Details

Plantwide Control


Plantwide Control

Recent Developments and Applications
2. Aufl.

von: Gade Pandu Rangaiah, Vinay Kariwala

136,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.01.2012
ISBN/EAN: 9781119968979
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The use of control systems is necessary for safe and optimal operation of industrial processes in the presence of inevitable disturbances and uncertainties. Plant-wide control (PWC) involves the systems and strategies required to control an entire chemical plant consisting of many interacting unit operations. Over the past 30 years, many tools and methodologies have been developed to accommodate increasingly larger and more complex plants. <p> This book provides a state-of-the-art of techniques for the design and evaluation of PWC systems. Various applications taken from chemical, petrochemical, biofuels and mineral processing industries are used to illustrate the use of these approaches. This book contains 20 chapters organized in the following sections:</p> <ul> <li>Overview and Industrial Perspective </li> <li>Tools and Heuristics </li> <li>Methodologies </li> <li>Applications </li> <li>Emerging Topics </li> </ul> <p> With contributions from the leading researchers and industrial practitioners on PWC design, this book is key reading for researchers, postgraduate students, and process control engineers interested in PWC.</p>
Preface <p>Section I: Overview and Perspective</p> <p>1 Introduction</p> <p>1.1 Background 1</p> <p>1.2 Plant-Wide Control 2</p> <p>1.3 Scope and Organization of the Book 4</p> <p>References 10</p> <p>2 Industrial Perspective on Plant-Wide Control</p> <p>2.1 Introduction 1</p> <p>2.2 Design Environment 3</p> <p>2.3 Disturbances and Measurement System Design 6</p> <p>2.4 Academic Contributions 8</p> <p>2.5 Conclusions 11</p> <p>References 12</p> <p>Section II: Tools and Heuristics</p> <p>3 Control Degrees of Freedom Analysis for Plant-Wide Control of Industrial Processes</p> <p>3.1 Introduction 2</p> <p>3.2 Control Degrees of Freedom (CDOF) 4</p> <p>3.3 Computation Methods for Control Degrees of Freedom (CDOF): A Review 7</p> <p>3.4 Computation of CDOF Using Flowsheet-Oriented Method 14</p> <p>3.4.1 Computation of Restraining Number for Unit Operations 16</p> <p>3.5 Application of Flowsheet-Oriented Method to Distillation Columns and the Concept of Redundant Process Variables 19</p> <p>3.6 Application of Flowsheet-Oriented Method to Compute CDOF to Complex Integrated Processes 22</p> <p>3.7 Conclusions 23</p> <p>References 24</p> <p>4 Selection of Controlled Variables Using Self-Optimizing Control Method</p> <p>4.1 Introduction 2</p> <p>4.2 General Principle 4</p> <p>4.3 Brute-Force Optimization Approach for CV Selection 8</p> <p>4.4 Local Methods 11</p> <p>4.4.1 Minimum Singular Value (MSV) Rule 12</p> <p>4.4.2 Exact Local Method 14</p> <p>4.4.3 Optimal Measurement Combination 16</p> <p>4.4.3.1 Null Space Method 16</p> <p>4.4.3.2 Explicit Solution 17</p> <p>4.4.3.3 Toy Example 19</p> <p>4.5 Branch and Bound Methods 21</p> <p>4.6 Constraint Handling 23</p> <p>4.7 Case Study: Forced Circulation Evaporator 26</p> <p>4.8 Conclusions and Discussion 32</p> <p>4.9 Acknowledgements 34</p> <p>References 34</p> <p>5 Input-Output Pairing Selection for Design of Decentralized Controller</p> <p>5.1 Introduction 2</p> <p>5.1.1 State of the Art 3</p> <p>5.2 Relative Gain Array and Variants 5</p> <p>Steady-State RGA 6</p> <p>5.2.2 Niederlinski Index 8</p> <p>5.2.3 The Dynamic Relative Gain Array 9</p> <p>5.2.4 The Effective Relative Gain Array 11</p> <p>5.2.5 The Block Relative Gain 12</p> <p>5.2.6 Relative Disturbance Gain Array 14</p> <p>5.3 µ-Interaction Measure 15</p> <p>5.4 Pairing Analysis Based on the Controllability and Observability 