Studies for a Special Mixture Regression Model with Multivariate Responses on the Simplex 115<br /></b><i>Agnese Maria DI BRISCO, Roberto ASCARI, Sonia MIGLIORATI and Andrea ONGARO</i></p> <p>9.1. Introduction 115</p> <p>9.2. Dirichlet and EFD distributions 116</p> <p>9.3. Dirichlet and EFD regression models 118</p> <p>9.3.1. Inference and fit 118</p> <p>9.4. Simulation studies 119</p> <p>9.4.1. Comments 124</p> <p>9.5. References 131</p> <p><b>Part 2 133</b></p> <p><b>Chapter 10. Numerical Studies of Implied Volatility Expansions Under the Gatheral Model 135<br /></b><i>Marko DIMITROV, Mohammed ALBUHAYRI, Ying NI and Anatoliy MALYARENKO</i></p> <p>10.1. Introduction 135</p> <p>10.2. Asymptotic expansions of implied volatility 137</p> <p>10.3. Performance of the asymptotic expansions 139</p> <p>10.4. Calibration using the asymptotic expansions 141</p> <p>10.4.1. A partial calibration procedure 142</p> <p>10.4.2. Calibration to synthetic and market data 143</p> <p>10.5. Conclusion and future work 147</p> <p>10.6. References 148</p> <p><b>Chapter 11. Performance Persistence of Polish Mutual Funds: Mobility Measures 149<br /></b><i>Dariusz FILIP</i></p> <p>11.1. Introduction 149</p> <p>11.2. Literature review 150</p> <p>11.3. Dataset and empirical design 153</p> <p>11.4. Empirical results 155</p> <p>11.5. Monthly perspective 156</p> <p>11.6. Quarterly perspective 157</p> <p>11.7. Yearly perspective 158</p> <p>11.8. Conclusion 159</p> <p>11.9. References 159</p> <p><b>Chapter 12. Invariant Description for a Batch Version of the UCB Strategy with Unknown Control Horizon 163<br /></b><i>Sergey GARBAR</i></p> <p>12.1. Introduction 163</p> <p>12.2. UCB strategy 165</p> <p>12.3. Batch version of the strategy 165</p> <p>12.4. Invariant description with a unit control horizon 166</p> <p>12.5. Simulation results 169</p> <p>12.6. Conclusion 170</p> <p>12.7. Affiliations 171</p> <p>12.8. References 171</p> <p><b>Chapter 13. A New Non-monotonic Link Function for Beta Regressions 173<br /></b><i>Gloria GHENO</i></p> <p>13.1. Introduction 174</p> <p>13.2. Model 175</p> <p>13.3. Estimation 178</p> <p>13.4. Comparison 179</p> <p>13.5. Conclusion 184</p> <p>13.6. References 184</p> <p><b>Chapter 14. A Method of Big Data Collection and Normalizatio nfor Electronic Engineering Applications 187<br /></b><i>Naveenbalaji GOWTHAMAN and Viranjay M. SRIVASTAVA</i></p> <p>14.1. Introduction 187</p> <p>14.2. Machine learning (ML) in electronic engineering 189</p> <p>14.2.1. Data acquisition 190</p> <p>14.2.2. Accessing the data repositories 191</p> <p>14.2.3. Data storage and management 192</p> <p>14.3. Electronic engineering applications – data science 193</p> <p>14.4. Conclusion and future work 195</p> <p>14.5. References 195</p> <p><b>Chapter 15. Stochastic Runge–Kutta Solvers Based on Markov Jump Processes and Applications to Non-autonomous Systems of Differential Equations 199<br /></b><i>Flavius GUIAŞ</i></p> <p>15.1. Introduction 199</p> <p>15.2. Description of the method 201</p> <p>15.2.1. The direct simulation method 201</p> <p>15.2.2. Picard iterations 201</p> <p>15.2.3. Runge–Kutta steps 202</p> <p>15.3. Numerical examples 203</p> <p>15.3.1. The Lorenz system 203</p> <p>15.3.2. A combustion model 204</p> <p>15.4. Conclusion 206</p> <p>15.5. References 206</p> <p><b>Chapter 16. Interpreting a Topological Measure of Complexity for Decision Boundaries 207<br /></b><i>Alan HYLTON, Ian LIM, Michael MOY and Robert SHORT</i></p> <p>16.1. Introduction 207</p> <p>16.2. Persistent homology 209</p> <p>16.3. Methodology 213</p> <p>16.3.1. Neural networks and binary classification 213</p> <p>16.3.2. Persistent homology of a decision boundary 213</p> <p>16.3.3. Procedure 214</p> <p>16.4. Experiments and results 215</p> <p>16.4.1. Three-dimensional binary classification 215</p> <p>16.4.2. Data divided by a hyperplane 217</p> <p>16.5. Conclusion and discussion 219</p> <p>16.6. References 220</p> <p><b>Chapter 17. The Minimum Renyi’s Pseudodistance Estimators for Generalized Linear Models 223<br /></b><i>María JAENADA and Leandro PARDO</i></p> <p>17.1. Introduction 223</p> <p>17.2. The minimum RP estimators for the GLM model: asymptotic distribution 225</p> <p>17.3. Example: Poisson regression model 230</p> <p>17.3.1. Real data application 230</p> <p>17.4. Conclusion 232</p> <p>17.5. Acknowledgments 232</p> <p>17.6. Appendix 232</p> <p>17.6.1. Proof of Theorem 1 232</p> <p>17.7. References 234</p> <p><b>Chapter 18. Data Analysis based on Entropies and Measures of Divergence 237<br /></b><i>Christos MESELIDIS, Alex KARAGRIGORIOU and Takis PAPAIOANNOU</i></p> <p>18.1. Introduction 237</p> <p>18.2. Divergence measures 238</p> <p>18.3. Tests of fit based on Φ<i>−</i>divergence measures 241</p> <p>18.4. Simulations 246</p> <p>18.5. References 254</p> <p><b>Part 3 259</b></p> <p><b>Chapter 19. Geographically Weighted Regression for Official Land Prices and their Temporal Variation in Tokyo 261<br /></b><i>Yuta KANNO and Takayuki SHIOHAMA</i></p> <p>19.1. Introduction 261</p> <p>19.2. Models and methodology 263</p> <p>19.3. Data analysis 266</p> <p>19.3.1. Data 266</p> <p>19.3.2. Results 268</p> <p>19.4. Conclusion 272</p> <p>19.5. Acknowledgments 273</p> <p>19.6. References 273</p> <p><b>Chapter 20. Software Cost Estimation Using Machine Learning Algorithms 275<br /></b><i>Sukran EBREN KARA and Rüya ŞAMLI</i></p> <p>20.1. Introduction 275</p> <p>20.2. Methodology 276</p> <p>20.2.1. Dataset 276</p> <p>20.2.2. Model 277</p> <p>20.2.3. Evaluating the performance of the model 278</p> <p>20.3. Results and discussion 279</p> <p>20.4. Conclusion 282</p> <p>20.5. References 283</p> <p><b>Chapter 21. Monte Carlo Accuracy Evaluation of Laser Cutting Machine 285<br /></b><i>Samuel KOSOLAPOV</i></p> <p>21.1. Introduction 286</p> <p>21.2. Mathematical model of a pintograph 286</p> <p>21.3. Monte Carlo simulator 291</p> <p>21.4. Simulation results 294</p> <p>21.5. Conclusion 295</p> <p>21.6. Acknowledgments 295</p> <p>21.7. References 295</p> <p><b>Chapter 22. Using Parameters of Piecewise Approximation by Exponents for Epidemiological Time Series Data Analysis 297<br /></b><i>Samuel KOSOLAPOV</i></p> <p>22.1. Introduction 298</p> <p>22.2. Deriving equations for moving exponent parameters 298</p> <p>22.3. Validation of derived equations by using synthetic data 300</p> <p>22.4. Using derived equations to analyze real-life Covid-19 data 302</p> <p>22.5. Conclusion 305</p> <p>22.6. References 306</p> <p><b>Chapter 23. The Correlation Between Oxygen Consumption and Excretion of Carbon Dioxide in the Human Respiratory Cycle 307<br /></b><i>Anatoly KOVALENKO, Konstantin LEBEDINSKII and Verangelina MOLOSHNEVA</i></p> <p>23.1. Introduction 308</p> <p>23.2. Respiratory function physiology: ventilation–perfusion ratio 309</p> <p>23.3. The basic principle of operation of artificial lung ventilation devices: patient monitoring parameters 310</p> <p>23.4. The algorithm for monitoring the carbon emissions and oxygen consumption 312</p> <p>23.5. Results 314</p> <p>23.6. Conclusion 316</p> <p>23.7. References 316</p> <p><b>Part 4 317</b></p> <p><b>Chapter 24. Approximate Bayesian Inference Using the Mean-Field Distribution</b> <b>319</b><br /><i>Antonin DELLA NOCE and Paul-Henry COURNÈDE</i></p> <p>24.1. Introduction 319</p> <p>24.2. Inference problem in a symmetric population system 321</p> <p>24.2.1. Example of a symmetric system describing plant competition 321</p> <p>24.2.2. Inference problem of the Schneider system, in a more general setting 323</p> <p>24.3. Properties of the mean-field distribution 325</p> <p>24.4. Mean-field approximated inference 327</p> <p>24.4.1. Case of systems admitting a mean-field limit 327</p> <p>24.5. Conclusion 330</p> <p>24.6. References 330</p> <p><b>Chapter 25. Pricing Financial Derivatives in the Hull–White Model Using Cubature Methods on Wiener Space 333<br /></b><i>Hossein NOHROUZIAN, Anatoliy MALYARENKO and Ying NI</i></p> <p>25.1. Introduction and outline 333</p> <p>25.2. Cubature formulae on Wiener space 335</p> <p>25.2.1. A simple example of classical Monte Carlo estimates 335</p> <p>25.2.2. Modern Monte Carlo estimates via cubature method 336</p> <p>25.2.3. An application in the Black–Scholes SDE 338</p> <p>25.2.4. Trajectories of the cubature formula of degree 5 on Wiener space 339</p> <p>25.2.5. Trajectories of price process given in equation [25.7] 340</p> <p>25.2.6. An application on path-dependent derivatives 341</p> <p>25.2.7. Trinomial tree (model) via cubature formulae of degree 5 342</p> <p>25.3. Interest-rate models and Hull–White one-factor model 343</p> <p>25.3.1. Equilibrium models 343</p> <p>25.3.2. No-arbitrage models 344</p> <p>25.3.3. Forward rate models 345</p> <p>25.3.4. Hull–White one-factor model 345</p> <p>25.3.5. Discretization of the Hull–White model via Euler scheme 346</p> <p>25.3.6. Hull–White model for bond prices 346</p> <p>25.4. The Hull–White model via cubature method 349</p> <p>25.4.1. Simulating SDE [25.15] and ODE [25.24] 350</p> <p>25.4.2. The Hull–White interest-rate tree via iterated cubature formulae: some examples 353</p> <p>25.5. Discussion and future works 354</p> <p>25.6. References 355</p> <p><b>Chapter 26. Differences in the Structure of Infectious Morbidity of the Population during the First and Second Half of 2020 in St. Petersburg 359<br /></b><i>Vasilii OREL, Olga NOSYREVA, Tatiana BULDAKOVA, Natalya GUREVA, Viktoria SMIRNOVA, Andrey KIM and Lubov SHARAFUTDINOVA</i></p> <p>26.1. Introduction 360</p> <p>26.2. Materials and methods 360</p> <p>26.2.1. Characteristics of the territory of the district 360</p> <p>26.2.2. Demographic characteristics of the area 360</p> <p>26.2.3. Characteristics of the district medical service 361</p> <p>26.2.4. The procedure for collecting primary information on cases of diseases of the population with a new coronavirus infection 361</p> <p>26.3. Results of the analysis of the incidence of acute respiratory viral infectious diseases, new coronavirus infection Covid-19 and community-acquired pneumonia 362</p> <p>26.4. Conclusion 367</p> <p>26.5. References 368</p> <p><b>Chapter 27. High Speed and Secured Network Connectivity for Higher Education Institutions Using Software Defined Networks 371<br /></b><i>Lincoln S. PETER and Viranjay M. SRIVASTAVA</i></p> <p>27.1. Introduction 372</p> <p>27.2. Existing model review 373</p> <p>27.3. Selection of a suitable model 374</p> <p>27.4. Conclusion and future recommendations 376</p> <p>27.5. References 376</p> <p><b>Chapter 28. Reliability of a Double Redundant System Under the Full Repair Scenario 379<br /></b><i>Vladimir RYKOV and Nika IVANOVA</i></p> <p>28.1. Introduction 379</p> <p>28.2. Problem statement, assumptions and notations 381</p> <p>28.3. Reliability function 384</p> <p>28.4. Time-dependent system state probabilities 386</p> <p>28.4.1. General representation of t.d.s.p.s 386</p> <p>28.4.2. T.d.s.p.s in a separate regeneration period 387</p> <p>28.5. Steady-state probabilities 392</p> <p>28.6. Conclusion 393</p> <p>28.7. References 393</p> <p><b>Chapter 29. Predicting Changes in Depression Levels Following the European Economic Downturn of 2008 395<br /></b><i>Eleni SERAFETINIDOU and Georgia VERROPOULOU</i></p> <p>29.1. Introduction 396</p> <p>29.1.1. Aims of the study 398</p> <p>29.2. Data and methods 398</p> <p>29.2.1. Sample 398</p> <p>29.2.2. Measures 398</p> <p>29.3. Results 400</p> <p>29.3.1. Descriptive findings 400</p> <p>29.3.2. Non-respondents compared to respondents at baseline (wave 2) 403</p> <p>29.3.3. Descriptive findings for respondents – analysis by gender 405</p> <p>29.3.4. Findings regarding decreasing depression levels – analysis for the total sample and by gender 408</p> <p>29.3.5. Findings regarding increasing depression levels – analysis for the total sample and by gender 410</p> <p>29.4. Discussion 413</p> <p>29.5. Conclusion 414</p> <p>29.6. Acknowledgments 415</p> <p>29.7. References 415</p> <p>List of Authors 419</p> <p>Index 425</p> <p>Summary of Volume 2 429</p>
<b>Konstantinos N. Zafeiris</b> is Associate Professor of Demography within the Department of History and Ethnology at the Democritus University of Thrace, Greece.<br /><br /><b>Christos H. Skiadas</b> was the Founder and Director of Data Analysis and Forecasting and Former Vice-Rector at the Technical University of Crete, Greece.<br /><br /><b>Yiannis Dimotikalis</b> is Assistant Professor of Quantitative Methods within the Department of Management Science and Technology at the Hellenic Mediterranean University, Greece.<br /><br /><b>Alex Karagrigoriou</b> is Professor of Probability and Statistics, Director of the Laboratory of Statistics and Data Analysis and Actuarial-Financial Mathematics at the University of the Aegean, Greece.<br /><br /><b>Christiana Karagrigoriou-Vonta</b> is a (socio) linguist, translator and subtitler. She works as a freelance translator and editor of scientific texts and provides postproduction services (subtitling) for private companies and broadcasting corporations.

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €