Details

Space Antenna Handbook


Space Antenna Handbook


1. Aufl.

von: William A. Imbriale, Steven Shichang Gao, Luigi Boccia

159,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.04.2012
ISBN/EAN: 9781119945130
Sprache: englisch
Anzahl Seiten: 776

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications.</p> <p>Key Features:</p> <ul> <li>Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applications</li> <li>Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification</li> <li>Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios</li> </ul> <ul> <li>Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas</li> </ul> <p>This book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering, It also aids engineers technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.</p>
<p>Preface xvii</p> <p>Acknowledgments xix</p> <p>Acronyms xxi</p> <p>Contributors xxv</p> <p><b>1 Antenna Basics 1<br /></b><i>Luigi Boccia and Olav Breinbjerg</i></p> <p>1.1 Introduction 1</p> <p>1.2 Antenna Performance Parameters 2</p> <p>1.2.1 Reflection Coefficient and Voltage Standing Wave Ratio 2</p> <p>1.2.2 Antenna Impedance 3</p> <p>1.2.3 Radiation Pattern and Coverage 4</p> <p>1.2.4 Polarization 6</p> <p>1.2.5 Directivity 7</p> <p>1.2.6 Gain and Realized Gain 8</p> <p>1.2.7 Equivalent Isotropically Radiated Power 8</p> <p>1.2.8 Effective Area 9</p> <p>1.2.9 Phase Center 9</p> <p>1.2.10 Bandwidth 9</p> <p>1.2.11 Antenna Noise Temperature 9</p> <p>1.3 Basic Antenna Elements 10</p> <p>1.3.1 Wire Antennas 10</p> <p>1.3.2 Horn Antennas 10</p> <p>1.3.3 Reflectors 15</p> <p>1.3.4 Helical Antennas 17</p> <p>1.3.5 Printed Antennas 19</p> <p>1.4 Arrays 26</p> <p>1.4.1 Array Configurations 28</p> <p>1.5 Basic Effects of Antennas in the Space Environment 30</p> <p>1.5.1 Multipaction 30</p> <p>1.5.2 Passive Inter-modulation 31</p> <p>1.5.3 Outgassing 31</p> <p>References 32</p> <p><b>2 Space Antenna Modeling 36<br /></b><i>Jian Feng Zhang, Xue Wei Ping, Wen Ming Yu, Xiao Yang Zhou, and Tie Jun Cui</i></p> <p>2.1 Introduction 36</p> <p>2.1.1 Maxwell’s Equations 37</p> <p>2.1.2 CEM 37</p> <p>2.2 Methods of Antenna Modeling 39</p> <p>2.2.1 Basic Theory 39</p> <p>2.2.2 Method of Moments 40</p> <p>2.2.3 FEM 45</p> <p>2.2.4 FDTD Method 49</p> <p>2.3 Fast Algorithms for Large Space Antenna Modeling 54</p> <p>2.3.1 Introduction 54</p> <p>2.3.2 MLFMA 54</p> <p>2.3.3 Hierarchical Basis for the FEM 62</p> <p>2.4 Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas 68</p> <p>2.5 Summary 73</p> <p>Acknowledgments 73</p> <p>References 73</p> <p><b>3 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing 76<br /></b><i>Michael A. Thorburn</i></p> <p>3.1 Introduction 76</p> <p>3.2 Elements of Satellite System Architecture 76</p> <p>3.3 Satellite Missions 77</p> <p>3.4 Communications Satellites 77</p> <p>3.4.1 Fixed Satellite Services 77</p> <p>3.4.2 Broadcast Satellite Services (Direct Broadcast Services) 78</p> <p>3.4.3 Digital Audio Radio Services 78</p> <p>3.4.4 Direct to Home Broadband Services 78</p> <p>3.4.5 Mobile Communications Services 78</p> <p>3.5 Radar Satellites 79</p> <p>3.6 Navigational Satellites 79</p> <p>3.7 Remote Sensing Satellites 80</p> <p>3.8 Architecture of Satellite Command and Control 80</p> <p>3.9 The Communications Payload Transponder 80</p> <p>3.9.1 Bent-Pipe Transponders 81</p> <p>3.9.2 Digital Transponders 81</p> <p>3.9.3 Regenerative Repeater 81</p> <p>3.10 Satellite Functional Requirements 81</p> <p>3.10.1 Key Performance Concepts: Coverage, Frequency Allocations 82</p> <p>3.10.2 Architecture of the Communications Payload 82</p> <p>3.10.3 Satellite Communications System Performance Requirements 83</p> <p>3.11 The Satellite Link Equation 83</p> <p>3.12 The Microwave Transmitter Block 84</p> <p>3.12.1 Intercept Point 85</p> <p>3.12.2 Output Backoff 86</p> <p>3.12.3 The Transmit Antenna and EIRP 87</p> <p>3.13 Rx Front-End Block 88</p> <p>3.13.1 Noise Figure and Noise Temperature 88</p> <p>3.14 Received Power in the Communications System’s RF Link 90</p> <p>3.14.1 The Angular Dependencies of the Uplink and Downlink 91</p> <p>3.15 Additional Losses in the Satellite and Antenna 91</p> <p>3.15.1 Additional Losses due to Propagation Effects and the Atmosphere 91</p> <p>3.15.2 Ionospheric Effects – Scintillation and Polarization Rotation 93</p> <p>3.16 Thermal Noise and the Antenna Noise Temperature 93</p> <p>3.16.1 The Interface between the Antenna and the Communications System 93</p> <p>3.16.2 The Uplink Signal to Noise 94</p> <p>3.17 The SNR Equation and Minimum Detectable Signal 94</p> <p>3.18 Power Flux Density, Saturation Flux Density and Dynamic Range 95</p> <p>3.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder 95</p> <p>3.19 Full-Duplex Operation and Passive Intermodulation 96</p> <p>3.20 Gain and Gain Variation 96</p> <p>3.21 Pointing Error 97</p> <p>3.22 Remaining Elements of Satellite System Architecture 98</p> <p>3.23 Orbits and Orbital Considerations 98</p> <p>3.24 Spacecraft Introduction 100</p> <p>3.25 Spacecraft Budgets (Mass, Power, Thermal) 101</p> <p>3.25.1 Satellite Mass 101</p> <p>3.25.2 Satellite Power 101</p> <p>3.25.3 Satellite Thermal Dissipation 101</p> <p>3.26 Orbital Mission Life and Launch Vehicle Considerations 102</p> <p>3.27 Environment Management (Thermal, Radiation) 102</p> <p>3.28 Spacecraft Structure (Acoustic/Dynamic) 103</p> <p>3.29 Satellite Positioning (Station Keeping) 103</p> <p>3.30 Satellite Positioning (Attitude Control) 104</p> <p>3.31 Power Subsystem 104</p> <p>3.32 Tracking, Telemetry, Command and Monitoring 105</p> <p>References 105</p> <p><b>4 Space Environment and Materials 106<br /></b><i>J. Santiago-Prowald and L. Salghetti Drioli</i></p> <p>4.1 Introduction 106</p> <p>4.2 The Space Environment of Antennas 106</p> <p>4.2.1 The Radiation Environment 107</p> <p>4.2.2 The Plasma Environment 109</p> <p>4.2.3 The Neutral Environment 110</p> <p>4.2.4 Space Environment for Typical Spacecraft Orbits 111</p> <p>4.2.5 Thermal Environment 111</p> <p>4.2.6 Launch Environment 113</p> <p>4.3 Selection of Materials in Relation to Their Electromagnetic Properties 117</p> <p>4.3.1 RF Transparent Materials and Their Use 117</p> <p>4.3.2 RF Conducting Materials and Their Use 117</p> <p>4.3.3 Material Selection Golden Rules for PIM Control 118</p> <p>4.4 Space Materials and Manufacturing Processes 118</p> <p>4.4.1 Metals and Their Alloys 118</p> <p>4.4.2 Polymer Matrix Composites 121</p> <p>4.4.3 Ceramics and Ceramic Matrix Composites 125</p> <p>4.5 Characterization of Mechanical and Thermal Behaviour 127</p> <p>4.5.1 Thermal Vacuum Environment and Outgassing Screening 127</p> <p>4.5.2 Fundamental Characterization Tests of Polymers and Composites 128</p> <p>4.5.3 Characterization of Mechanical Properties 130</p> <p>4.5.4 Thermal and Thermoelastic Characterization 131</p> <p>Acknowledgements 131</p> <p>References 131</p> <p><b>5 Mechanical and Thermal Design of Space Antennas 133<br /></b><i>J. Santiago-Prowald and Heiko Ritter</i></p> <p>5.1 Introduction: The Mechanical–Thermal–Electrical Triangle 133</p> <p>5.1.1 Antenna Product 134</p> <p>5.1.2 Configuration, Materials and Processes 135</p> <p>5.1.3 Review of Requirements and Their Verification 136</p> <p>5.2 Design of Antenna Structures 136</p> <p>5.2.1 Typical Design Solutions for Reflectors 136</p> <p>5.2.2 Structural Description of the Sandwich Plate Architecture 143</p> <p>5.2.3 Thermal Description of the Sandwich Plate Architecture 143</p> <p>5.2.4 Electrical Description of the Sandwich Plate Architecture in Relation to Thermo-mechanical Design 144</p> <p>5.3 Structural Modelling and Analysis 144</p> <p>5.3.1 First-Order Plate Theory 145</p> <p>5.3.2 Higher Order Plate Theories 148</p> <p>5.3.3 Classical Laminated Plate Theory 148</p> <p>5.3.4 Homogeneous Isotropic Plate Versus Symmetric Sandwich Plate 149</p> <p>5.3.5 Skins Made of Composite Material 150</p> <p>5.3.6 Honeycomb Core Characteristics 152</p> <p>5.3.7 Failure Modes of Sandwich Plates 152</p> <p>5.3.8 Mass Optimization of Sandwich Plate Architecture for Antennas 154</p> <p>5.3.9 Finite Element Analysis 156</p> <p>5.3.10 Acoustic Loads on Antennas 159</p> <p>5.4 Thermal and Thermoelastic Analysis 166</p> <p>5.4.1 The Thermal Environment of Space Antennas 166</p> <p>5.4.2 Transverse Thermal Conductance Model of the Sandwich Plate 167</p> <p>5.4.3 Thermal Balance of the Flat Sandwich Plate 168</p> <p>5.4.4 Thermal Distortions of a Flat Plate in Space 169</p> <p>5.4.5 Thermoelastic Stability of an Offset Parabolic Reflector 171</p> <p>5.4.6 Thermal Analysis Tools 172</p> <p>5.4.7 Thermal Analysis Cases 173</p> <p>5.4.8 Thermal Model Uncertainty and Margins 173</p> <p>5.5 Thermal Control Strategies 173</p> <p>5.5.1 Requirements and Principal Design Choices 173</p> <p>5.5.2 Thermal Control Components 174</p> <p>5.5.3 Thermal Design Examples 176</p> <p>Acknowledgements 177</p> <p>References 178</p> <p><b>6 Testing of Antennas for Space 179<br /></b><i>Jerzy Lemanczyk, Hans Juergen Steiner, and Quiterio Garcia</i></p> <p>6.1 Introduction 179</p> <p>6.2 Testing as a Development and Verification Tool 180</p> <p>6.2.1 Engineering for Test 180</p> <p>6.2.2 Model Philosophy and Definitions 182</p> <p>6.2.3 Electrical Model Correlation 190</p> <p>6.2.4 Thermal Testing and Model Correlation 195</p> <p>6.3 Antenna Testing Facilities 203</p> <p>6.3.1 Far-Field Antenna Test Ranges 203</p> <p>6.3.2 Compact Antenna Test Ranges 203</p> <p>6.3.3 Near-Field Measurements and Facilities 212</p> <p>6.3.4 Environmental Test Facilities and Mechanical Testing 220</p> <p>6.3.5 PIM Testing 224</p> <p>6.4 Case Study: SMOS 226</p> <p>6.4.1 The SMOS MIRAS Instrument 227</p> <p>6.4.2 SMOS Model Philosophy 231</p> <p>6.4.3 Antenna Pattern Test Campaign 238</p> <p>References 248</p> <p><b>7 Historical Overview of the Development of Space Antennas 250<br /></b><i>Antoine G. Roederer</i></p> <p>7.1 Introduction 250</p> <p>7.2 The Early Days 252</p> <p>7.2.1 Wire and Slot Antennas on Simple Satellite Bodies 252</p> <p>7.2.2 Antenna Computer Modelling Takes Off 254</p> <p>7.2.3 Existing/Classical Antenna Designs Adapted for Space 259</p> <p>7.3 Larger Reflectors with Complex Feeding Systems 262</p> <p>7.3.1 Introduction 262</p> <p>7.3.2 Multi-frequency Antennas 263</p> <p>7.3.3 Large Unfurlable Antennas 271</p> <p>7.3.4 Solid Surface Deployable Reflector Antennas 279</p> <p>7.3.5 Polarization-Sensitive and Shaped Reflectors 282</p> <p>7.3.6 Multi-feed Antennas 285</p> <p>7.4 Array Antennas 297</p> <p>7.4.1 Conformal Arrays on Spin-Stabilized Satellites 297</p> <p>7.4.2 Arrays for Remote Sensing 298</p> <p>7.4.3 Arrays for Telecommunications 302</p> <p>7.5 Conclusions 306</p> <p>Acknowledgements 307</p> <p>References 307</p> <p><b>8 Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations 314<br /></b><i>Paolo Focardi, Paula R. Brown, and Yahya Rahmat-Samii</i></p> <p>8.1 Introduction 314</p> <p>8.2 History of Deployable Mesh Reflectors 315</p> <p>8.3 Design Considerations Specific to Mesh Reflectors 320</p> <p>8.4 The SMAP Mission – A Representative Case Study 320</p> <p>8.4.1 Mission Overview 320</p> <p>8.4.2 Key Antenna Design Drivers and Constraints 322</p> <p>8.4.3 RF Performance Determination of Reflector Surface Materials 327</p> <p>8.4.4 RF Modeling of the Antenna Radiation Pattern 329</p> <p>8.4.5 Feed Assembly Design 338</p> <p>8.4.6 Performance Verification 340</p> <p>8.5 Conclusion 341</p> <p>Acknowledgments 341</p> <p>References 341</p> <p><b>9 Microstrip Array Technologies for Space Applications 344<br /></b><i>Antonio Montesano, Luis F. de la Fuente, Fernando Monjas, Vicente Garc</i><i>Ía, Luis E. Cuesta, Jennifer Campuzano, Ana Trastoy, Miguel Bustamante, Francisco Casares, Eduardo Alonso, David </i><i>Álvarez, Silvia Arenas, Jos</i><i>é Luis Serrano, and Margarita Naranjo</i></p> <p>9.1 Introduction 344</p> <p>9.2 Basics of Array Antennas 345</p> <p>9.2.1 Functional (Driving) Requirements and Array Design Solutions 345</p> <p>9.2.2 Materials for Passive Arrays Versus Environmental and Design Requirements 347</p> <p>9.2.3 Array Optimization Methods and Criteria 349</p> <p>9.3 Passive Arrays 350</p> <p>9.3.1 Radiating Panels for SAR Antennas 350</p> <p>9.3.2 Navigation Antennas 354</p> <p>9.3.3 Passive Antennas for Deep Space 361</p> <p>9.4 Active Arrays 363</p> <p>9.4.1 Key Active Elements in Active Antennas: Amplifiers 363</p> <p>9.4.2 Active Hybrids 366</p> <p>9.4.3 The Thermal Dissipation Design Solution 367</p> <p>9.4.4 Active Array Control 369</p> <p>9.4.5 Active Arrays for Communications and Data Transmission 370</p> <p>9.5 Summary 383</p> <p>Acknowledgements 383</p> <p>References 384</p> <p><b>10 Printed Reflectarray Antennas for Space Applications 385<br /></b><i>Jose A. Encinar</i></p> <p>10.1 Introduction 385</p> <p>10.2 Principle of Operation and Reflectarray Element Performance 388</p> <p>10.3 Analysis and Design Techniques 391</p> <p>10.3.1 Analysis and Design of Reflectarray Elements 391</p> <p>10.3.2 Design and Analysis of Reflectarray Antennas 393</p> <p>10.3.3 Broadband Techniques 396</p> <p>10.4 Reflectarray Antennas for Telecommunication and Broadcasting Satellites 400</p> <p>10.4.1 Contoured-Beam Reflectarrays 400</p> <p>10.4.2 Dual-Coverage Transmit Antenna 402</p> <p>10.4.3 Transmit–Receive Antenna for Coverage of South America 405</p> <p>10.5 Recent and Future Developments for Space Applications 414</p> <p>10.5.1 Large-Aperture Reflectarrays 414</p> <p>10.5.2 Inflatable Reflectarrays 415</p> <p>10.5.3 High-Gain Antennas for Deep Space Communications 416</p> <p>10.5.4 Multibeam Reflectarrays 418</p> <p>10.5.5 Dual-Reflector Configurations 420</p> <p>10.5.6 Reconfigurable and Steerable Beam Reflectarrays 424</p> <p>10.5.7 Conclusions and Future Developments 428</p> <p>Acknowledgments 428</p> <p>References 429</p> <p><b>11 Emerging Antenna Technologies for Space Applications 435<br /></b><i>Safieddin Safavi-Naeini and Mohammad Fakharzadeh</i></p> <p>11.1 Introduction 435</p> <p>11.2 On-Chip/In-Package Antennas for Emerging Millimeter-Wave Systems 436</p> <p>11.2.1 Recent Advances in On-Chip Antenna Technology 436</p> <p>11.2.2 Silicon IC Substrate Limitations for On-Chip Antennas 437</p> <p>11.2.3 On-Chip Antenna on Integrated Passive Silicon Technology 439</p> <p>11.3 Integrated Planar Waveguide Technologies 441</p> <p>11.4 Microwave/mmW MEMS-Based Circuit Technologies for Antenna Applications 445</p> <p>11.4.1 RF/Microwave MEMS-Based Phase Shifter 447</p> <p>11.4.2 Reflective-Type Phase Shifters for mmW Beam-Forming Applications 447</p> <p>11.5 Emerging THz Antenna Systems and Integrated Structures 448</p> <p>11.5.1 THz Photonics Techniques: THz Generation Using Photo-mixing Antennas 451</p> <p>11.5.2 THz Generation Using a Photo-mixing Antenna Array 453</p> <p>11.6 Case Study: Low-Cost/Complexity Antenna Technologies for Land-Mobile Satellite Communications 454</p> <p>11.6.1 System-Level Requirements 454</p> <p>11.6.2 Reconfigurable Very Low-Profile Antenna Array Technologies 454</p> <p>11.6.3 Beam Steering Techniques 455</p> <p>11.6.4 Robust Zero-Knowledge Beam Control Algorithm 457</p> <p>11.6.5 A Ku-band Low-Profile, Low-Cost Array System for Vehicular Communication 458</p> <p>11.7 Conclusions 462</p> <p>References 462</p> <p><b>12 Antennas for Satellite Communications 466<br /></b><i>Eric Amyotte and Lu</i><i>Ís Martins Camelo</i></p> <p>12.1 Introduction and Design Requirements 466</p> <p>12.1.1 Link Budget Considerations 467</p> <p>12.1.2 Types of Satellite Communications Antennas 469</p> <p>12.1.3 Materials 469</p> <p>12.1.4 The Space Environment and Its Design Implications 470</p> <p>12.1.5 Designing for Commercial Applications 470</p> <p>12.2 UHF Satellite Communications Antennas 471</p> <p>12.2.1 Typical Requirements and Solutions 471</p> <p>12.2.2 Single-Element Design 472</p> <p>12.2.3 Array Design 473</p> <p>12.2.4 Multipactor Threshold 473</p> <p>12.3 L/S-band Mobile Satellite Communications Antennas 474</p> <p>12.3.1 Introduction 474</p> <p>12.3.2 The Need for Large Unfurlable Reflectors 474</p> <p>12.3.3 Beam Forming 475</p> <p>12.3.4 Hybrid Matrix Power Amplification 476</p> <p>12.3.5 Feed Array Element Design 478</p> <p>12.3.6 Diplexers 478</p> <p>12.3.7 Range Measurements 479</p> <p>12.4 C-, Ku- and Ka-band FSS/BSS Antennas 479</p> <p>12.4.1 Typical Requirements and Solutions 479</p> <p>12.4.2 The Shaped-Reflector Technology 480</p> <p>12.4.3 Power Handling 481</p> <p>12.4.4 Antenna Structures and Reflectors 481</p> <p>12.4.5 Reflector Antenna Geometries 482</p> <p>12.4.6 Feed Chains 491</p> <p>12.5 Multibeam Broadband Satellite Communications Antennas 496</p> <p>12.5.1 Typical Requirements and Solutions 496</p> <p>12.5.2 SFB Array-Fed Reflector Antennas 497</p> <p>12.5.3 FAFR Antennas 500</p> <p>12.5.4 DRA Antennas 503</p> <p>12.5.5 RF Sensing and Tracking 503</p> <p>12.6 Antennas for Non-geostationary Constellations 504</p> <p>12.6.1 Typical Requirements and Solutions 504</p> <p>12.6.2 Global Beam Ground Links 505</p> <p>12.6.3 High-Gain Ground Links 505</p> <p>12.6.4 Intersatellite Links or Cross-links 506</p> <p>12.6.5 Feeder Links 507</p> <p>Acknowledgments 508</p> <p>References 508</p> <p><b>13 SAR Antennas 511<br /></b><i>Pasquale Capece and Andrea Torre</i></p> <p>13.1 Introduction to Spaceborne SAR Systems 511</p> <p>13.1.1 General Presentation of SAR Systems 511</p> <p>13.1.2 Azimuth Resolution in Conventional Radar and in SAR 512</p> <p>13.1.3 Antenna Requirements Versus Performance Parameters 514</p> <p>13.2 Challenges of Antenna Design for SAR 518</p> <p>13.2.1 Reflector Antennas 518</p> <p>13.2.2 Active Antennas and Subsystems 519</p> <p>13.3 A Review of the Development of Antennas for Spaceborne SAR 534</p> <p>13.3.1 TecSAR 534</p> <p>13.3.2 SAR- Lupe 535</p> <p>13.3.3 ASAR (EnviSat) 535</p> <p>13.3.4 Radarsat 1 535</p> <p>13.3.5 Radarsat 2 535</p> <p>13.3.6 Palsar (ALOS) 535</p> <p>13.3.7 TerraSAR-X 536</p> <p>13.3.8 COSMO (SkyMed) 536</p> <p>13.4 Case Studies of Antennas for Spaceborne SAR 539</p> <p>13.4.1 Instrument Design 539</p> <p>13.4.2 SAR Antenna 540</p> <p>13.5 Ongoing Developments in SAR Antennas 544</p> <p>13.5.1 Sentinel 1 544</p> <p>13.5.2 Saocom Mission 544</p> <p>13.5.3 ALOS 2 545</p> <p>13.5.4 COSMO Second Generation 545</p> <p>13.6 Acknowledgments 546</p> <p>References 546</p> <p><b>14 Antennas for Global Navigation Satellite System Receivers 548<br /></b><i>Chi-Chih Chen, Steven (Shichang) Gao, and Moazam Maqsood</i></p> <p>14.1 Introduction 548</p> <p>14.2 RF Requirements of GNSS Receiving Antenna 551</p> <p>14.2.1 General RF Requirements 551</p> <p>14.2.2 Advanced Requirements for Enhanced Position Accuracy and Multipath Signal Suppression 556</p> <p>14.3 Design Challenges and Solutions for GNSS Antennas 561</p> <p>14.3.1 Wide Frequency Coverage 562</p> <p>14.3.2 Antenna Delay Variation with Frequency and Angle 562</p> <p>14.3.3 Antenna Size Reduction 567</p> <p>14.3.4 Antenna Platform Scattering Effect 568</p> <p>14.4 Common and Novel GNSS Antennas 572</p> <p>14.4.1 Single-Element Antenna 572</p> <p>14.4.2 Multi-element Antenna Array 580</p> <p>14.5 Spaceborne GNSS Antennas 582</p> <p>14.5.1 Requirements for Antennas On Board Spaceborne GNSS Receivers 582</p> <p>14.5.2 A Review of Antennas Developed for Spaceborne GNSS Receivers 584</p> <p>14.6 Case Study: Dual-Band Microstrip Patch Antenna for Spacecraft Precise Orbit Determination Applications 586</p> <p>14.6.1 Antenna Development 586</p> <p>14.6.2 Results and Discussions 588</p> <p>14.7 Summary 591</p> <p>References 592</p> <p><b>15 Antennas for Small Satellites 596<br /></b><i>Steven (Shichang) Gao, Keith Clark, Jan Zackrisson, Kevin Maynard, Luigi Boccia, and Jiadong Xu</i></p> <p>15.1 Introduction to Small Satellites 596</p> <p>15.1.1 Small Satellites and Their Classification 596</p> <p>15.1.2 Microsatellites and Constellations of Small Satellites 597</p> <p>15.1.3 Cube Satellites 598</p> <p>15.1.4 Formation Flying of Multiple Small Satellites 599</p> <p>15.2 The Challenges of Designing Antennas for Small Satellites 600</p> <p>15.2.1 Choice of Operating Frequencies 600</p> <p>15.2.2 Small Ground Planes Compared with the Operational Wavelength 601</p> <p>15.2.3 Coupling between Antennas and Structural Elements 601</p> <p>15.2.4 Antenna Pattern 602</p> <p>15.2.5 Orbital Height 602</p> <p>15.2.6 Development Cost 602</p> <p>15.2.7 Production Costs 602</p> <p>15.2.8 Testing Costs 602</p> <p>15.2.9 Deployment Systems 603</p> <p>15.2.10 Volume 603</p> <p>15.2.11 Mass 603</p> <p>15.2.12 Shock and Vibration Loads 603</p> <p>15.2.13 Material Degradation 603</p> <p>15.2.14 Atomic Oxygen 603</p> <p>15.2.15 Material Outgassing 604</p> <p>15.2.16 Creep 604</p> <p>15.2.17 Material Charging 604</p> <p>15.2.18 The Interaction between Satellite Antennas and Structure 604</p> <p>15.3 Review of Antenna Development for Small Satellites 606</p> <p>15.3.1 Antennas for Telemetry, Tracking and Command (TT&C) 606</p> <p>15.3.2 Antennas for High-Rate Data Downlink 609</p> <p>15.3.3 Antennas for Global Navigation Satellite System (GNSS) Receivers and Reflectometry 615</p> <p>15.3.4 Antennas for Intersatellite Links 618</p> <p>15.3.5 Other Antennas 619</p> <p>15.4 Case Studies 621</p> <p>15.4.1 Case Study 1: Antenna Pointing Mechanism and Horn Antenna 621</p> <p>15.4.2 Case Study 2: X-band Downlink Helix Antenna 623</p> <p>15.5 Conclusions 627</p> <p>References 628</p> <p><b>16 Space Antennas for Radio Astronomy 629<br /></b><i>Paul F. Goldsmith</i></p> <p>16.1 Introduction 629</p> <p>16.2 Overview of Radio Astronomy and the Role of Space Antennas 629</p> <p>16.3 Space Antennas for Cosmic Microwave Background Studies 631</p> <p>16.3.1 The Microwave Background 631</p> <p>16.3.2 Soviet Space Observations of the CMB 632</p> <p>16.3.3 The Cosmic Background Explorer (COBE) Satellite 633</p> <p>16.3.4 The Wilkinson Microwave Anisotropy Probe (WMAP) 635</p> <p>16.3.5 The Planck Mission 637</p> <p>16.4 Space Radio Observatories for Submillimeter/Far-Infrared Astronomy 641</p> <p>16.4.1 Overview of Submillimeter/Far-Infrared Astronomy 641</p> <p>16.4.2 The Submillimeter Wave Astronomy Satellite 643</p> <p>16.4.3 The Odin Orbital Observatory 646</p> <p>16.4.4 The Herschel Space Observatory 648</p> <p>16.4.5 The Future: Millimetron, CALISTO, and Beyond 650</p> <p>16.5 Low-Frequency Radio Astronomy 652</p> <p>16.5.1 Overview of Low-Frequency Radio Astronomy 652</p> <p>16.5.2 Early Low-Frequency Radio Space Missions 653</p> <p>16.5.3 The Future 655</p> <p>16.6 Space VLBI 655</p> <p>16.6.1 Overview of Space VLBI 655</p> <p>16.6.2 HALCA 656</p> <p>16.6.3 RadioAstron 658</p> <p>16.7 Summary 658</p> <p>Acknowledgments 660</p> <p>References 660</p> <p><b>17 Antennas for Deep Space Applications 664<br /></b><i>Paula R. Brown, Richard E. Hodges, and Jacqueline C. Chen</i></p> <p>17.1 Introduction 664</p> <p>17.2 Telecommunications Antennas 665</p> <p>17.3 Case Study I – Mars Science Laboratory 666</p> <p>17.3.1 MSL Mission Description 666</p> <p>17.3.2 MSL X-band Antennas 668</p> <p>17.3.3 MSL UHF Antennas 676</p> <p>17.3.4 MSL Terminal Descent Sensor (Landing Radar) 680</p> <p>17.4 Case Study II – Juno 681</p> <p>17.4.1 Juno Mission Description 681</p> <p>17.4.2 Telecom Antennas 682</p> <p>17.4.3 Juno Microwave Radiometer Antennas 684</p> <p>Acknowledgments 692</p> <p>References 693</p> <p><b>18 Space Antenna Challenges for Future Missions, Key Techniques and Technologies 695<br /></b><i>Cyril Mangenot and William A. Imbriale</i></p> <p>18.1 Overview of Chapter Contents 695</p> <p>18.2 General Introduction 696</p> <p>18.3 General Evolution of Space Antenna Needs and Requirements 697</p> <p>18.4 Develop Large-Aperture Antennas 699</p> <p>18.4.1 Problem Area and Challenges 699</p> <p>18.4.2 Present and Expected Future Space Missions 700</p> <p>18.4.3 Promising Antenna Concepts and Technologies 702</p> <p>18.5 Increase Telecommunication Satellite Throughput 707</p> <p>18.5.1 Problem Area and Challenges 707</p> <p>18.5.2 Present and Expected Future Space Missions 707</p> <p>18.5.3 Promising Antenna Concepts and Technologies 708</p> <p>18.6 Enable Sharing the Same Aperture for Multiband and Multipurpose Antennas 709</p> <p>18.6.1 Problem Area and Challenges 709</p> <p>18.6.2 Present and Expected Future Space Missions 710</p> <p>18.6.3 Promising Antenna Concepts and Technologies 710</p> <p>18.7 Increase the Competitiveness of Well-Established Antenna Products 710</p> <p>18.7.1 Problem Area and Challenges 710</p> <p>18.7.2 Present and Expected Future Space Missions 711</p> <p>18.7.3 Promising Antenna Concepts and Technologies 712</p> <p>18.8 Enable Single-Beam In-Flight Coverage/Polarization Reconfiguration 713</p> <p>18.8.1 Problem Area and Challenges 713</p> <p>18.8.2 Present and Expected Future Space Missions 714</p> <p>18.8.3 Promising Antenna Concepts and Technologies 714</p> <p>18.9 Enable Active Antennas at Affordable Cost 715</p> <p>18.9.1 Problem Area and Challenges 715</p> <p>18.9.2 Present and Expected Future Space Missions 717</p> <p>18.9.3 Promising Antenna Concepts and Technologies 718</p> <p>18.10 Develop Innovative Antennas for Future Earth Observation and Science Instruments 724</p> <p>18.10.1 Problem Area and Challenges 724</p> <p>18.10.2 Present and Expected Future Space Missions 725</p> <p>18.10.3 Promising Antenna Concepts and Technologies 729</p> <p>18.11 Evolve Towards Mass Production of Satellite and User Terminal Antennas 732</p> <p>18.11.1 Problem Area and Challenges 732</p> <p>18.11.2 Present and Expected Future Space Missions 732</p> <p>18.11.3 Promising Antenna Concepts and Technologies 732</p> <p>18.12 Technology Push for Enabling New Missions 734</p> <p>18.12.1 Problem Area and Challenges 734</p> <p>18.12.2 Promising Antenna Concepts and Technologies 734</p> <p>18.13 Develop New Approaches for Satellite/Antenna Modelling and Testing 735</p> <p>18.13.1 Problem Area and Challenges 735</p> <p>18.13.2 Promising Antenna Concepts and Technologies 736</p> <p>18.14 Conclusions 737</p> <p>Acronyms 738</p> <p>Acknowledgements 740</p> <p>References 740</p> <p>Index 741</p>
<p>Editors <p><b>William A. Imbriale</b>,<i> Jet Propulsion Laboratory, California Institute of Technology, USA</i> <p><b>Steven (Shichang)<i> Gao</b>, Surrey Space Centre, UK</i> <p><b>Luigi Boccia</b>,<i> University of Calabria, Italy</i>
<p><b>Space Antenna HANDBOOK</b> <p><b>Written by leading experts in the field of antenna technology</b> <p>This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne Synthetic Aperture Radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications. <p>Key Features: <ul> <li> Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep- space applications</li> <li> Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification</li> <li> Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios</li> <li> Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas</li> </ul> <p><i>Space Antenna Handbook</i> serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering. It also aids engineers, technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.

Diese Produkte könnten Sie auch interessieren:

Foundations of Electromagnetic Compatibility
Foundations of Electromagnetic Compatibility
von: Bogdan Adamczyk
PDF ebook
117,99 €
Human Bond Communication
Human Bond Communication
von: Sudhir Dixit, Ramjee Prasad
EPUB ebook
105,99 €
Computer Vision in Vehicle Technology
Computer Vision in Vehicle Technology
von: Antonio M. López, Atsushi Imiya, Tomas Pajdla, Jose M. Álvarez
PDF ebook
81,99 €