17</p> <p>5.4.1 The Participation Matrix 17</p> <p>5.4.2 The Hankel Interaction Index Array 19</p> <p>5.4.3 The Dynamic Input-Output Pairing Matrix 19</p> <p>Input-Output Pairing for Uncertain Multivariable Plants 21</p> <p>RGA in the Presence of Statistical Uncertainty 22</p> <p>RGA in the Presence of Norm-Bounded Uncertainties 23</p> <p>DIOPM and the Effect of Uncertainty 26</p> <p>Input-Output Pairing for Nonlinear Multivariable Plants 28</p> <p>5.6.1 Relative Order Matrix 29</p> <p>5.6.2 The Nonlinear RGA 30</p> <p>5.7 Conclusions and Discussion 31</p> <p>References 33</p> <p>6 Heuristics for Plantwide Control</p> <p>6.1 Introduction 2</p> <p>6.2 Basics of Heuristic Plantwide Control 4</p> <p>6.2.1 Plumbing 5</p> <p>6.2.2 Recycle 6</p> <p>6.2.2.1 Effect of Recycle on Time Constants 6</p> <p>6.2.2.2 Snowball Effects in Liquid Recycle Systems 7</p> <p>6.2.2.3 Gas Recycle Systems 8</p> <p>6.2.3 Fresh Feed Introduction 8</p> <p>6.2.3.1 Ternary Example 9</p> <p>6.2.3.2 Control Structures 11</p> <p>6.2.3.3 Ternary Process with Altered Volatilities 12</p> <p>6.2.4 Energy Management and Integration 12</p> <p>6.2.5 Controller Tuning 13</p> <p>6.2.5.1 Flow and Pressure Control 13</p> <p>6.2.5.2 Level Control 14</p> <p>6.2.5.3 Composition and Temperature Control 16</p> <p>6.2.5.4 Interacting Control Loops 17</p> <p>6.2.6 Throughput Handle 18</p> <p>6.3 Application to HDA Process 18</p> <p>6.3.1 Process Description 19</p> <p>6.3.2 Application of Plantwide Control Heuristics 20</p> <p>6.3.2.1 Throughput Handle 20</p> <p>6.3.2.2 Maximum Gas Recycle 20</p> <p>6.3.2.3 Component Balances (Downs Drill) 20</p> <p>6.3.2.4 Flow Control in Liquid Recycle Loop 21</p> <p>6.3.2.5 Product Quality and Constraint Loops 21</p> <p>6.4 Conclusion 21</p> <p>7 Throughput Manipulator Location Selection for Economic Plantwide Control</p> <p>7.1 Introduction 2</p> <p>7.2 Throughput Manipulation, Inventory Regulation and Plantwide Variability Propagation 3</p> <p>7.3 Quantitative Case Studies 6</p> <p>7.3.1 Case Study I: Recycle Process 7</p> <p>7.3.1.1 Alternative Control Structures 7</p> <p>7.3.1.2 Quantitative Back-Off Results 8</p> <p>7.3.1.3 Salient Observations 10</p> <p>7.3.2 Case Study II: Recycle Process with Side Reaction 11</p> <p>7.3.2.1 Economically Optimal Process Operation 11</p> <p>7.3.2.2 Self Optimizing Variables for Unconstrained Degrees of Freedom 14</p> <p>7.3.2.3 Plantwide Control System Design 15</p> <p>7.3.2.4 Dynamic Simulation Results 18</p> <p>7.4 Discussion 19</p> <p>7.5 Conclusions 23</p> <p>7.6 Acknowledgments 23</p> <p>7.7 Supplementary Information 23</p> <p>References 24</p> <p>8 Influence of Process Variability Propagation in Plant-Wide Control</p> <p>8.1 Introduction 2</p> <p>8.2 Theoretical Background 5</p> <p>8.3 Local Unit Operation Control 12</p> <p>8.3.1 Heat Exchanger 12</p> <p>8.3.2 Extraction Process 13</p> <p>8.4 Inventory Control 15</p> <p>8.4.1 Pressure Control in Gas Headers 15</p> <p>8.4.2 Parallel Unit Operations 17</p> <p>8.4.3 Liquid Inventory Control 18</p> <p>Plant-Wide Control Examples 21</p> <p>8.5.1 Distillation Column Control 21</p> <p>8.5.2 Esterification Process 22</p> <p>8.6 Conclusion 25</p> <p>References 27</p> <p>Section III: Methodologies</p> <p>9 A Review of Plant-Wide Control Methodologies and Applications</p> <p>9.1 Introduction 1</p> <p>9.2 Review and Approach-Based Classification of PWC Methodologies 3</p> <p>9.2.1 Heuristics-Based PWC Methods 4</p> <p>9.2.2 Mathematical-Based PWC Methods 6</p> <p>9.2.3 Optimization-Based PWC Methods 8</p> <p>9.2.4 Mixed PWC Methods 9</p> <p>9.3 Structure-Based Classification of PWC Methodologies 12</p> <p>9.4 Processes Studied in PWC Applications 14</p> <p>9.5 Comparative Studies on Different Methodologies 16</p> <p>9.6 Concluding Remarks 18</p> <p>References 20</p> <p>10 Integrated Framework of Simulation and Heuristics for Plant-Wide Control System Design</p> <p>10.1 Introduction 1</p> <p>10.2 HDA Process: Overview and Simulation 2</p> <p>10.2.1 Process Description 2</p> <p>10.2.2 Steady-State and Dynamic Simulation 4</p> <p>10.3 Integrated Framework Procedure and Application to HDA Plant 5</p> <p>10.4 Evaluation of the Control System 17</p> <p>10.5 Conclusions 18</p> <p>References 20</p> <p>11 Economic Plantwide Control</p> <p>Introduction 1</p> <p>Control Layers and Time Scale Separation 3</p> <p>Plantwide Control Procedure 7</p> <p>Degrees of Freedom for Operation 9</p> <p>11.5 Skogestad’s Plantwide Control Procedure 12</p> <p>Top-Down Part 12</p> <p>Discussion 29</p> <p>Conclusion 30</p> <p>REFERENCES 30</p> <p>12 Performance Assessment of Plant-Wide Control Systems</p> <p>12.1 Introduction 2</p> <p>12.2 Desirable Qualities of a Good Performance Measure 4</p> <p>12.3 Performance Measure Based on Steady State: Steady-State Operating Cost/Profit 5</p> <p>12.4 Performance Measures Based on Dynamics 6</p> <p>12.4.1 Process Settling Time Based on Overall Absolute Component Accumulation 6</p> <p>12.4.2 Process Settling Time Based on Plant Production 7</p> <p>12.4.3 Dynamic Disturbance Sensitivity (DDS) 8</p> <p>12.4.4 Deviation from the Production Target (DPT) 8</p> <p>12.4.5 Total Variation (TV) in Manipulated Variables 10</p> <p>12.5 Application of the Performance Measures to the HDA Plant Control Structure 11</p> <p>12.5.1 Steady-State Operating Cost 12</p> <p>12.5.2 Process Settling Time Based on Overall Absolute Component Accumulation 12</p> <p>12.5.3 Process Settling Time Based on Plant Production 13</p> <p>12.5.4 Dynamic Disturbance Sensitivity (DDS) 14</p> <p>12.5.5 Deviation from the Production Target (DPT) 15</p> <p>12.5.6 Total Variation (TV) in Manipulated Variables 15</p> <p>12.6 Application of the Performance Measures for Comparing PWC Systems 15</p> <p>12.7 Discussion and Recommendations 17</p> <p>12.7.1 Disturbances and Set-Point Changes 17</p> <p>12.7.2 Performance Measures 19</p> <p>12.8 Concluding Remarks 21</p> <p>References 21</p> <p>Section IV: Applications Studies</p> <p>13 Design and Control of a Cooled Ammonia Reactor</p> <p>13.1 Introduction 2</p> <p>13.2 Cold-Shot Process 4</p> <p>13.2.1 Process Flowsheet 4</p> <p>13.2.2 Equipment Sizes, Capital and Energy Costs 6</p> <p>13.3 Cooled-Reactor Process 7</p> <p>13.3.1 Process Flowsheet 7</p> <p>13.3.2 Reaction Kinetics 9</p> <p>13.3.3 Optimum Economic Design of the Cooled-Reactor Process 10</p> <p>13.3.3.1 Effect of Pressure 10</p> <p>13.3.3.2 Effect of Reactor Size 12</p> <p>13.3.4 Comparison of Cold-Shot and Cooled-Reactor Processes 12</p> <p>13.4 Control 13</p> <p>13.5 Conclusion 16</p> <p>13.6 Acknowledgement 16</p> <p>References 16</p> <p>14 Design and Plant-Wide Control of a Biodiesel Plant</p> <p>14.1 Introduction 1</p> <p>14.2 Steady-State Plant Design and Simulation 4</p> <p>14.2.1 Process Design 4</p> <p>14.2.1.1 Feed and Product Specifications 4</p> <p>14.2.1.2 Reaction Section 5</p> <p>14.2.1.3 Separation Section 6</p> <p>14.2.2 Process Flowsheet and HYSYS Simulation 8</p> <p>14.3 Optimization of Plant Operation 10</p> <p>14.4 Application of IFSH to Biodiesel Plant 12</p> <p>14.5 Validation of the Plant-Wide Control Structure 18</p> <p>14.6 Conclusions 20</p> <p>References 20</p> <p>15 Plant-Wide Control of a Reactive Distillation Process</p> <p>15.1 Introduction 2</p> <p>15.2 Design of Ethyl Acetate Reactive-Distillation Process 3</p> <p>15.2.1 Kinetic and Thermodynamic Models 3</p> <p>15.2.2 The Process Flowsheet 4</p> <p>15.2.3 Comparison of the Process Using Either Homogeneous or Heterogeneous Catalyst 6</p> <p>15.3 Control Structure Development of the Two Catalyst Systems 8</p> <p>15.3.1 Inventory Control Loops 8</p> <p>15.3.2 Product Quality Control Loops 10</p> <p>15.3.3 Tuning of the Two Temperature Control Loops 12</p> <p>Closed-Loop Simulation Results 13</p> <p>15.3.5 Summary of PWC Aspects 15</p> <p>15.4 Conclusions 17</p> <p>References 17</p> <p>16 Control System Design of a Crystallizer Train for Para-Xylene Recovery</p> <p>16.1 Introduction 3</p> <p>16.1 Process 5</p> <p>16.2 Description 5</p> <p>16.2.1 Para-Xylene Production Process 5</p> <p>16.2.2 Para-Xylene Recovery Based on Crystallization Technology 6</p> <p>16.3 Process Model 8</p> <p>16.3.1 Crystallizer (Units 1–5) 8</p> <p>16.3.2 Cyclone Separator (Units 9, 11) 10</p> <p>16.3.3 Centrifugal Separator (Units 8, 10) 11</p> <p>16.3.4 Overall Process Model 12</p> <p>16.4 Control System Design 14</p> <p>16.4.1 Basic Regulatory Control 14</p> <p>16.4.2 Steady State Optimal Operation Policy 15</p> <p>16.4.2.1 Maximization of Para-Xylene Recovery 15</p> <p>16.4.2.2 Load Distribution 17</p> <p>16.4.3 Design of Optimizing Controllers 19</p> <p>16.4.3.1 Multiloop Controller 20</p> <p>16.4.3.2 Multivariable Controller 20</p> <p>16.4.3.3 Simulation 21</p> <p>16.4.4 Incorporation of Steady State Optimizer 22</p> <p>16.4.4.1 LP Based Steady State Optimizer 22</p> <p>16.4.4.2 Simulation 24</p> <p>16.4.5 Justification of MPC Application 25</p> <p>16.5 Conclusions 26</p> <p>16.6 5.A Linear Steady State Model and Constraints 27</p> <p>References 29</p> <p>17 Modeling and Control of Industrial Off-Gas Systems</p> <p>17.1 Introduction 3</p> <p>17.2 Process Description 5</p> <p>Off-Gas System Model Development 7</p> <p>17.3.1 Roaster off-Gas Train 8</p> <p>17.3.2 Furnace Off-Gas Train 12</p> <p>17.4 Control of Smelter Off-Gas Systems 14</p> <p>17.4.1 Roaster Off-Gas System 15</p> <p>17.4.1.1 Degree of Freedom Analysis 15</p> <p>17.4.1.2 Definition of Optimal Operation 16</p> <p>17.4.1.3 Optimization 17</p> <p>17.4.1.4 Production Rate 19</p> <p>17.4.1.5 Structure of the Regulatory and Supervisory Control 21</p> <p>17.4.1.6 Validation of the Proposed Control Structure 22</p> <p>17.4.2 Furnace Off-Gas System 22</p> <p>17.4.2.1 Manipulated Variables and Degree of Freedom Analysis 22</p> <p>17.4.2.2 Definition of Optimal Operation 23</p> <p>17.4.2.3 Optimization 24</p> <p>17.4.2.4 Production Rate 26</p> <p>17.4.2.5 Structure of the Regulatory and Supervisory Control Layer 27</p> <p>17.4.2.6 Validation of the Proposed Control Structures 28</p> <p>17.5 Conclusion 28</p> <p>Notation 29</p> <p>Subscripts 32</p> <p>References 33</p> <p>Section V: Emerging Topics</p> <p>18 Plant-Wide Control via a Network of Autonomous Controllers</p> <p>18.1 Introduction 2</p> <p>18.2 Process and Controller Networks 7</p> <p>18.2.1 Representation of Process Network 7</p> <p>18.2.2 Representation of Control Network 10</p> <p>Plant-Wide Stability Analysis Based on Dissipativity 13</p> <p>18.4 Controller Network Design 18</p> <p>18.4.1 Transformation of the Network Topology 18</p> <p>Plant-Wide Connective Stability 25</p> <p>18.4.3 Performance Design 27</p> <p>18.5 Case Study 31</p> <p>18.5.1 Process Model 32</p> <p>18.5.2 Distributed Control System Design 34</p> <p>18.6 Discussions and Conclusion 35</p> <p>References 40</p> <p>19 Co-Ordinated, Distributed Plant-Wide Control</p> <p>19.1 Introduction 2</p> <p>Co-Ordination Based Plant-Wide Control 8</p> <p>19.2.1 Price-Driven Co-Ordination 11</p> <p>19.2.1.1 The Price Decomposition Principle 11</p> <p>19.2.1.2 Algorithm 12</p> <p>Price-Driven Co-Ordination Procedure: 14</p> <p>19.2.1.4 Summary 15</p> <p>19.2.2 Augmented Price-Driven Method 15</p> <p>19.2.2.1 The Newton Based Price Update Method as a Negotiation Principle 17</p> <p>19.2.3 Resource Allocation Co-Ordination 18</p> <p>19.2.3.1 Resource Allocation Principle 18</p> <p>19.2.3.2 Algorithm and Interpretation 18</p> <p>19.2.4 Prediction-Driven Co-Ordination 21</p> <p>19.2.4.1 Prediction-Driven Principle 21</p> <p>19.2.4.2 Algorithm and Interpretation 23</p> <p>19.2.4.3 Prediction Driven Co-Ordination Procedure 23</p> <p>19.2.5 Economic Interpretation 24</p> <p>19.3 Case Studies 25</p> <p>19.3.1 A Pulp Mill Process 25</p> <p>19.3.1.1 Problem Formulation 25</p> <p>Plant-Wide Coordination and Performance Comparison 27</p> <p>19.3.2 A Forced-Circulation Evaporator System 29</p> <p>19.3.2.1 Problem Formulation 30</p> <p>Plant-Wide Co-Ordination and Performance 32</p> <p>19.4 The Future 34</p> <p>References 38</p> <p>20 Determination of Plant-Wide Control Loop Configuration and Eco-Efficiency</p> <p>20.1 Introduction 1</p> <p>20.2 Relative Gain Array (RGA) and Relative Exergy Gain Array (REA) 4</p> <p>20.2.1 Relative Gain Array (RGA) 4</p> <p>20.2.2 Relative Exergy Array (REA) 6</p> <p>20.2.2.1 Exergy 6</p> <p>20.2.2.2 Relative Exergy Array 8</p> <p>20.3 Exergy Calculation Procedure 10</p> <p>20.4 Case Study 13</p> <p>20.4.1 Distillation Column 13</p> <p>20.4.2 Case Study 2 15</p> <p>20.5 Summary 19</p> <p>References</p>
Review copy sent 25/04/12: Book News
<b>Prof. Gade Pandu Rangaiah</b> is currently Professor and Deputy Head in the Department of Chemical & Biomolecular Engineering at the National University of Singapore. His research interests are in control, modeling and optimization of chemical, petrochemical and related processes. Prof. Rangaiah published nearly 120 papers in international journals and presented around 90 papers in conferences. He received several awards for his teaching including Annual Teaching Excellence Awards from the National University of Singapore for four consecutive years. Prof. Rangaiah edited two books (one on multi-objective optimization and another on global optimization) published by World Scientific. <p><b>Dr Vinay Kariwala</b> is an Assistant Professor in the School of Chemical and Biomedical Engineering at the Nanyang Technological University, Singapore. He got his Ph.D. degree in Chemical Engineering (Computer Process Control) from the University of Alberta, Canada, in 2004. During 2004-2005, he worked as a postdoctoral fellow at the Norwegian University of Science and Technology, Trondheim, Norway. He has published more than 25 papers in international journals and refereed conference proceedings in the broad areas of plant-wide control and control structure design. Recently, his contributions were recognized with the best reviewer award by <i>Journal of Process Control</i> for the year 2009.</p>
The use of control systems is necessary for safe and optimal operation of industrial processes in the presence of inevitable disturbances and uncertainties. Plant-wide control (PWC) involves the systems and strategies required to control an entire chemical plant consisting of many interacting unit operations. Over the past 30 years, many tools and methodologies have been developed to accommodate increasingly larger and more complex plants. <p>This book provides a state-of-the-art of techniques for the design and evaluation of PWC systems. Various applications taken from chemical, petrochemical, biofuels and mineral processing industries are used to illustrate the use of these approaches. This book contains 20 chapters organized in the following sections:</p> <ul> <li>Overview and Industrial Perspective</li> <li>Tools and Heuristics</li> <li>Methodologies</li> <li>Applications</li> <li>Emerging Topics</li> </ul> <p>With contributions from the leading researchers and industrial practitioners on PWC design, this book is key reading for researchers, postgraduate students, and process control engineers interested in PWC.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €