Details

Life Cycle of Sustainable Packaging


Life Cycle of Sustainable Packaging

From Design to End-of-Life
1. Aufl.

von: Rafael A. Auras, Susan E. M. Selke

130,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.09.2022
ISBN/EAN: 9781119878117
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Life Cycle of Sustainable Packaging</b> <p><b>An expert review of packaging’s role in sustainability and the environment </b> <p>In <i>Life Cycle of Sustainable Packaging: From Design to End of Life</i>, a team of distinguished researchers delivers an authoritative and accessible explanation of the role played by packaging in sustainable development and the circular economy. The book offers expansive coverage of every aspect of the packaging life cycle, from design to management and end of life. It is a holistic and integrated evaluation of packaging’s environmental footprint. <p> The authors show students and readers how to incorporate design and life cycle concepts into the development of sustainable packaging materials and help them understand critical background information about pollution and risk management. They also provide readers with learning objectives and self-study questions for each chapter that help them retain and understand the ideas discussed in the book. <p> Readers will also find: <ul><li>A thorough introduction to the role of packaging in sustainable development</li> <li>An in-depth examination of design thinking in the packaging design process, including the five stages of design thinking and innovation tools</li> <li>Comprehensive discussions of pollution and risk management, as well as soil, water, and air pollution</li> <li>Expansive treatments of global climate change, life cycle assessment, and municipal solid waste.</li></ul> <p> Perfect for undergraduate and graduate students learning about sustainability and packaging, <i>Life Cycle of Sustainable Packaging: From Design to End of Life</i> will earn a place in the libraries of chemical, biochemical, plastics, materials science, and packaging engineers.
<p>List of Abbreviations xvii</p> <p>Preface xxii</p> <p>About the Companion Website xxv</p> <p><b>1 The Role of Packaging in Sustainable Development 1</b></p> <p>1.1 Learning Objectives 1</p> <p>1.2 Introduction 1</p> <p>1.3 Packaging and Sustainable Development 1</p> <p>1.4 Sustainability 5</p> <p>1.5 Sustainability Timeline 7</p> <p>1.6 United Nations Sustainable Development Goals (UN-SDGs) 11</p> <p>1.7 Sustainability Indicators (SIs) 21</p> <p>1.8 Life Cycle Thinking 23</p> <p>1.9 Circular Economy 25</p> <p>1.10 Packaging for Sustainable Development 26</p> <p>1.11 Sustainable Packaging Organizations around the World and Their Criteria 28</p> <p>1.12 Tools to Evaluate Sustainable Packaging 29</p> <p>1.13 Case Study 1.1. The Living Planet Index (LPI) 30</p> <p>1.14 Case Study 1.2. Doughnut Economics 31</p> <p>1.15 Study Questions 32</p> <p>1.16 Additional Resources 33</p> <p>References 34</p> <p><b>2 Design Thinking: The Packaging Design Process 37<br /> </b><i>Euihark Lee</i></p> <p>2.1 Learning Objectives 37</p> <p>2.2 Introduction 37</p> <p>2.2.1 Creativity vs. Innovation 37</p> <p>2.2.2 Design of Packaging for Sustainability 39</p> <p>2.3 The Design Thinking Process 40</p> <p>2.3.1 What Is Design Thinking? 40</p> <p>2.3.2 The Five Stages of Design Thinking 41</p> <p>2.4 Tools for Thinking about Innovation 42</p> <p>2.4.1 Empathy Mapping 42</p> <p>2.4.2 Mind Map 43</p> <p>2.4.3 Brainstorming 44</p> <p>2.5 Packaging Design Process 44</p> <p>2.5.1 Applying the Design Process to the Packaging System 44</p> <p>2.5.2 Material Selection 45</p> <p>2.5.3 Determining Packaging Features 46</p> <p>2.5.4 Design Shape 47</p> <p>2.5.5 Color and Packaging 49</p> <p>2.5.6 Graphics in Packaging 50</p> <p>2.5.7 Packaging Design Tools 52</p> <p>2.6 Case Study 2.1. Heinz Single-serve Ketchup Dip and Squeeze 54</p> <p>2.7 Case Study 2.2. Design for Recyclability 57</p> <p>2.8 Study Questions 59</p> <p>2.9 Additional Resources 59</p> <p>References 59</p> <p><b>3 Packaging in the Upstream and Downstream Supply Chains 63</b></p> <p>3.1 Learning Objectives 63</p> <p>3.2 Introduction 63</p> <p>3.3 Resource Use 64</p> <p>3.4 Packaging Materials 64</p> <p>3.4.1 Metal 65</p> <p>3.4.2 Glass 67</p> <p>3.4.3 Wood 69</p> <p>3.4.4 Paper and Paperboard 70</p> <p>3.4.5 Plastics 71</p> <p>3.5 Energy 74</p> <p>3.5.1 Nonrenewables 75</p> <p>3.5.1.1 Petroleum 76</p> <p>3.5.1.2 Coal 77</p> <p>3.5.1.3 Natural Gas 77</p> <p>3.5.1.4 Nuclear 78</p> <p>3.5.2 Renewables 78</p> <p>3.5.2.1 Biomass 78</p> <p>3.5.2.2 Hydropower 79</p> <p>3.5.2.3 Wind 79</p> <p>3.5.2.4 Solar Energy 79</p> <p>3.5.2.5 Geothermal Energy 79</p> <p>3.6 Components of the Packaging System 80</p> <p>3.6.1 Primary Packaging 80</p> <p>3.6.2 Secondary Packaging 80</p> <p>3.6.3 Tertiary or Distribution Packaging 80</p> <p>3.7 Parameters for Quantifying the Environmental Footprint (EFP) of Packaging Systems 81</p> <p>3.8 Case Study 3.1. Cube Efficiency Estimation Using CAPE® 82</p> <p>3.9 Study Questions 83</p> <p>3.10 Additional Resources 85</p> <p>References 85</p> <p><b>4 Pollution and Risk Management 87</b></p> <p>4.1 Learning Objectives 87</p> <p>4.2 Introduction 87</p> <p>4.3 Pollution Science 88</p> <p>4.4 Risk Assessment and Management 89</p> <p>4.4.1 Exposure Assessment 91</p> <p>4.4.2 Hazard Identification 93</p> <p>4.4.3 Dose–Response Assessment 94</p> <p>4.4.4 Risk Characterization 97</p> <p>4.4.4.1 Carcinogenic Risks 97</p> <p>4.4.4.2 Noncarcinogenic Risks 99</p> <p>4.5 Ecological Risk Assessment 100</p> <p>4.6 Microbial Risk Assessment 101</p> <p>4.7 Case Study 4.1. Estimation of the Health Risk of Dichloro diphenyl trichloroethane (DDT) and Polybrominated Diphenyl Ether (PBDE) 101</p> <p>4.8 Study Questions 102</p> <p>4.9 Additional Resources 102</p> <p>References 102</p> <p><b>5 Soil Pollution 105</b></p> <p>5.1 Learning Objectives 105</p> <p>5.2 Introduction 105</p> <p>5.3 Surface Mining 105</p> <p>5.4 Deforestation 106</p> <p>5.5 Soil Acidity and Salinity 107</p> <p>5.6 Soil Erosion 108</p> <p>5.7 Agricultural Activities 108</p> <p>5.8 Animal Waste 111</p> <p>5.9 Industrial Waste 112</p> <p>5.10 Invasive Species 113</p> <p>5.11 Case Study 5.1. Kudzu as Invasive Species in the Southern US 113</p> <p>5.12 Study Questions 114</p> <p>5.13 Additional Resources 114</p> <p>References 114</p> <p><b>6 Water Pollution 117</b></p> <p>6.1 Learning Objectives 117</p> <p>6.2 Introduction 117</p> <p>6.3 Groundwater 119</p> <p>6.3.1 Point-Source Contamination 121</p> <p>6.3.1.1 Hazardous Organic Chemicals 125</p> <p>6.3.1.2 Landfill 125</p> <p>6.3.2 Diffuse Source Contamination 126</p> <p>6.3.2.1 Agrochemical Contamination 126</p> <p>6.3.2.2 Saltwater Intrusion 127</p> <p>6.3.2.3 Microbial Contamination 128</p> <p>6.3.2.4 Gasoline Additives 129</p> <p>6.3.2.5 Perchlorate 129</p> <p>6.3.2.6 Arsenic 130</p> <p>6.3.2.7 Acid-Mine Drainage 130</p> <p>6.4 Surface Water 130</p> <p>6.4.1 Marine Water Resources 130</p> <p>6.4.2 Sources of Water Pollution 131</p> <p>6.4.3 Sediments as Surface Water Contaminants 131</p> <p>6.4.4 Metals as Surface Water Contaminants 132</p> <p>6.4.4.1 Mercury 132</p> <p>6.4.4.2 Arsenic 132</p> <p>6.4.4.3 Chromium 132</p> <p>6.4.4.4 Selenium 133</p> <p>6.4.5 Nutrients and Eutrophication of Surface Waters 133</p> <p>6.4.6 Organic Compounds in Water 134</p> <p>6.4.7 Enteric Pathogens as Surface Water Contaminants 134</p> <p>6.5 Groundwater and Surface Water Legislation 135</p> <p>6.5.1 Total Maximum Daily Load (TMDL) 136</p> <p>6.6 Case Study 6.1. Pine River Contamination Site 136</p> <p>6.7 Case Study 6.2. The Flint Water Crisis 145</p> <p>6.8 Study Questions 145</p> <p>6.9 Additional Resources 146</p> <p>References 146</p> <p><b>7 Air Pollution 149</b></p> <p>7.1 Learning Objectives 149</p> <p>7.2 Introduction 149</p> <p>7.3 Primary Air Pollutants 151</p> <p>7.3.1 Carbon Monoxide (CO) 151</p> <p>7.3.2 Hydrocarbons (HCs) 152</p> <p>7.3.3 Particulate Matter (PM) 152</p> <p>7.3.4 Sulfur Dioxide (SO 2) 153</p> <p>7.3.5 Nitrogen Oxides (NOx) 154</p> <p>7.3.6 Lead (Pb) 154</p> <p>7.4 Secondary Pollutants 156</p> <p>7.5 Clean Air Act 158</p> <p>7.6 Case Study 7.1. Air Quality in Delhi, India, in Winter 161</p> <p>7.7 Case Study 7.2. Air Quality in the US in Summer 163</p> <p>7.8 Study Questions 163</p> <p>7.9 Additional Resources 164</p> <p>References 164</p> <p><b>8 Global Climate Change 167</b></p> <p>8.1 Learning Objectives 167</p> <p>8.2 Introduction 167</p> <p>8.3 Greenhouse Gases 169</p> <p>8.4 Impacts on Global Climate 173</p> <p>8.5 Climate Change Agreements 174</p> <p>8.6 Case Study 8.1. History of the Intergovernmental Panel on Climate Change (IPCC) 175</p> <p>8.7 Study Questions 176</p> <p>8.8 Additional Resources 176</p> <p>References 177</p> <p><b>9 Life Cycle Assessment 179</b></p> <p>9.1 Learning Objectives 179</p> <p>9.2 Introduction 179</p> <p>9.3 Provisions of LCA Study 181</p> <p>9.4 Different Approaches to Conduct LCI Studies 183</p> <p>9.5 Steps of an LCA Study 184</p> <p>9.5.1 Goal and Scope Definition of an LCA 185</p> <p>9.5.2 Function, Functional Unit, and Reference Flow 188</p> <p>9.5.3 Life Cycle Inventory Modeling Framework 190</p> <p>9.5.3.1 Flows and Multifunctionality 190</p> <p>9.5.3.2 Completeness/Cut-off and Loops 199</p> <p>9.5.3.3 Provisions for LCI according to Situations A, B, and C of LCA 200</p> <p>9.5.4 Impact Assessment 200</p> <p>9.5.5 Interpretation 203</p> <p>9.5.5.1 Evaluation of the Results 203</p> <p>9.5.5.2 Analysis of the Results 203</p> <p>9.5.5.3 Formulation of Conclusions and Recommendations 207</p> <p>9.6 LCA Software 207</p> <p>9.7 Case Study 9.1. LCA Study of Beverage Packaging Systems 207</p> <p>9.8 Study Questions 213</p> <p>9.9 Additional Resources 214</p> <p>References 214</p> <p><b>10 Municipal Solid Waste 217</b></p> <p>10.1 Learning Objectives 217</p> <p>10.2 Introduction 217</p> <p>10.3 World Picture of Municipal Solid Waste 218</p> <p>10.4 Environmental Kuznets Curve (EKC) 218</p> <p>10.5 Municipal Solid Waste in the US 223</p> <p>10.6 Municipal Solid Waste in Different US States 225</p> <p>10.7 Municipal Solid Waste Management Approaches 227</p> <p>10.8 Case Study 10.1 – Environmental Footprint of PET Bottles Managed According to the US EPA Waste Management Hierarchy 229</p> <p>10.9 Study Questions 230</p> <p>10.10 Additional Resources 230</p> <p>References 231</p> <p><b>11 Reduction 233</b></p> <p>11.1 Learning Objectives 233</p> <p>11.2 Introduction 233</p> <p>11.3 Reduction 234</p> <p>11.4 Reduction in Packaging 234</p> <p>11.4.1 Glass 235</p> <p>11.4.2 Metal 235</p> <p>11.4.3 Paper, Paperboard, and Corrugated Board 236</p> <p>11.4.4 Plastic 237</p> <p>11.5 Case Study 11.1. Bacon Packaging 239</p> <p>11.6 Study Questions 244</p> <p>11.7 Additional Resources 244</p> <p>References 245</p> <p><b>12 Reuse 247</b></p> <p>12.1 Learning Objectives 247</p> <p>12.2 Introduction 247</p> <p>12.3 Reuse 248</p> <p>12.4 Reuse in Packaging 250</p> <p>12.4.1 Metal 252</p> <p>12.4.2 Glass 253</p> <p>12.4.3 Paper, Paperboard, and Corrugated Board 254</p> <p>12.4.4 Plastic 254</p> <p>12.5 Case Study 12.1. Reusable Cups 256</p> <p>12.6 Case Study 12.2. Reusable Plastic Containers (RPC) 257</p> <p>12.7 Study Questions 259</p> <p>12.8 Additional Resources 259</p> <p>References 260</p> <p><b>13 Recycling 263</b></p> <p>13.1 Learning Objectives 263</p> <p>13.2 Introduction 263</p> <p>13.3 Requirements for Successful Recycling 265</p> <p>13.3.1 Consumer Engagement 265</p> <p>13.3.1.1 Motivation 265</p> <p>13.3.1.2 Convenience 267</p> <p>13.3.1.3 Education/Publicity 268</p> <p>13.3.2 Collection 269</p> <p>13.3.2.1 Curbside Collection 270</p> <p>13.3.2.2 Multidwelling Collection 270</p> <p>13.3.2.3 Drop-off Sites 271</p> <p>13.3.2.4 Deposit Systems 271</p> <p>13.3.3 Sortation 277</p> <p>13.3.4 Reprocessing 279</p> <p>13.3.5 End Markets 279</p> <p>13.4 Recycling of Packaging Materials 280</p> <p>13.4.1 Closed- and Open-Loop Recycling 281</p> <p>13.5 Metal Recycling 285</p> <p>13.5.1 Steel Recycling 286</p> <p>13.5.2 Aluminum Recycling 288</p> <p>13.6 Glass Recycling 291</p> <p>13.7 Paper, Paperboard, and Corrugated Board Recycling 294</p> <p>13.8 Plastics Recycling 299</p> <p>13.9 Labeling 306</p> <p>13.10 Case Study 13.1. Environmental Footprint of Recycling Polymeric Resins 307</p> <p>13.11 Case Study 13.2. End-of-Life Scenario of PLA, PET, and PS Clamshells 307</p> <p>13.12 Study Questions 310</p> <p>13.13 Additional Resources 311</p> <p>References 312</p> <p><b>14 Aerobic and Anaerobic Biodegradation 317</b></p> <p>14.1 Learning Objectives 317</p> <p>14.2 Introduction 317</p> <p>14.3 Aerobic Biodegradation 319</p> <p>14.3.1 Composting 320</p> <p>14.3.1.1 Home/Backyard Composting 320</p> <p>14.3.1.2 Industrial Composting 320</p> <p>14.3.1.3 Factors Affecting Backyard and Industrial Composting Operations 322</p> <p>14.3.2 Agricultural Soils 324</p> <p>14.3.3 Other Mostly Aerobic Degradation Environments 325</p> <p>14.3.3.1 Soil Biodegradation 325</p> <p>14.3.3.2 Aquatic Biodegradation 326</p> <p>14.3.4 Measuring Aerobic Biodegradation 326</p> <p>14.3.5 Standards and Certifications for Aerobic Biodegradable Materials 327</p> <p>14.3.6 Bio-based Carbon Content 332</p> <p>14.4 Anaerobic Biodegradation 332</p> <p>14.4.1 Standards and Certifications for Anaerobic Biodegradable Materials 335</p> <p>14.5 Main Factors Affecting Aerobic and Anaerobic Biodegradation 335</p> <p>14.6 Biodegradation of Packaging Materials 337</p> <p>14.7 Paper Biodegradation 338</p> <p>14.8 Polymer Biodegradation 341</p> <p>14.9 Case Study 14.1. Biodegradation of Poly(butylene adipate-co-terephthalate) – PBAT – Films in Yard, Food, and Manure Compost 345</p> <p>14.10 Case Study 14.2. Anaerobic Degradation of PLA Films 346</p> <p>14.11 Study Questions 348</p> <p>14.12 Additional Resources 350</p> <p>References 350</p> <p><b>15 Incineration of Municipal Solid Waste with Energy Recovery 357</b></p> <p>15.1 Learning Objectives 357</p> <p>15.2 Introduction 357</p> <p>15.3 Advantages and Disadvantages of Municipal Solid Waste Incineration 360</p> <p>15.4 Types of Waste Combustion Units 361</p> <p>15.5 Municipal Solid Waste Combustion Plants 362</p> <p>15.6 Refuse Derived Fuel 364</p> <p>15.7 Energy Recovery from Burning MSW 365</p> <p>15.8 Incineration of Metals 369</p> <p>15.9 Incineration of Glass 369</p> <p>15.10 Incineration of Paper, Paperboard, and Corrugated Board 371</p> <p>15.11 Incineration of Plastics 371</p> <p>15.12 Case Study 15.1. Burning of Poly(vinyl chloride) – PVC 374</p> <p>15.13 Case Study 15.2. Comparison of Emissions from Waste-to-Energy Facilities with Those from Fossil Fuels and Their Greenhouse Gas Emissions 374</p> <p>15.14 Study Questions 376</p> <p>15.15 Additional Resources 377</p> <p>References 377</p> <p><b>16 Landfill 381</b></p> <p>16.1 Learning Objectives 381</p> <p>16.2 Introduction 381</p> <p>16.3 Definition of Terms 385</p> <p>16.4 Advantages and Disadvantages of Disposing Municipal Solid Waste in Landfills 386</p> <p>16.5 Classification of Landfills 386</p> <p>16.5.1 Landfills Regulated under RCRA – Subtitle d 386</p> <p>16.5.1.1 Municipal Solid Waste Landfill 387</p> <p>16.5.1.2 Industrial Waste Landfill (IWLF) 387</p> <p>16.5.2 Landfills Regulated under RcRA – Subtitle c 388</p> <p>16.5.2.1 Hazardous Waste Landfills 388</p> <p>16.5.3 Landfills Regulated under the Toxic Substances Control Act 388</p> <p>16.6 Location, Building, Operation, Closure, and Financial Assurance of Landfills 389</p> <p>16.7 Emissions from Landfills 391</p> <p>16.7.1 Air Emissions 392</p> <p>16.7.2 Leachate 395</p> <p>16.8 Energy Recovery from Landfills 397</p> <p>16.9 Landfilling of Municipal Solid Waste 397</p> <p>16.10 Landfilling of Metals 400</p> <p>16.11 Landfilling of Glass 402</p> <p>16.12 Landfilling of Paper, Paperboard, and Corrugated Board 404</p> <p>16.13 Landfilling of Plastics 404</p> <p>16.14 Case Study 16.1. Landfilling of Yard Trimmings 406</p> <p>16.15 Case Study 16.2. Evaluation of Biodegradation of Polyethylene and Poly(ethylene terephthalate) in Simulated Landfill Environments 407</p> <p>16.16 Study Questions 408</p> <p>16.17 Additional Resources 409</p> <p>References 410</p> <p><b>17 Litter and Marine Pollution 413</b></p> <p>17.1 Learning Objectives 413</p> <p>17.2 Introduction 413</p> <p>17.3 Litter in the US and around the World 414</p> <p>17.4 Marine Litter 416</p> <p>17.4.1 Shoreline and Beach Litter 417</p> <p>17.4.2 Oceans and Gyres 417</p> <p>17.4.3 Litter in Other Bodies of Water 419</p> <p>17.4.4 Cleanup and Prevention 419</p> <p>17.4.5 Sources of Ocean Plastics 420</p> <p>17.5 Litter and Wildlife 420</p> <p>17.6 Microplastics 421</p> <p>17.7 Biodegradability and Litter 422</p> <p>17.8 Case Study 17.1. Emission of Plastic from Rivers to the World’s Oceans 422</p> <p>17.9 Case Study 17.2. Presence of Microplastics in Drinking Water and Food 423</p> <p>17.10 Study Questions 426</p> <p>17.11 Additional Resources 426</p> <p>References 426</p> <p><b>18 Keeping in Perspective 429</b></p> <p>18.1 Learning Objectives 429</p> <p>18.2 Introduction 429</p> <p>18.3 Environmental Footprint of Primary, Secondary, and Tertiary Packaging Systems 430</p> <p>18.4 Environmental Footprint of the Product/Package System 431</p> <p>18.5 The Role of Packaging in Waste Creation 433</p> <p>18.6 Impact of Transportation on the Environmental Footprint of the Product/Package 434</p> <p>18.7 Impact of Consumer Behavior on Waste Creation and the Environmental Footprint of the Product/Package System 435</p> <p>18.8 Impact of End-of-life Scenarios on the Environmental Footprint of Packaging Systems 436</p> <p>18.9 Case Study 18.1. Environmental Footprint of Milk Package Containers in the US 439</p> <p>18.10 Case Study 18.2. The Perceived and Actual Environmental Footprint of Glass, Plastic, and Aluminum Beverage Packaging 439</p> <p>18.11 Study Questions 443</p> <p>18.12 Additional Resources 444</p> <p>References 444</p> <p>Index 447</p>
<p><b>Rafael A. Auras</b> is a Professor in the School of Packaging at Michigan State University. He is a co-editor of both editions of <i>Poly(lactic acid): Synthesis, Structures, Processing, Applications, and End of Life. </i></p> <p><b> Susan E.M. Selke</b> is an emeritus Professor and former Director of the School of Packaging at Michigan State University. She is a co-editor of both editions of <i>Poly(lactic acid): Synthesis, Structures, Processing, Applications, and End of Life.</i>
<p><b>An expert review of packaging’s role in sustainability and the environment </b></p> <p>In <i>Life Cycle of Sustainable Packaging: From Design to End of Life</i>, a team of distinguished researchers delivers an authoritative and accessible explanation of the role played by packaging in sustainable development and the circular economy. The book offers expansive coverage of every aspect of the packaging life cycle, from design to management and end of life. It is a holistic and integrated evaluation of packaging’s environmental footprint. <p> The authors show students and readers how to incorporate design and life cycle concepts into the development of sustainable packaging materials and help them understand critical background information about pollution and risk management. They also provide readers with learning objectives and self-study questions for each chapter that help them retain and understand the ideas discussed in the book. <p> Readers will also find: <ul><li>A thorough introduction to the role of packaging in sustainable development</li> <li>An in-depth examination of design thinking in the packaging design process, including the five stages of design thinking and innovation tools</li> <li>Comprehensive discussions of pollution and risk management, as well as soil, water, and air pollution</li> <li>Expansive treatments of global climate change, life cycle assessment, and municipal solid waste.</li></ul> <p> Perfect for undergraduate and graduate students learning about sustainability and packaging, <i>Life Cycle of Sustainable Packaging: From Design to End of Life</i> will earn a place in the libraries of chemical, biochemical, plastics, materials science, and packaging engineers.

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €