Details

Low Electromagnetic Field Exposure Wireless Devices


Low Electromagnetic Field Exposure Wireless Devices

Fundamentals and Recent Advances
1. Aufl.

von: Masood Ur Rehman, Muhammad Ali Jamshed

100,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 05.12.2022
ISBN/EAN: 9781119909187
Sprache: englisch
Anzahl Seiten: 256

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>LOW ELECTROMAGNETIC FIELD EXPOSURE WIRELESS DEVICES</b></p> <p><b>Comprehensive resource covering methods of designing energy efficient and low EMF wireless device techniques</b></p> <p>Supported with real case studies and recent advancements and laying the foundation for future advancements in the field, <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i> describes both ways, i.e. hardware and software, in which the user-centric wireless communication devices can be designed to reduce the levels of EMF to limit the potential long-term effects of EMF on human health.</p> <p>The text covers state-of-the-art and advanced topics such as EMF exposure standards and rationale, EMF evaluation tools, radio resource allocation, energy conservation, energy harvesting, EMF-aware antenna designs, and MIMO, and highlights advancements in this exciting field to date. To aid reader comprehension, the text contains numerous tables, illustrations, and photographs.</p> <p>In <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i>, readers can expect to find information on:</p> <ul> <li>Fundamentals and key practices, and mechanisms and assessment methods, of exposure to electromagnetic fields</li> <li>The role of the smartphone on the assessment of exposure from 5G and antenna design considerations and techniques for low SAR mobile handsets</li> <li>Numerical exposure assessments of communication systems at higher frequencies and age-dependent exposure estimation using numerical methods</li> <li>Reinforcement learning and device-to-device communication in minimizing EMF exposure and emission-aware uplink resource allocation scheme for non-orthogonal multiple access systems</li> </ul> <p>For wireless user equipment designers and hardware engineers, teachers in wireless communications, and postgraduate students in antennas for communication systems, <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i> is a must-have resource, covering an important topic that is expected to only grow in significance as future technological developments are made.</p>
<p><b>Editor Biography </b><i>xii</i></p> <p><b>List of Contributors </b><i>xiii</i></p> <p><b>Preface </b><i>xv</i></p> <p><i> </i></p> <p><b>1 Electromagnetic Field Exposure: Fundamentals and Key</b></p> <p><b>Practices </b><i>1</i></p> <p><i>Muhammad Ali Jamshed, Fabien Héliot, Tim W.C. Brown, and</i></p> <p><i>Masood Ur Rehman</i></p> <p>1.1 Introduction <i>1</i></p> <p>1.2 EMF Metric and Evaluation Framework <i>3</i></p> <p>1.2.1 EMF Exposure Factors <i>4</i></p> <p>1.2.1.1 Transmit Antenna Regions <i>4</i></p> <p>1.2.1.2 Transmit Antenna Characteristics <i>5</i></p> <p>1.2.1.3 Duration of Exposure <i>6</i></p> <p>1.2.1.4 Electrical Properties of Biological Tissues <i>6</i></p> <p>1.2.2 EMF Exposure Metrics <i>6</i></p> <p>1.2.2.1 Specific Absorption Rate <i>7</i></p> <p>1.2.2.2 Power Density <i>8</i></p> <p>1.2.2.3 Exposure-Ratio <i>9</i></p> <p>1.2.2.4 Dose <i>10</i></p> <p>1.2.2.5 Composite/Generic Metric of EMF Exposure <i>10</i></p> <p>1.3 Application of Metric for Setting Guidelines/Limits and Reducing</p> <p>Exposure <i>10</i></p> <p>1.3.1 SAR Reduction <i>11</i></p> <p>1.3.2 PD Reduction <i>12</i></p> <p>1.3.3 Exposure-Ratio Reduction <i>12</i></p> <p>1.3.4 Dose Reduction <i>12</i></p> <p><i>Contents </i><b>vii</b></p> <p>1.3.5 Composite EMF Exposure Reduction <i>13</i></p> <p>1.4 Conclusion <i>13</i></p> <p>References <i>13</i></p> <p><i> </i></p> <p><b>2 Exposure to Electromagnetic Fields Emitted from Wireless</b></p> <p><b>Devices: Mechanisms and Assessment Methods </b><i>19</i></p> <p><i>Yasir Alfadhl</i></p> <p>2.1 Fundamentals of EMF Interactions with the Human Body <i>19</i></p> <p>2.1.1 Thermal Effect <i>21</i></p> <p>2.1.2 Non-thermal Effects <i>22</i></p> <p>2.2 Physical Models to Represent the Interaction of EMFs with Biological</p> <p>Tissue <i>24</i></p> <p>2.2.1 Interaction Mechanisms <i>24</i></p> <p>2.2.1.1 Effects of Bound Charges <i>25</i></p> <p>2.2.1.2 Effects of Dipole Orientations <i>25</i></p> <p>2.2.1.3 Drift of Conduction Charges <i>25</i></p> <p>2.2.2 Dielectric Properties of Biological Materials <i>26</i></p> <p>2.2.2.1 Relaxation Theory <i>26</i></p> <p>2.2.2.2 Age-Dependent Dielectric Properties <i>28</i></p> <p>2.2.3 The Interaction of EM Fields with Biological Materials <i>28</i></p> <p>2.2.3.1 Interactions on the Body Scale <i>29</i></p> <p>2.2.3.2 Interactions on the Tissue Scale <i>30</i></p> <p>2.2.3.3 Interaction on the Cellular and Sub-cellular Scales <i>30</i></p> <p>2.3 Dosimetry Concepts <i>30</i></p> <p>2.3.1 The Specific Absorption Rate (SAR) <i>31</i></p> <p>2.3.1.1 SAR Measurement Techniques over the Frequency Spectrum <i>31</i></p> <p>2.3.1.2 SAR Spatial Averaging <i>32</i></p> <p>2.3.1.3 Tissue Mass Averaging Procedures <i>32</i></p> <p>2.3.1.4 Localized and Whole-Body Averaged SAR <i>34</i></p> <p>2.3.2 The Specific Absorption (SA) <i>34</i></p> <p>2.4 Dosimetry Methodology <i>35</i></p> <p>2.4.1 Experimental Dosimetry <i>35</i></p> <p>2.4.2 Numerical Dosimetry <i>36</i></p> <p>2.4.2.1 Theoretical Analysis <i>36</i></p> <p>2.4.2.2 Numerical Modelling <i>37</i></p> <p>2.5 Numerical Dosimetry at the Radiofrequency and Microwave</p> <p>Regions <i>38</i></p> <p>2.5.1 Formulation of the Scattered-Field FDTD Algorithm <i>39</i></p> <p>2.5.2 Discretization of Anatomical Models in FDTD <i>40</i></p> <p>2.5.3 Comparisons of Numerical Results with Analytical Benchmarks <i>42</i></p> <p>References <i>46</i></p> <p><b>viii </b><i>Contents</i></p> <p> </p> <p><b>3 Numerical Exposure Assessments of Communication</b></p> <p><b>Systems at Higher Frequencies </b><i>49</i></p> <p><i>Muhammad Rafaqat Ali Qureshi, Yasir Alfadhl, and Xiaodong Chen</i></p> <p>3.1 Introduction <i>49</i></p> <p>3.2 Exposure Configuration <i>50</i></p> <p>3.3 PlaneWave Exposure Assessment of E-field Absorption Within the</p> <p>Skin Using SAR as a Function of Frequency <i>51</i></p> <p>3.3.1 Comparisons of SAR Levels on Dry-Skin andWet-Skin <i>52</i></p> <p>3.4 PlaneWave Exposure Assessment of E-field Absorption Within</p> <p>Multi-layer Model Using SAR as a Function of Frequency <i>58</i></p> <p>3.4.1 Comparisons of SAR Levels on Dry-Skin and Multi-layer Model <i>59</i></p> <p>3.5 PlaneWave Exposure Assessment of E-field Absorption Within the</p> <p>Eye Using SAR as a Function of Frequency <i>63</i></p> <p>3.5.1 Comparisons of SAR Levels on HEECM and Multi-layer Model <i>64</i></p> <p>3.6 Chapter Summary <i>68</i></p> <p>Appendix 3.A <i>69</i></p> <p>References <i>74</i></p> <p><i> </i></p> <p><b>4 Age Dependent Exposure Estimation Using Numerical</b></p> <p><b>Methods </b><i>77</i></p> <p><i>Muhammad Rafaqat Ali Qureshi, Yasir Alfadhl, Xiaodong Chen, and</i></p> <p><i>Masood Ur Rehman</i></p> <p>4.1 Introduction <i>77</i></p> <p>4.2 Numerical Human Models <i>78</i></p> <p>4.2.1 Adult Voxel Models <i>78</i></p> <p>4.2.2 Child Voxel Model <i>79</i></p> <p>4.3 Age-Dependent Tissue Properties <i>81</i></p> <p>4.3.1 Measured Tissue Properties <i>82</i></p> <p>4.3.2 Age-dependent Human Dielectric Properties Extraction from</p> <p>Measured Data <i>83</i></p> <p>4.3.3 Novel Calculation Methods of Age-dependent Dielectric</p> <p>Properties <i>83</i></p> <p>4.3.3.1 Single Frequency Age-Dependent Method <i>84</i></p> <p>4.3.3.2 Dispersive Age-Dependent Method <i>86</i></p> <p>4.3.3.3 Implementation of the Cole–Cole Model on Age-Dependent</p> <p>Properties <i>90</i></p> <p>4.3.3.4 Accuracy Among the Age-dependent Methods <i>91</i></p> <p>4.4 Numerical Validation <i>95</i></p> <p>4.4.1 Comparison with an Analytical Benchmark <i>95</i></p> <p>4.5 Chapter Summary <i>97</i></p> <p>Appendix 4.A <i>97</i></p> <p>References <i>111</i></p> <p><i>Contents </i><b>ix</b></p> <p><b> </b></p> <p><b>5 Antenna Design Considerations for Low SAR Mobile</b></p> <p><b>Terminals </b><i>115</i></p> <p><i>Muhammad Ali Jamshed, Tim W.C. Brown, and Fabien Héliot</i></p> <p>5.1 Introduction <i>115</i></p> <p>5.2 SAR Reduction and Dual Coupling of Antenna <i>117</i></p> <p>5.3 Coupling Manipulation Simulation Campaign <i>118</i></p> <p>5.4 SAR Analysis and Surface Current <i>123</i></p> <p>5.5 Resilience to Different Head Use Cases <i>127</i></p> <p>5.6 Analysis of MIMO Performance in Data Mode <i>130</i></p> <p>5.7 Conclusion <i>132</i></p> <p>References <i>132<br /><br /></i></p> <p><b>6 MIMO Antennas with Coupling Manipulation for Low SAR</b></p> <p><b>Devices </b><i>135</i></p> <p><i>Muhammad Ali Jamshed, Tim W.C. Brown, and Fabien Héliot</i></p> <p>6.1 Introduction <i>135</i></p> <p>6.2 Working Principle and Antenna Geometry <i>136</i></p> <p>6.2.1 Antenna Dimensions <i>136</i></p> <p>6.2.2 Surface Current Distribution <i>138</i></p> <p>6.2.3 Frequency Region Analysis <i>139</i></p> <p>6.3 Antenna Measurements <i>141</i></p> <p>6.3.1 MIMO Performance <i>141</i></p> <p>6.4 Efficiency and SAR Analysis <i>143</i></p> <p>6.5 Conclusion <i>148</i></p> <p>References <i>148</i></p> <p><i> </i></p> <p><b>7 Reinforcement Learning and Device-to-Device</b></p> <p><b>Communication for Low EMF Exposure </b><i>151</i></p> <p><i>Ali Nauman, Muhammad Ali Jamshed, and Sung Won Kim</i></p> <p>7.1 Introduction <i>151</i></p> <p>7.1.1 Contribution of Chapter <i>153</i></p> <p>7.1.2 Chapter Organization <i>154</i></p> <p>7.2 Background <i>154</i></p> <p>7.2.1 Narrowband Internet of Things (NB-IoT) <i>155</i></p> <p>7.2.1.1 Frame Structure <i>155</i></p> <p>7.2.2 Device-to-Device (D2D) Communication <i>157</i></p> <p>7.2.3 Machine Learning <i>160</i></p> <p>7.2.3.1 Reinforcement Learning <i>160</i></p> <p>7.2.3.2 Q-Learning <i>162</i></p> <p>7.3 RelatedWorks <i>163</i></p> <p>7.4 System Model, Problem Formulation, and Proposed RL-ID2D <i>164</i></p> <p><b>x </b><i>Contents</i></p> <p>7.4.1 Network Model <i>164</i></p> <p>7.4.1.1 Channel Model <i>164</i></p> <p>7.4.1.2 Mobility Model <i>164</i></p> <p>7.4.1.3 Signal-to-Interference-Noise-Ratio (SINR) <i>166</i></p> <p>7.4.2 Definitions <i>166</i></p> <p>7.4.2.1 Packet Delivery Ratio <i>166</i></p> <p>7.4.2.2 Potential Relay Set <i>167</i></p> <p>7.4.2.3 End-to-End Delivery Ratio <i>167</i></p> <p>7.4.3 Problem Formulation <i>167</i></p> <p>7.4.4 Reinforcement Learning Enabled Relay Selection <i>168</i></p> <p>7.4.4.1 Q-Learning Framework <i>168</i></p> <p>7.4.5 Proposed Intelligent D2D Mechanism <i>171</i></p> <p>7.5 Performance Evaluation <i>174</i></p> <p>7.5.1 Simulation Deployment Scenario and Analysis <i>174</i></p> <p>7.5.1.1 Analysis of Q-Learning Behavior in NB-IoT UE <i>174</i></p> <p>7.5.1.2 Analysis of EDR Under Various Parameters <i>178</i></p> <p>7.5.1.3 Analysis of E2E Delay Under Various Parameters <i>179</i></p> <p>7.5.1.4 Comparative Analysis of RL-ID2D with Opportunistic and</p> <p>Deterministic Model <i>180</i></p> <p>7.6 Conclusion <i>183</i></p> <p>References <i>183</i></p> <p><i> </i></p> <p><b>8 Unsupervised Learning Based Resource Allocation for Low</b></p> <p><b>EMF NOMA Systems </b><i>187</i></p> <p><i>Muhammad Ali Jamshed, Fabien Héliot, and Tim W.C. Brown</i></p> <p>8.1 Introduction <i>187</i></p> <p>8.1.1 ExistingWork <i>188</i></p> <p>8.1.2 Motivation and Contributions <i>189</i></p> <p>8.1.3 Structure of the Chapter <i>190</i></p> <p>8.2 EMF-Aware PD-NOMA Framework <i>192</i></p> <p>8.2.1 System Model <i>192</i></p> <p>8.2.2 Problem Formulation <i>195</i></p> <p>8.3 Machine Learning Based User Grouping/Subcarrier Allocation <i>196</i></p> <p>8.4 Power Assignment <i>198</i></p> <p>8.5 Numerical Analysis <i>201</i></p> <p>8.5.1 Simulation Results <i>202</i></p> <p>8.5.2 Scheme Validity for Real Applications <i>206</i></p> <p>8.6 Conclusion <i>208</i></p> <p>References <i>208</i></p> <p><i>Contents </i><b>xi</b></p> <p><b> </b></p> <p><b>9 Emission-Aware Resource Optimization for</b></p> <p><b>Backscatter-Enabled NOMA Networks </b><i>213</i></p> <p><i>Muhammad Ali Jamshed, Wali Ullah Khan, Haris Pervaiz,</i></p> <p><i>Muhammad Ali Imran, and Masood Ur Rehman</i></p> <p>9.1 Introduction <i>213</i></p> <p>9.1.1 Motivation and Contributions <i>214</i></p> <p>9.2 System Model <i>215</i></p> <p>9.2.1 Problem Formulation <i>217</i></p> <p>9.3 Proposed Solution <i>218</i></p> <p>9.3.1 Sub-carrier Allocation <i>218</i></p> <p>9.3.2 Power Allocation <i>218</i></p> <p>9.4 Performance Evaluation <i>221</i></p> <p>9.5 Conclusion <i>223</i></p> <p>References <i>223</i></p> <p><i> </i></p> <p><b>10 Road Ahead for Low EMF User Proximity Devices </b><i>225</i></p> <p><i>Muhammad Ali Jamshed, Fabien Héliot, Tim W.C. Brown, and</i></p> <p><i>Masood Ur Rehman</i></p> <p>10.1 Introduction <i>225</i></p> <p>10.2 Perception and Physiological Impact of EMF <i>226</i></p> <p>10.2.1 Public’s Perception of Exposure and Risk Assessment <i>226</i></p> <p>10.2.2 Physiological Impact <i>227</i></p> <p>10.2.2.1 Age Range and Exposure <i>227</i></p> <p>10.2.2.2 mmWave and Exposure <i>227</i></p> <p>10.2.2.3 Brain Tumour and Exposure <i>228</i></p> <p>10.3 EMF Exposure Evaluation Metric and Regulations: A Future</p> <p>Perspective <i>229</i></p> <p>10.3.1 Expected Exposure Contribution of Future Wireless Communication</p> <p>Technologies <i>229</i></p> <p>10.3.1.1 Exposure and mmWave <i>229</i></p> <p>10.3.1.2 Exposure and Massive MIMO <i>229</i></p> <p>10.3.1.3 Exposure and Densification <i>230</i></p> <p>10.3.2 Open Issues and Future Research Tracks <i>231</i></p> <p>10.3.2.1 New EMF Limits and Guidelines <i>231</i></p> <p>10.3.2.2 EMF Mitigation Techniques and New Metrics <i>231</i></p> <p>10.3.2.3 Other Open Issues <i>232</i></p> <p>10.4 Conclusion <i>232</i></p> <p>References <i>233</i></p> <p><b>Index </b><i>237</i></p>
<p><b>Masood Ur Rehman </b>is an Associate Professor in Electronic and Nanoscale Engineering at the University of Glasgow, UK. He is a Fellow of the Higher Education Academy UK and Senior Member of the IEEE and Associate Editor for IEEE Sensors Journal, IEEE Access, Microwave & Optical Technology Letters, and IET Electronics Letters. <p><b>Muhammad Ali Jamshed </b>is a Research Assistant at the University of Glasgow, UK. Muhammad earned his PhD from the University of Surrey, Guildford, UK, in 2021. He is a Senior Member of the IEEE and Associate Editor of IET Network.
<p><b>Comprehensive resource covering methods of designing energy efficient and low EMF wireless device techniques</b> <p>Supported with real case studies and recent advancements and laying the foundation for future advancements in the field, <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i> describes both ways, i.e. hardware and software, in which the user-centric wireless communication devices can be designed to reduce the levels of EMF to limit the potential long-term effects of EMF on human health. <p>The text covers state-of-the-art and advanced topics such as EMF exposure standards and rationale, EMF evaluation tools, radio resource allocation, energy conservation, energy harvesting, EMF-aware antenna designs, and MIMO, and highlights advancements in this exciting field to date. To aid reader comprehension, the text contains numerous tables, illustrations, and photographs. <p>In <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i>, readers can expect to find information on: <ul><li> Fundamentals and key practices, and mechanisms and assessment methods, of exposure to electromagnetic fields </li> <li> The role of the smartphone on the assessment of exposure from 5G and antenna design considerations and techniques for low SAR mobile handsets</li> <li> Numerical exposure assessments of communication systems at higher frequencies and age-dependent exposure estimation using numerical methods</li> <li> Reinforcement learning and device-to-device communication in minimizing EMF exposure and emission-aware uplink resource allocation scheme for non-orthogonal multiple access systems</li></ul> <p>For wireless user equipment designers and hardware engineers, teachers in wireless communications, and postgraduate students in antennas for communication systems, <i>Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances</i> is a must-have resource, covering an important topic that is expected to only grow in significance as future technological developments are made.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €