Details

Biodegradable Materials and Their Applications


Biodegradable Materials and Their Applications


1. Aufl.

von: Inamuddin, Tariq Altalhi

211,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.09.2022
ISBN/EAN: 9781119905271
Sprache: englisch
Anzahl Seiten: 880

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>BIODEGRADABLE MATERIALS AND THEIR APPLICATIONS</b> <p><b>Biodegradable materials have ascended in importance in recent years and this book comprehensively discusses all facets and applications in 29 chapters making it a one-stop shop.</b> <p>Biodegradable materials have today become more compulsory because of increased environmental concerns and the growing demand for polymeric and plastic materials. Despite our sincere efforts to recycle used plastic materials, they ultimately tend to enter the oceans, which has led to grave pollution. It is necessary, therefore, to ensure that these wastes do not produce any hazards in the future. This has made an urgency to replace the synthetic material with green material in almost all possible areas of application. <p><i>Biodegradable Materials and Their Applications</i> covers a wide range of subjects and approaches, starting with an introduction to biodegradable material applications. Chapters focus on the development of various types of biodegradable materials with their applications in electronics, medicine, packaging, thermoelectric generations, protective equipment, films/coatings, 3D printing, disposable bioplastics, agriculture, and other commercial sectors. In biomedical applications, their use in the advancement of therapeutic devices like temporary implants, tissue engineering, and drug delivery vehicles are summarized. <p><b>Audience</b><br> Materials scientists, environmental and sustainability engineers, and any other researchers and graduate students associated with biodegradable materials.
<p>Preface xxv</p> <p><b>1 Biodegradable Materials in Electronics 1<br /></b><i>S. Vishali, M. Susila and S. Kiruthika</i></p> <p>1.1 Introduction 1</p> <p>1.2 Biodegradable Materials in Electronics 3</p> <p>1.2.1 Advantages of Biodegradable Materials 4</p> <p>1.3 Silk 5</p> <p>1.4 Polymers 7</p> <p>1.4.1 Natural Polymers 7</p> <p>1.4.2 Synthetic Polymers 8</p> <p>1.5 Cellulose 10</p> <p>1.6 Paper 11</p> <p>1.7 Others 13</p> <p>1.8 Biodegradable Electronic Components 16</p> <p>1.9 Semiconductors 17</p> <p>1.10 Substrate 18</p> <p>1.11 Biodegradable Dielectrics 18</p> <p>1.12 Insulators and Conductors 19</p> <p>1.13 Conclusion 19</p> <p>Declaration About Copyright 20</p> <p>References 20</p> <p><b>2 Biodegradable Thermoelectric Materials 29<br /></b><i>Niladri Sarkar, Gyanaranjan Sahoo, Anupam Sahoo and Bigyan Ranjan Jali</i></p> <p>2.1 Introduction 29</p> <p>2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials 32</p> <p>2.3 Working Principle of Thermoelectric Materials 35</p> <p>2.4 Biopolymer Composite for Thermoelectric Application 36</p> <p>2.4.1 Polylactic Acid–Based Thermoelectric Materials 36</p> <p>2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials 37</p> <p>2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials 39</p> <p>2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials 41</p> <p>2.4.5 Starch-Based Biocomposites as Thermoelectric Materials 43</p> <p>2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials 45</p> <p>2.4.7 Pullulan-Based Composites as Thermoelectric Materials 46</p> <p>2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials 46</p> <p>2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials 48</p> <p>2.6 Conclusions 48</p> <p>References 49</p> <p><b>3 Biodegradable Electronics: A Newly Emerging Environmental Technology 55<br /></b><i>Malini S., Kalyan Raj and K.S. Anantharaju</i></p> <p>3.1 Introduction 56</p> <p>3.2 Properties of Biodegradable Materials in Electronics 57</p> <p>3.3 Transformational Applications of Biodegradable Materials in Electronics 58</p> <p>3.3.1 Cellulose 59</p> <p>3.3.2 Silk 60</p> <p>3.3.3 Stretchable Hydrogel 62</p> <p>3.3.4 Conjugated Polymers and Metals 64</p> <p>3.3.5 Graphene 65</p> <p>3.3.6 Composites 67</p> <p>3.4 Biodegradation Mechanisms 68</p> <p>3.5 Conclusions 70</p> <p>Acknowledgements 70</p> <p>References 71</p> <p><b>4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials 75<br /></b><i>Juliana Santos Delava, Keiti Lopes Maestre, Carina Contini Triques, Fabiano Bisinella Scheufele, Veronice Slusarski-Santana and Mônica Lady Fiorese</i></p> <p>4.1 Introduction 76</p> <p>4.2 Fishery Chain Industry 78</p> <p>4.2.1 Evolution of the Fishery Chain Industry 78</p> <p>4.2.2 Applications of Fish Waste Materials 80</p> <p>4.3 Films or Coatings Based on Proteins From Fish Waste Materials 85</p> <p>4.3.1 Films or Coatings for Food Packaging 85</p> <p>4.3.2 Development of Protein-Based Films or Coatings 89</p> <p>4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins 89</p> <p>4.3.2.2 Development of Biodegradable and Bioactive Films or Coating 94</p> <p>4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers 97</p> <p>4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications 101</p> <p>4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers 119</p> <p>4.4 Conclusion 126</p> <p>References 127</p> <p><b>5 Biodegradable Superabsorbent Materials 141<br /></b><i>Marcia Parente Melo da Costa and Ivana Lourenço de Mello Ferreira</i></p> <p>5.1 Introduction 141</p> <p>5.2 Biohydrogels: Superabsorbent Materials 142</p> <p>5.3 Polysaccharides: Biopolymers from Renewable Sources 143</p> <p>5.3.1 Carboxymethylcellulose (CMC) 145</p> <p>5.3.2 Chitosan (CH) 148</p> <p>5.3.3 Alginate 149</p> <p>5.3.4 Carrageenans 150</p> <p>5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides 152</p> <p>5.5 Conclusion and Future Perspectives 159</p> <p>Acknowledgments 160</p> <p>References 160</p> <p><b>6 Bioplastics in Personal Protective Equipment 173<br /></b><i>Tapia-Fuentes Jocelyn, Cruz-Salas Arely Areanely, Alvarez-Zeferino Juan Carlos, Martínez-Salvador Carolina, Pérez-Aragón Beatriz and Vázquez-Morillas Alethia</i></p> <p>6.1 Introduction 174</p> <p>6.2 Conventional Personal Protective Equipment 175</p> <p>6.2.1 Face Masks 176</p> <p>6.2.1.1 Surgical Mask 176</p> <p>6.2.1.2 N95 Face Masks 177</p> <p>6.2.1.3 KN95 Face Masks 178</p> <p>6.2.1.4 Cloth Face Masks 179</p> <p>6.2.1.5 Two-Layered Face Mask (or Hygienic) 180</p> <p>6.2.2 Gloves 181</p> <p>6.2.2.1 Latex 181</p> <p>6.2.2.2 Nitrile 182</p> <p>6.2.2.3 Vinyl 183</p> <p>6.2.2.4 Foil (Polyethylene) 184</p> <p>6.3 Biodegradable and Biobased PPE 185</p> <p>6.3.1 Face Masks 185</p> <p>6.3.1.1 Polylactic Acid 185</p> <p>6.3.1.2 Polybutylene Succinate 187</p> <p>6.3.1.3 Polyvinyl Alcohol 188</p> <p>6.3.2 Gloves 190</p> <p>6.3.2.1 Butadiene Rubber (BR) 190</p> <p>6.3.2.2 Polyisoprene Rubber 191</p> <p>6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics 192</p> <p>6.4.1 Source and Raw Materials 192</p> <p>6.4.2 End of Life Scenarios 193</p> <p>6.4.3 Remarks on Biodegradability 194</p> <p>6.5 International Standards Applied to Biodegradable Plastics and Bioplastics 194</p> <p>6.6 Conclusions 199</p> <p>References 200</p> <p><b>7 Biodegradable Protective Films 211<br /></b><i>Asra Tariq and Naveed Ahmad</i></p> <p>7.1 Introduction 212</p> <p>7.1.1 Types of Protective Films 213</p> <p>7.2 Biodegradable Protective Films 214</p> <p>7.2.1 Processing of Biodegradable Protective Films 221</p> <p>7.2.2 Limitations Faced by Biodegradable Protective Films 222</p> <p>References 223</p> <p><b>8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection 229<br /></b><i>Beenish Saba</i></p> <p>8.1 Introduction 229</p> <p>8.2 Bioplastics 230</p> <p>8.3 Biodegradation of Bioplastics 232</p> <p>8.4 Production of Bioplastics from Plant Sources 234</p> <p>8.5 Production of Bioplastics from Microbial Resources 234</p> <p>8.6 What Are PPEs Made Off? 236</p> <p>8.6.1 Face Masks 236</p> <p>8.6.2 Face and Eye Shields 236</p> <p>8.6.3 Gloves 237</p> <p>8.7 Biodegradable Materials for PPE 237</p> <p>8.8 Conclusion and Future Perspectives 238</p> <p>References 238</p> <p><b>9 Biodegradable Materials in Dentistry 243<br /></b><i>Sharmila Jasmine and Rajapandiyan Krishnamoorthy</i></p> <p>9.1 Introduction 243</p> <p>9.2 Biodegradable Materials 246</p> <p>9.2.1 Synthetic Polymers 246</p> <p>9.2.2 Natural Polymers 246</p> <p>9.2.3 Biodegradable Ceramics 247</p> <p>9.2.4 Bioactive Glass 247</p> <p>9.2.5 Biodegradable Metals 247</p> <p>9.3 Biodegradable Materials in Suturing 248</p> <p>9.4 Biodegradable Materials in Imaging and Diagnostics 248</p> <p>9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery 249</p> <p>9.6 Biodegradable Materials in Resorbable Plate and Screw System 250</p> <p>9.7 Biodegradable Materials in Alveolar Ridge Preservation 250</p> <p>9.8 Biodegradable Materials of Nanotopography in Cancer Therapy 251</p> <p>9.9 Biodegradable Materials in Endodontics 252</p> <p>9.10 Biodegradable Materials in Orthodontics 253</p> <p>9.11 Biodegradable Materials in Periodontics 253</p> <p>9.12 Conclusion 254</p> <p>References 254</p> <p><b>10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications 261<br /></b><i>Pallavi K.C., Arun M. Isloor and Lakshmi Nidhi Rao</i></p> <p>10.1 Introduction 262</p> <p>10.2 Polysaccharides 264</p> <p>10.2.1 Chitosan 264</p> <p>10.2.2 Cellulose 275</p> <p>10.2.3 Starch 277</p> <p>10.2.4 Alginate 279</p> <p>10.2.5 Hyaluronic Acid (HA) 281</p> <p>10.3 Proteins 283</p> <p>10.3.1 Collagen 283</p> <p>10.3.2 Fibrin 285</p> <p>10.3.3 Elastin 286</p> <p>10.3.4 Gelatins 287</p> <p>10.3.5 Silk 288</p> <p>10.4 Biopolyesters 288</p> <p>10.4.1 Poly (Glycolic Acid) (PGA) 288</p> <p>10.4.2 Poly (Lactic Acid) PLA 288</p> <p>10.4.3 Poly (Lactide-co-Glycolide) (PLGA) 289</p> <p>10.4.4 Polycaprolactone 290</p> <p>10.4.5 Poly (Propylene Fumarate) 291</p> <p>10.5 Conclusion 291</p> <p>References 292</p> <p><b>11 Biodegradable Biomaterials in Bone Tissue Engineering 299<br /></b><i>Mehdi Ebrahimi</i></p> <p>11.1 Introduction 299</p> <p>11.2 Essential Characteristics and Considerations in Bone Scaffold Design 302</p> <p>11.3 Fabrication Technologies 303</p> <p>11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication 309</p> <p>11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation 319</p> <p>11.6 Biodegradation of Calcium Phosphate Biomaterials 320</p> <p>11.7 Biodegradation of Polymeric Biomaterials 324</p> <p>11.8 Importance of Bone Remodeling 325</p> <p>11.9 Conclusion 326</p> <p>References 327</p> <p><b>12 Biodegradable Elastomer 335<br /></b><i>Preety Ahuja and Sanjeev Kumar Ujjain</i></p> <p>12.1 Introduction 335</p> <p>12.2 Biodegradation Testing 337</p> <p>12.3 Biodegradable Elastomers: An Overview 338</p> <p>12.3.1 Preparation Strategies 340</p> <p>12.3.2 Biodegradation and Erosion 342</p> <p>12.4 Application of Biodegradable Elastomers 342</p> <p>12.4.1 Drug Delivery 343</p> <p>12.4.2 Tissue Engineering 345</p> <p>12.4.2.1 Neural and Retinal Applications 346</p> <p>12.4.2.2 Cardiovascular Applications 346</p> <p>12.4.2.3 Orthopedic Applications 347</p> <p>12.5 Conclusions and Perspectives 347</p> <p>References 348</p> <p><b>13 Biodegradable Implant Materials 357<br /></b><i>Levent Oncel and Mehmet Bugdayci</i></p> <p>13.1 Introduction 357</p> <p>13.2 Medical Implants 358</p> <p>13.3 Biomaterials 358</p> <p>13.3.1 Biomaterial Types 359</p> <p>13.3.1.1 Polymer Biomaterials 359</p> <p>13.3.1.2 Metallic Biomaterials 360</p> <p>13.3.1.3 Ceramic Biomaterials 363</p> <p>13.4 Biodegradable Implant Materials 364</p> <p>13.4.1 Biodegradable Metals 364</p> <p>13.4.1.1 Magnesium-Based Biodegradable Materials 365</p> <p>13.4.1.2 Iron-Based Biodegradable Materials 367</p> <p>13.4.2 Biodegradable Polymers 368</p> <p>13.4.2.1 Polyesters 369</p> <p>13.4.2.2 Polycarbonates 370</p> <p>13.4.2.3 Polyanhydrides 370</p> <p>13.4.2.4 Poly(ortho esters) 370</p> <p>13.4.2.5 Poly(propylene fumarate) 371</p> <p>13.4.2.6 Poly(phosphazenes) 371</p> <p>13.4.2.7 Polyphosphoesters 372</p> <p>13.4.2.8 Polyurethanes 372</p> <p>13.5 Conclusion 372</p> <p>References 373</p> <p><b>14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials 377<br /></b><i>Mehdi Ebrahimi and Waruna L. Dissanayaka</i></p> <p>14.1 Introduction 378</p> <p>14.2 Biodegradable Materials in Dental Pulp Regeneration 379</p> <p>14.2.1 Collagen-Based Gels 380</p> <p>14.2.2 Platelet-Rich Plasma 382</p> <p>14.2.3 Plasma-Rich Fibrin 382</p> <p>14.2.4 Gelatin 383</p> <p>14.2.5 Fibrin 384</p> <p>14.2.6 Alginate 386</p> <p>14.2.7 Chitosan 386</p> <p>14.2.8 Amino Acid Polymers 388</p> <p>14.2.9 Polymers of Lactic Acid 389</p> <p>14.2.10 Composite Polymer Scaffolds 390</p> <p>14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium 392</p> <p>14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering 396</p> <p>14.4.1 Stem Cells Applications in Periodontal Regeneration 396</p> <p>14.4.2 Bioactive Molecules for Periodontal Regeneration 398</p> <p>14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration 400</p> <p>14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials 401</p> <p>14.5.1 PDL Regeneration 401</p> <p>14.5.2 Cementum and Alveolar Bone Regeneration 402</p> <p>14.5.3 Integrated Regeneration of Periodontal Complex Structures 402</p> <p>14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials 404</p> <p>14.6.1 Laser Application in Periodontium Regeneration 404</p> <p>14.6.2 Gene Therapy in Periodontal Regeneration 405</p> <p>14.7 Conclusion and Future Remarks 408</p> <p>References 409</p> <p><b>15 A Review on Health Care Applications of Biopolymers 429<br /></b><i>Vijesh A. M. and Arun M. Isloor</i></p> <p>15.1 Introduction 430</p> <p>15.2 Biodegradable Polymers 431</p> <p>15.3 Metals and Alloys for Biomedical Applications 437</p> <p>15.4 Ceramics 441</p> <p>15.5 Biomaterials Used in Medical 3D Printing 445</p> <p>15.6 Conclusion 446</p> <p>References 446</p> <p><b>16 Biodegradable Materials for Bone Defect Repair 457<br /></b><i>Sharmila Jasmine and Rajapandiyan Krishnamoorthy</i></p> <p>16.1 Introduction 457</p> <p>16.2 Natural Materials in Bone Tissue Engineering 460</p> <p>16.2.1 Collagen 460</p> <p>16.2.2 Chitoson 460</p> <p>16.2.3 Fibrin 460</p> <p>16.2.4 Silk 461</p> <p>16.3 Other Materials 461</p> <p>16.4 Biodegradable Synthetic Polymers on Bone Tissue Engineering 461</p> <p>16.4.1 Poly (ε-caprolactone) 462</p> <p>16.4.2 Polyglycolic Acid 462</p> <p>16.4.3 Polylactic Acid 462</p> <p>16.4.4 Poly d,l-Lactic-Co-Glycolic Acid 462</p> <p>16.4.5 Poly (3-Hydroxybutyrate) 463</p> <p>16.4.6 Poly (para-dioxanone) 463</p> <p>16.4.7 Hyaluronan-Based Biodegradable Polymer 463</p> <p>16.5 Biodegradable Ceramics 463</p> <p>16.6 Conclusion 465</p> <p>References 465</p> <p><b>17 Biosurfactant: A Biodegradable Antimicrobial Substance 471<br /></b><i>Maria da Gloria C. Silva, Anderson O. de Medeiros and Leonie A. Sarubbo</i></p> <p>17.1 Introduction 472</p> <p>17.2 Biosurfactants 474</p> <p>17.2.1 Biodegrability of Biosurfactants 476</p> <p>17.3 Biodegradation Method Tests for Surfactants Molecules 478</p> <p>17.3.1 OECD Biodegradability Tests 478</p> <p>17.3.2 ASTM Surfactants’ Biodegradability Test 479</p> <p>17.4 Antimicrobial Activity of Biosurfactants 479</p> <p>17.5 Progress in Industrial Production of Sustainable Surfactants 480</p> <p>17.6 Conclusion and Future Perspectives 480</p> <p>References 481</p> <p><b>18 Disposable Bioplastics 487<br /></b><i>Tuba Saleem, Ayesha Mahmood, Muhammad Zubair, Ijaz Rasul, Aansa Naseem and Habibullah Nadeem</i></p> <p>18.1 Introduction 488</p> <p>18.2 Classes of Disposable Bioplastics 489</p> <p>18.2.1 Structure and Characteristics of Most Common Degradable PHAs 489</p> <p>18.2.2 Properties of PHAs 489</p> <p>18.2.2.1 Thermal Properties 489</p> <p>18.2.2.2 Mechanical Properties 490</p> <p>18.3 Pros and Cons 491</p> <p>18.4 Substrates for the Production of Bioplastics 491</p> <p>18.4.1 Agro-Waste as Substrate for PHA Synthesis 491</p> <p>18.4.2 Cassava Peels as Substrate for PHAs Synthesis 492</p> <p>18.4.3 Dairy Processing Waste as Substrate for PHA Synthesis 492</p> <p>18.4.4 Sugar Industry Waste (molasses) as Substrate for PHA Synthesis 493</p> <p>18.4.5 Waste Plant Oil as Substrate for PHA Synthesis 494</p> <p>18.4.6 Coffee Industry Waste Carbon Substrate for PHAs Synthesis 494</p> <p>18.4.7 Paper Mill Waste as Substrate for PHAs Synthesis 496</p> <p>18.4.8 Kitchen Waste as Substrate for PHAs Synthesis 496</p> <p>18.5 Microbial Sources of Bioplastic Production 497</p> <p>18.6 Upstream Processing 498</p> <p>18.6.1 Fermentation Strategies for PHA Production 498</p> <p>18.7 Metabolic Pathways 499</p> <p>18.7.1 Enzymes Involved in the Synthesis of PHAs 499</p> <p>18.8 Microbial Cell Factories for PHAs Production 501</p> <p>18.8.1 Pure Culture for PHA Synthesis 501</p> <p>18.8.2 Mixed Cultures for PHA Synthesis 502</p> <p>18.9 Synthesis 502</p> <p>18.9.1 Blending Methods of PHB and PHBV Lignocellulosic Biocomposites 503</p> <p>18.9.1.1 Solvent Casting 503</p> <p>18.9.1.2 Extrusion Method 503</p> <p>18.10 Factors Affecting PHA Production 504</p> <p>18.10.1 Effect of pH 504</p> <p>18.10.2 Composition of Feedstock 505</p> <p>18.10.3 Inoculum Size and Fermentation Mode 505</p> <p>18.11 Downstream Processing of Disposable Biopolymers 505</p> <p>18.12 PHA Extraction and Purification Methods 506</p> <p>18.13 Applications of Bioplastics/Disposable Bioplastics 506</p> <p>18.13.1 Denitrification Applications in Wastewater Treatment 508</p> <p>18.13.2 PHAs in Bone Scaffolds 509</p> <p>18.14 Characterization of PHA 510</p> <p>18.15 Biodegradation 510</p> <p>18.15.1 Biodegradation of PHAs 510</p> <p>18.16 Plastics Versus Bioplastics 511</p> <p>18.17 Challenges and Prospects for Production of Bioplastics 512</p> <p>References 512</p> <p><b>19 Plastic Biodegrading Microbes in the Environment and Their Applications 519<br /></b><i>Pooja Singh and Adeline Su Yien Ting</i></p> <p>Abbreviations 520</p> <p>19.1 Introduction 520</p> <p>19.2 Occurrence and Diversity of Plastic-Degrading Microbes in Natural Environments 522</p> <p>19.3 Application of Plastic-Degrading Microbes 533</p> <p>19.3.1 Role of Bacteria in Plastic Degradation 534</p> <p>19.3.1.1 Actinobacteria 534</p> <p>19.3.1.2 Bacteroidetes 535</p> <p>19.3.1.3 Firmicutes 535</p> <p>19.3.1.4 Proteobacteria 537</p> <p>19.3.1.5 Cyanobacteria 538</p> <p>19.3.2 Role of Fungi in Plastic Degradation 539</p> <p>19.3.2.1 Ascomycota 539</p> <p>19.3.2.2 Basidiomycota 541</p> <p>19.3.2.3 Mucoromycota 541</p> <p>19.4 Factors Influencing Plastic Degradation by Microbes 542</p> <p>19.4.1 Microbial Factor 542</p> <p>19.4.2 Polymer Characteristics 543</p> <p>19.4.3 Environmental Condition 544</p> <p>19.5 Biotechnological Advances in Microbial-Mediated Plastic Degradation 545</p> <p>19.5.1 Biosourcing for Plastic Degraders from Various Environments 546</p> <p>19.5.2 Multiomics Approach 547</p> <p>19.5.3 Analytical Tools to Optimize Plastic Degradation 548</p> <p>19.6 Conclusion 550</p> <p>Acknowledgment 551</p> <p>References 551</p> <p><b>20 Paradigm Shift in Environmental Remediation Toward Sustainable Development: Biodegradable Materials and ICT Applications 565<br /></b><i>Biswajit Debnath, Saswati Gharami, Suparna Bhattacharyya, Adrija Das and Ankita Das</i></p> <p>20.1 Introduction 566</p> <p>20.2 Methodology 568</p> <p>20.3 Application of Biodegradable Materials in Environmental Remediation and Sustainable Development 568</p> <p>20.3.1 Biodegradable Sensors 568</p> <p>20.3.2 Biosorbents and Biochars 573</p> <p>20.3.3 Bioplastics 575</p> <p>20.4 Discussion and Analysis 577</p> <p>20.4.1 Application of ICT as Future Vision 577</p> <p>20.4.2 Sustainability Aspects 579</p> <p>20.5 Conclusion 581</p> <p>Acknowledgment 581</p> <p>References 581</p> <p><b>21 Biodegradable Composite for Smart Packaging Applications 593<br /></b><i>S. Bharadwaj, Vivek Dhand and Y. Kalyana Lakshmi</i></p> <p>21.1 Introduction to Packing Applications 594</p> <p>21.1.1 Current Materials 595</p> <p>21.1.2 Issues and Concerns 597</p> <p>21.2 Biodegradable Materials 597</p> <p>21.2.1 What are Biopolymers? 598</p> <p>21.2.1.1 Starch 599</p> <p>21.2.1.2 Cellulose 599</p> <p>21.2.2 Advantages of Biopolymer Composites 599</p> <p>21.2.3 List of Biopolymer Materials 600</p> <p>21.3 Preparation of Composite 600</p> <p>21.3.1 Identify the Materials 600</p> <p>21.3.2 Fabrication of Biopolymer Composites 605</p> <p>21.4 Indicators of Performance 607</p> <p>21.5 Mechanical Properties 610</p> <p>21.6 Biodegradable Test 612</p> <p>21.7 Smart Packing Applications 612</p> <p>21.7.1 Active Biopackaging 613</p> <p>21.7.2 Informative and Responsive Packaging 614</p> <p>21.7.3 Ergonomic Packaging 614</p> <p>21.7.4 Scavenging Films 614</p> <p>21.7.5 NanoSensors 615</p> <p>21.7.6 Product Identification and Tempering Proof Product 615</p> <p>21.7.7 Indicators 616</p> <p>21.7.8 Nanosensors and Absorbers 616</p> <p>21.8 Testing of Packaging Using Different Standard 616</p> <p>21.9 Conclusions 617</p> <p>References 617</p> <p><b>22 Impact of Biodegradable Packaging Materials on Food Quality: A Sustainable Approach 627<br /></b><i>Mohammad Amir, Naushin Bano, Mohd. Rehan Zaheer, Tahayya Haq and Roohi</i></p> <p>22.1 Introduction 628</p> <p>22.2 Food Packaging 628</p> <p>22.3 Food Packaging Material 629</p> <p>22.3.1 Types of Food Packaging Materials 630</p> <p>22.3.1.1 Paper-Based Packaging 631</p> <p>22.3.1.2 Glass-Based Packaging 632</p> <p>22.3.1.3 Metal-Based Packaging 633</p> <p>22.3.1.4 Plastic-Based Packaging 634</p> <p>22.4 Biodegradable Food Packaging Materials 635</p> <p>22.5 Different Biodegradable Materials for Food Packaging 636</p> <p>22.5.1 Polyhydroxyalkanoates 637</p> <p>22.5.2 Polyhydroxybutyrates 638</p> <p>22.5.3 Poly (4-Hydroxybutyrate) (P4HB) 639</p> <p>22.5.4 Poly-(3-Hydroxybutyrate-Co-3-Hydroxy Valerate) 640</p> <p>22.5.5 Poly-Hydroxy-Octanoate 640</p> <p>22.5.6 Starch-Based Material 640</p> <p>22.5.7 Thermoplastic Starch 641</p> <p>22.5.8 Starch-Based Nanocomposite Films 642</p> <p>22.5.9 Cellulose-Based 643</p> <p>22.5.10 Polylactic Acid (PLA) 644</p> <p>22.6 Applications of Biodegradable Material in Edible Film Coating 646</p> <p>22.7 Conclusion 647</p> <p>Acknowledgment 648</p> <p>References 648</p> <p><b>23 Biodegradable Pots—For Sustainable Environment 653<br /></b><i>Elsa Cherian, Jobil J. Arackal, Jayasree Joshi T. and Anitha Krishnan V. C.</i></p> <p>23.1 Introduction 653</p> <p>23.2 Biodegradable Pots 655</p> <p>23.3 Materials for the Fabrication of Biodegradables Pots 656</p> <p>23.3.1 Biodegradable Planting Pots Based on Bioplastics 656</p> <p>23.3.2 Biopots Based on Industrial and Agricultural Waste 658</p> <p>23.4 Synthesis of Biodegradable Pots 661</p> <p>23.5 Effect of Biopots on Plant Growth and Quality 663</p> <p>23.6 Quality Testing of Biodegradable Pots 664</p> <p>23.7 Consumer Preferences of Biodegradable Pots 665</p> <p>23.8 Future Perspectives 666</p> <p>23.9 Conclusion 667</p> <p>References 667</p> <p><b>24 Applications of Biodegradable Polymers and Plastics 673<br /></b><i>Parveen Saini, Gurpreet Kaur, Jandeep Singh and Harminder Singh</i></p> <p>24.1 Introduction 674</p> <p>24.2 Biopolymers/Bioplastics 675</p> <p>24.3 Applications of Biodegradable Polymers/Plastics 677</p> <p>24.3.1 Biomedical Applications 677</p> <p>24.3.1.1 Biodegradable Polymers in the Development of Therapeutic Devices in Tissue Engineering 677</p> <p>24.3.1.2 Biodegradable Polymers as Implants 678</p> <p>24.3.1.3 Biobased Polymers as Drug Delivery Systems 679</p> <p>24.3.2 Other Commercial Applications 679</p> <p>24.3.2.1 Biodegradable Polymers as Packaging Materials 680</p> <p>24.3.2.2 Biodegradable Plastics in Electronics, Automotives, and Agriculture 681</p> <p>24.3.2.3 Biobased Polymer in 3D Printing 681</p> <p>24.4 Conclusion 682</p> <p>References 682</p> <p><b>25 Biopolymeric Nanofibrous Materials for Environmental Remediation 687<br /></b><i>Pallavi K.C. and Arun M. Isloor</i></p> <p>25.1 Introduction 688</p> <p>25.2 Fabrication of Nanofibers 689</p> <p>25.3 Nanofibrous Materials in Environmental Remediation 691</p> <p>25.3.1 Water Purification 691</p> <p>25.3.2 Air Filtration 702</p> <p>25.3.3 Soil-Related Problems 705</p> <p>25.4 Conclusions 708</p> <p>References 709</p> <p><b>26 Bioplastic Materials from Oils 715<br /></b><i>Aansa Naseem, Farrukh Azeem, Muhammad Hussnain Siddique, Sabir Hussain, Ijaz Rasul, Tuba Saleem, Arfaa Sajid and Habibullah Nadeem</i></p> <p>26.1 Introduction 716</p> <p>26.2 Natural Oils 720</p> <p>26.2.1 Bioplastic Production from Natural Oils 720</p> <p>26.3 Waste Oils 720</p> <p>26.4 Types of Oily Wastes 721</p> <p>26.4.1 Cooking Oil Waste 721</p> <p>26.4.2 Fats from Animals 721</p> <p>26.4.3 Effluents from Plant Oil Mills 722</p> <p>26.5 Bioplastic Production from Oily Waste 722</p> <p>26.6 Improvement in Bioplastic Production from Waste Oil by Genetic Approaches 723</p> <p>26.7 Impact of Bioplastic Produced from Waste Cooking Oil 726</p> <p>26.7.1 Health and Medicine 726</p> <p>26.7.2 Environment 727</p> <p>26.7.3 Population 727</p> <p>26.8 Assessment Techniques for Bioplastic Synthesis Using Waste Oil 727</p> <p>26.8.1 Economic Assessment 727</p> <p>26.8.2 Environment Assessment 728</p> <p>26.8.3 Sensitivity Analysis 728</p> <p>26.8.4 Multiobjective Optimization 728</p> <p>26.9 Conclusion 728</p> <p>References 729</p> <p><b>27 Protein Recovery Using Biodegradable Polymer 735<br /></b><i>Panchami H. R., Arun M. Isloor, Ahmad Fauzi Ismail and Rini Susanti</i></p> <p>27.1 Introduction 736</p> <p>27.2 Biodegradability and Biodegradable Polymer 737</p> <p>27.2.1 Natural Biodegradable Polymers 739</p> <p>27.2.1.1 Extracted from the Biomass 739</p> <p>27.2.1.2 Extracted Directly by Natural or Genetically Modified Organism 740</p> <p>27.2.2 Synthetic Biodegradable Polymers 740</p> <p>27.3 Recovery of Protein by Coagulation/Flocculation Processes 740</p> <p>27.3.1 Categories of Composite Coagulants 741</p> <p>27.3.1.1 Inorganic Polymer Flocculants 741</p> <p>27.3.1.2 Organic Polymer Flocculants 741</p> <p>27.3.2 Mechanism of Bioflocculation 742</p> <p>27.3.3 Some of the Examples for Protein Recovery Using Biodegradable Polymer 743</p> <p>27.3.3.1 Chitosan as Flocculant 743</p> <p>27.3.3.2 Lignosulfonate as Flocculant 745</p> <p>27.3.3.3 Cellulose as Flocculant 747</p> <p>27.4 Recovery of Proteins by Aqueous Two-Phase System 747</p> <p>27.5 Types of the Aqueous Two-Phase System and Phase Components 748</p> <p>27.6 Recovery Process and Factors Influencing the Aqueous Two-Phase System 749</p> <p>27.7 Partition Coefficient and the Protein Recovery 751</p> <p>27.8 Some of the Examples of Recovery of Protein by Biodegradable Polymers 751</p> <p>27.9 Advantages of ATPS 752</p> <p>27.10 Limitations 752</p> <p>27.11 Challenges and Future Perspective 752</p> <p>27.12 Recovery of Proteins by Membrane Technology 753</p> <p>27.12.1 Classification of Membranes 753</p> <p>27.12.2 Membrane Fouling by Protein Deposition 754</p> <p>27.12.3 Recovery of a Protein by a Biodegradable Polymer 755</p> <p>27.13 Limitations to Biodegradable Polymers 762</p> <p>27.14 Conclusions and Future Remarks 762</p> <p>References 763</p> <p><b>28 Biodegradable Polymers in Electronic Devices 773<br /></b><i>Niharika Kulshrestha</i></p> <p>28.1 Introduction 774</p> <p>28.2 Role of Biodegradable Polymers 776</p> <p>28.3 Various Biodegradable Polymers for Electronic Devices 777</p> <p>28.3.1 Biodegradable Insulators 777</p> <p>28.3.2 Biodegradable Semiconductors 779</p> <p>28.3.3 Biodegradable Conductors 781</p> <p>28.4 Conclusion 783</p> <p>References 784</p> <p><b>29 Importance and Applications of Biodegradable Materials and Bioplastics From the Renewable Resources 789<br /></b><i>Syed Riaz Ahmed, Fiaz Rasul, Aqsa Ijaz, Zunaira Anwar, Zarsha Naureen, Anam Riaz and Ijaz Rasul</i></p> <p>29.1 Biodegradable Materials 790</p> <p>29.2 Bioplastics 791</p> <p>29.3 Biodegradable Polymers 794</p> <p>29.3.1 Classification of Biodegradable Polymers 794</p> <p>29.3.1.1 Gelatin 795</p> <p>29.3.1.2 Chitosan 796</p> <p>29.3.1.3 Starch 797</p> <p>29.3.2 Properties of Bioplastics and Biodegradable Materials 797</p> <p>29.4 Applications of Bioplastics and Biodegradable Materials in Agriculture 799</p> <p>29.4.1 State-of-the-Art Different Applications of Bioplastics in Agriculture 800</p> <p>29.4.1.1 Agricultural Nets 803</p> <p>29.4.1.2 Grow Bags 803</p> <p>29.4.1.3 Mulch Films 804</p> <p>29.5 Applications of Microbial-Based Bioplastics in Medicine 805</p> <p>29.5.1 Polylactones 805</p> <p>29.5.2 Polyphosphoesters 805</p> <p>29.5.3 Polycarbonates 806</p> <p>29.5.4 Polylactic Acid 806</p> <p>29.5.5 Polyhydroxyalkanoates 806</p> <p>29.5.6 Biodegradable Stents 806</p> <p>29.5.7 Memory Enhancer 807</p> <p>29.6 Applications of Microbial-Based Bioplastics in Industries 808</p> <p>29.6.1 Aliphatic Polyester and Starch 808</p> <p>29.6.2 Cellulose Acetate and Starch 808</p> <p>29.6.3 Cellulose and Its Derivative 808</p> <p>29.6.4 Arboform 809</p> <p>29.6.5 Mater-Bi 809</p> <p>29.6.6 Bioceta 809</p> <p>29.6.7 Polyhydroxyalkanoate 809</p> <p>29.6.8 Loctron 810</p> <p>29.6.9 Cereplast 810</p> <p>29.7 Application of Bioplastics and Biodegradable Materials in Food Industry 811</p> <p>29.7.1 Bioplastic and Its Resources 812</p> <p>29.7.2 Food Packaging 812</p> <p>29.7.3 Natural Polymers Used in Food Packaging 816</p> <p>29.7.3.1 Starch-Based Natural Polymers 816</p> <p>29.7.3.2 Cellulose-Based Natural Polymers 817</p> <p>29.7.3.3 Chitosan or Chitin-Based Natural Polymers 817</p> <p>29.7.4 Protein-Based Natural Polymers 818</p> <p>29.7.4.1 Whey Protein 818</p> <p>29.7.4.2 Zein 818</p> <p>29.7.4.3 Soy Protein 818</p> <p>29.7.5 Bioplastics Derived Chemically From Renewable Resources 819</p> <p>29.7.5.1 Polylactic Acid (PLA) 819</p> <p>29.7.5.2 Polyhydroxyalkanoate Composite 819</p> <p>29.7.5.3 Polybutylene Succinate Composite 820</p> <p>29.7.5.4 Furandicarboxylic Acid Composite 821</p> <p>29.8 Application of Bioplastic Biomass for the Environmental Protection 821</p> <p>29.8.1 Biodegradation of Bioplastics 822</p> <p>29.8.2 Biodegradability and Environmental Effect of Renewable Materials 823</p> <p>29.9 Conclusions and Future Prospects 825</p> <p>References 825</p> <p>Index 837</p>
<p><b>Inamuddin, PhD,</b> is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia, and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has published about 190 research articles in various international scientific journals, 18 book chapters, and edited 60 books. <p><b>Tariq Altalhi</b> is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material. He also researches natural extracts and their application in the generation of value-added products such as nanomaterials.
<p><b>Biodegradable materials have ascended in importance in recent years and this book comprehensively discusses all facets and applications in 29 chapters making it a one-stop shop.</b> <p>Biodegradable materials have today become more compulsory because of increased environmental concerns and the growing demand for polymeric and plastic materials. Despite our sincere efforts to recycle used plastic materials, they ultimately tend to enter the oceans, which has led to grave pollution. It is necessary, therefore, to ensure that these wastes do not produce any hazards in the future. This has made an urgency to replace the synthetic material with green material in almost all possible areas of application. <p><i>Biodegradable Materials and Their Applications</i> covers a wide range of subjects and approaches, starting with an introduction to biodegradable material applications. Chapters focus on the development of various types of biodegradable materials with their applications in electronics, medicine, packaging, thermoelectric generations, protective equipment, films/coatings, 3D printing, disposable bioplastics, agriculture, and other commercial sectors. In biomedical applications, their use in the advancement of therapeutic devices like temporary implants, tissue engineering, and drug delivery vehicles are summarized. <p><b>Audience</b><br> Materials scientists, environmental and sustainability engineers, and any other researchers and graduate students associated with biodegradable materials.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €