Details

Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks


Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks


The ComSoc Guides to Communications Technologies 1. Aufl.

von: Muhammad Ali Imran, Lina Mohjazi, Lina Bariah, Sami Muhaidat, Tei Jun Cui, Qammer H. Abbasi

100,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.11.2022
ISBN/EAN: 9781119875260
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks</b> <p><b>Authoritative resource covering preliminary concepts and advanced concerns in the field of IRS and its role in 6G wireless systems</b> <p><i>Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks</i> provides an in-depth treatment of the fundamental physics behind reconfigurable metasurfaces, also known as intelligent reflecting surfaces (IRS), and outlines the research roadmap towards their development as a low-complexity and energy-efficient solution aimed at turning the wireless environment into a software-defined entity. <p>The text demonstrates IRS from different angles, including the underlying physics, hardware architecture, operating principles, and prototype designs. It enables readers to grasp the knowledge of the interplay of IRS and state-of-the-art technologies, examining the advantages, key principles, challenges, and potential use-cases. Practically, it equips readers with the fundamental knowledge of the operational principles of reconfigurable metasurfaces, resulting in its potential applications in various intelligent, autonomous future wireless communication technologies. <p>To aid in reader comprehension, around 50 figures, tables, illustrations, and photographs to comprehensively present the material are also included. <p>Edited by a team of highly qualified professionals in the field, sample topics covered are as follows: <ul><li> Evolution of antenna arrays design, introducing the fundamental principles of antenna theory and reviewing the stages of development of the field;</li> <li> Beamforming design for IRS-assisted communications, discussing optimal IRS configuration in conjunction with overviewing novel beamforming designs;</li> <li> Reconfigurable metasurfaces from physics to applications, discussing the working principles of tunable/reconfigurable metasurfaces and their capabilities and functionalities;</li> <li> IRS hardware architectures, detailing the general hardware architecture of IRS and features related to the IRS’s main operational principle;</li> <li> Wireless communication systems assisted by IRS, discussing channel characterization, system integration, and aspects related to the performance analysis and network optimization of state-of-the-art wireless applications.</li></ul> <p>For students and engineers in wireless communications, microwave engineering, and radio hardware and design, <i>Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks</i> serves as an invaluable resource on the subject and is a useful course accompaniment for general Antenna Theory, Microwave Engineering, Electromagnetics courses.
<p>List of Contributors xiii</p> <p><b>1 Introduction 1<br /> </b><i>Muhammad Ali Imran, Lina Mohjazi, Lina Bariah, Sami Muhaidat, Tei Jun Cui, and Qammer H. Abbasi</i></p> <p>References 5</p> <p><b>2 IRS in the Near-Field: From Basic Principles to Optimal Design 7<br /> </b><i>Konstantinos Dovelos, Stylianos D. Assimonis, Hien Q. Ngo, and Michail Matthaiou</i></p> <p>2.1 Introduction 7</p> <p>2.2 Basic Principles 8</p> <p>2.2.1 IRS Model 8</p> <p>2.2.2 Signal Model of IRS-Aided System 9</p> <p>2.3 Near-Field Channel Model 10</p> <p>2.3.1 Spherical Wavefront 10</p> <p>2.3.2 Path Loss 12</p> <p>2.4 Phase Shift Design 13</p> <p>2.4.1 Beamfocusing 13</p> <p>2.4.2 Conventional Beamforming 14</p> <p>2.5 Energy Efficiency 17</p> <p>2.5.1 MIMO System 17</p> <p>2.5.2 IRS-aided MIMO System 18</p> <p>2.6 Optimal IRS Placement 19</p> <p>2.7 Open Future Research Directions 20</p> <p>2.8 Conclusions 22</p> <p>References 22</p> <p><b>3 Feasibility of Intelligent Reflecting Surfaces to Combine Terrestrial and Non-terrestrial Networks 25<br /> </b><i>Muhammad A. Jamshed, Qammer H. Abbasi, and Masood Ur-Rehman</i></p> <p>3.1 Introduction 25</p> <p>3.2 Intelligent Reflecting Surfaces 27</p> <p>3.2.1 Background and Architecture 27</p> <p>3.2.2 Intelligent Reflecting Surfaces in Wireless Networks 28</p> <p>3.3 Non-terrestrial Networks 29</p> <p>3.3.1 Non-terrestrial Networks: 3GPP Vision 30</p> <p>3.4 Revamping Non-terrestrial Networks Using Intelligent Reflecting Surfaces 34</p> <p>3.4.1 Satellites for Communication: Background 34</p> <p>3.4.2 Indoor Connectivity Using Intelligent Reflecting Surfaces 35</p> <p>3.5 Conclusion 37</p> <p>References 37</p> <p><b>4 Towards the Internet of MetaMaterial Things: Software Enablers for User-Customizable Electromagnetic Wave Propagation 41<br /> </b><i>Christos Liaskos, Georgios G. Pyrialakos, Alexandros Pitilakis, Ageliki Tsioliaridou, Michail Christodoulou, Nikolaos Kantartzis, Sotiris Ioannidis, Andreas Pitsillides, and Ian F. Akyildiz</i></p> <p>4.1 Introduction 41</p> <p>4.1.1 Key Enabler 1 42</p> <p>4.1.2 Key Enabler 2 43</p> <p>4.2 Pre-requisites and Related Work 47</p> <p>4.2.1 Meta-materials: Principles of Operation, Classification, and Supported Functionalities 49</p> <p>4.3 Networked meta-materials and SDN workflows 51</p> <p>4.4 Application Programming Interface for Meta-materials 53</p> <p>4.4.1 Data Structures of the Meta-material API 55</p> <p>4.4.2 API Callbacks and Event Handling 56</p> <p>4.5 The Meta-material Middleware 58</p> <p>4.5.1 Functionality Optimization Workflow: Meta-material Modelling and State Calibration 60</p> <p>4.5.2 The Meta-material Functionality Profiler 64</p> <p>4.6 Software Implementation and Evaluation 65</p> <p>4.7 Discussion: The Transformational Potential of the IoMMT and Future Directions 73</p> <p>4.8 Conclusion 75</p> <p>Acknowledgements 76</p> <p>References 77</p> <p><b>5 IRS Hardware Architectures 83<br /> </b><i>Jun Y. Dai, Qiang Cheng, and Tie Jun Cui</i></p> <p>5.1 Introduction 83</p> <p>5.2 Concept, Principle, and Composition of IRS 85</p> <p>5.3 Operation Mode of IRS 87</p> <p>5.3.1 Prototypes of Wavefront Manipulation Mode 88</p> <p>5.3.2 Prototypes of Information Modulation Mode 91</p> <p>5.4 Hardware Configuration of IRS 94</p> <p>5.5 Conclusions 95</p> <p>References 95</p> <p><b>6 Practical Design Considerations for Reconfigurable Intelligent Surfaces 99<br /> </b><i>James Rains, Jalil ur Rehman Kazim, Anvar Tukmanov, Lei Zhang, Qammer H. Abbasi, and Muhammad Ali Imran</i></p> <p>6.1 Intelligent Reflecting Surface Architecture 99</p> <p>6.1.1 Tunability of Unit-cell Elements 101</p> <p>6.1.2 Configuration Networks 105</p> <p>6.1.3 IRS Control Layer 108</p> <p>6.2 Physical Limitations of IRSs 110</p> <p>6.2.1 Bandwidth versus Phase Resolution 110</p> <p>6.2.2 Incidence Angle Response 114</p> <p>6.2.3 Quantization Effects: How Many Bits? 117</p> <p>References 117</p> <p><b>7 Channel Modelling in RIS-Empowered Wireless Communications 123<br /> </b><i>Ibrahim Yildirim and Ertugrul Basar</i></p> <p>7.1 Introduction 123</p> <p>7.2 A General Perspective on RIS Channel Modelling 125</p> <p>7.3 Physical Channel Modelling for RIS-Empowered Systems at mmWave Bands 130</p> <p>7.4 Physical Channel Modelling for RIS-Empowered Systems at Sub-6 GHz Bands 135</p> <p>7.5 SimRIS Channel Simulator 139</p> <p>7.6 Performance Analysis Using SimRIS Channel Simulator 141</p> <p>7.7 Summary 145</p> <p>Funding Acknowledgment 145</p> <p>References 145</p> <p><b>8 Intelligent Reflecting Surfaces (IRS)-Aided Cellular Networks and Deep Learning-Based Design 149<br /> </b><i>Taniya Shafique, Amal Feriani, Hina Tabassum, and Ekram Hossain</i></p> <p>8.1 Introduction 149</p> <p>8.2 Contributions 150</p> <p>8.3 Literature Review 151</p> <p>8.3.1 Optimization 151</p> <p>8.3.2 Deep Learning 152</p> <p>8.4 System Model 154</p> <p>8.4.1 Transmission Model 154</p> <p>8.4.2 IRS-Assisted Transmission 155</p> <p>8.4.2.1 Desired Signal Power 155</p> <p>8.4.2.2 Interference Power 156</p> <p>8.4.3 Direct Transmission 157</p> <p>8.4.3.1 Desired Signal Power 157</p> <p>8.4.3.2 Interference Power 157</p> <p>8.4.4 SINR and Achievable Rate 157</p> <p>8.5 Problem Formulation 158</p> <p>8.6 Phase Shifts Optimization 158</p> <p>8.6.1 Optimization-based Approach 159</p> <p>8.6.2 DRL-based Approach 160</p> <p>8.6.2.1 Backgound 160</p> <p>8.6.2.2 MDP Formulation 161</p> <p>8.6.2.3 Training Procedure 161</p> <p>8.6.2.4 Proximal Policy Optimization (PPO) 161</p> <p>8.6.2.5 Deep Deterministic Policy Gradient (DDPG) 162</p> <p>8.7 Numerical Results 163</p> <p>8.7.1 Experimental Setup 163</p> <p>8.7.2 Baselines 164</p> <p>8.7.3 Results 164</p> <p>8.8 Conclusion 167</p> <p>References 167</p> <p><b>9 Application and Future Direction of RIS 171<br /> </b><i>Jalil R. Kazim, James Rains, Muhammad Ali Imran, and Qammer H. Abbasi</i></p> <p>9.1 Background 171</p> <p>9.2 Introduction 172</p> <p>9.2.1 Intelligent Reflective Surface 173</p> <p>9.2.2 Analysis of RIS 174</p> <p>9.2.3 Basic Functions of RIS 176</p> <p>9.3 RIS-assisted High-Frequency Communication 177</p> <p>9.3.1 RIS-assisted Multi-User Communication 179</p> <p>9.4 RIS-assisted RF Sensing and Imaging 179</p> <p>9.5 RIS-assisted-UAV Communication 180</p> <p>9.6 RIS-assisted Wireless Power Transfer 181</p> <p>9.7 RIS-assisted Indoor Localization 182</p> <p>9.8 Conclusion 183</p> <p>References 184</p> <p><b>10 Distributed Multi-IRS-assisted 6G Wireless Networks: Channel Characterization and Performance Analysis 189<br /> </b><i>Tri N. Do, Georges Kaddoum, and Thanh L. Nguyen</i></p> <p>10.1 Introduction 189</p> <p>10.2 System Model 192</p> <p>10.3 Channel Characterization and Performance Analysis 194</p> <p>10.3.1 Gamma Distribution-based Statistical Channel Characterization 196</p> <p>10.3.1.1 Gamma Distribution-based Ergodic Capacity Analysis 199</p> <p>10.3.1.2 Gamma Distribution-based Outage Probability Analysis 200</p> <p>10.3.2 Log-normal Distribution-based Statistical Channel Characterization 201</p> <p>10.3.2.1 Log-normal Distribution-based Ergodic Capacity Analysis 201</p> <p>10.3.2.2 Log-normal Distribution-based Outage Probability Analysis 203</p> <p>10.4 Numerical Results and Discussions 203</p> <p>10.5 Conclusions 209</p> <p>References 210</p> <p><b>11 RIS-Assisted UAV Communications 213<br /> </b><i>Mohammad O. Abualhauja’a, Shuja Ansari, Olaoluwa R. Popoola, Lina Mohjazi, Lina Bariah, Sami Muhaidat, Qammer H. Abbasi, and Muhammad Ali Imran</i></p> <p>11.1 Introduction 213</p> <p>11.2 Background 215</p> <p>11.3 The Role of UAVs in the Future Mobile Networks and Their Unique Characteristics 216</p> <p>11.3.1 UAV Characteristics 216</p> <p>11.4 Challenges of UAV Communications 218</p> <p>11.4.1 Air-to-Ground (3D) Channel Modelling 218</p> <p>11.4.2 Three-dimensional Deployment of UAVs 219</p> <p>11.4.3 Optimal Trajectory Planning 219</p> <p>11.4.4 Network Planning for Cellular-connected UAV Applications 220</p> <p>11.4.5 Interference Caused by Ground BSs 220</p> <p>11.5 RIS-assisted UAV Communications: Integration Paradigms and Use Cases 220</p> <p>11.5.1 RIS to Support UAV-assisted Communications Air-to-Ground (A2G) Links 222</p> <p>11.5.2 RIS to Support Cellular-Connected UAV Ground-to-Air (G2A) Links 223</p> <p>11.5.3 RIS-equipped Aerial Platforms RIS to Support Air-to-Air (A2A) Links 224</p> <p>11.6 Preliminary Investigations 225</p> <p>11.6.1 RIS versus Relay 225</p> <p>11.6.1.1 System Model 225</p> <p>11.6.1.2 Direct Transmission 226</p> <p>11.6.1.3 RIS-supported Transmission 226</p> <p>11.6.1.4 Relay-supported Transmission 227</p> <p>11.6.1.5 Results and Discussion 227</p> <p>11.7 Conclusions 229</p> <p>References 229</p> <p><b>12 Optical Wireless Communications Using Intelligent Walls 233<br /> </b><i>Anil Yesilkaya, Hanaa Abumarshoud, and Harald Haas</i></p> <p>12.1 Introduction 233</p> <p>12.2 Optical IRS: Background and Applications 235</p> <p>12.2.1 IRS from the Physics Perspective 235</p> <p>12.2.2 IRS Applications in OWC 238</p> <p>12.2.2.1 Reflection for Blockage Mitigation 238</p> <p>12.2.2.2 Enhanced Optical MIMO 240</p> <p>12.2.2.3 Media-Based Modulation 241</p> <p>12.2.2.4 Enhanced Optical NOMA 242</p> <p>12.2.2.5 Enhanced PLS 243</p> <p>12.3 Case Study: High Performance IRS-Aided Indoor LiFi 243</p> <p>12.3.1 Channel Modelling 243</p> <p>12.3.1.1 Generation of the Indoor Environment 245</p> <p>12.3.1.2 Source Characterization 246</p> <p>12.3.1.3 IRS and Coating Material Characterization 249</p> <p>12.3.1.4 Receiver Characterization 252</p> <p>12.3.2 Obtaining the Channel Models 254</p> <p>12.3.2.1 MCRT Channel Characterization Results 256</p> <p>12.3.2.2 VL Band Results 259</p> <p>12.3.2.3 IR Band Results 262</p> <p>12.3.3 The Achievable Rates for IRS-aided LiFi 265</p> <p>12.4 Challenges and Research Directions 268</p> <p>12.4.1 Modelling and Characterization 268</p> <p>12.4.2 Inter-symbol Interference (ISI) 268</p> <p>12.4.3 Channel Estimation 269</p> <p>12.4.4 Real-time Operation 269</p> <p>References 269</p> <p><b>13 Conclusion 275<br /> </b><i>Muhammad Ali Imran, Lina Mohjazi, Lina Bariah, Sami Muhaidat, Tei Jun Cui, and Qammer H. Abbasi</i></p> <p>Index 279</p>
<p><b>Muhammad Ali Imran</b>, Professor of Communication Systems in University of Glasgow, Dean University of Glasgow UESTC and Head of Communications, Sensing and Imaging Group.</p> <p><b>Lina Mohjazi</b>, Lecturer, with the James Watt School of Engineering, University of Glasgow, UK.</p> <p><b>Lina Bariah,</b> Senior Researcher, with the Technology Innovation Institute, Abu Dhabi, UAE, and with the James Watt School of Engineering, University of Glasgow, UK.</p> <p><b>Sami Muhaidat</b>, Professor, with the KU Center for Cyber-Physical Systems, Khalifa University, Abu Dhabi, UAE.</p> <p><b>Tie Jun Cui</b>, Chief Professor of Southeast University, Nanjing, China.</p> <p><b>Qammer H. Abbasi</b>, Reader with the James Watt School of Engineering and Deputy Head for Communication Sensing and Imaging Group, University of Glasgow, UK.</p>
<p><b>Authoritative resource covering preliminary concepts and advanced concerns in the field of IRS and its role in 6G wireless systems</b> <p><i>Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks</i> provides an in-depth treatment of the fundamental physics behind reconfigurable metasurfaces, also known as intelligent reflecting surfaces (IRS), and outlines the research roadmap towards their development as a low-complexity and energy-efficient solution aimed at turning the wireless environment into a software-defined entity. <p>The text demonstrates IRS from different angles, including the underlying physics, hardware architecture, operating principles, and prototype designs. It enables readers to grasp the knowledge of the interplay of IRS and state-of-the-art technologies, examining the advantages, key principles, challenges, and potential use-cases. Practically, it equips readers with the fundamental knowledge of the operational principles of reconfigurable metasurfaces, resulting in its potential applications in various intelligent, autonomous future wireless communication technologies. <p>To aid in reader comprehension, around 50 figures, tables, illustrations, and photographs to comprehensively present the material are also included. <p>Edited by a team of highly qualified professionals in the field, sample topics covered are as follows: <ul><li> Evolution of antenna arrays design, introducing the fundamental principles of antenna theory and reviewing the stages of development of the field;</li> <li> Beamforming design for IRS-assisted communications, discussing optimal IRS configuration in conjunction with overviewing novel beamforming designs;</li> <li> Reconfigurable metasurfaces from physics to applications, discussing the working principles of tunable/reconfigurable metasurfaces and their capabilities and functionalities;</li> <li> IRS hardware architectures, detailing the general hardware architecture of IRS and features related to the IRS’s main operational principle;</li> <li> Wireless communication systems assisted by IRS, discussing channel characterization, system integration, and aspects related to the performance analysis and network optimization of state-of-the-art wireless applications.</li></ul> <p>For students and engineers in wireless communications, microwave engineering, and radio hardware and design, <i>Intelligent Reconfigurable Surfaces (IRS) for Prospective 6G Wireless Networks</i> serves as an invaluable resource on the subject and is a useful course accompaniment for general Antenna Theory, Microwave Engineering, Electromagnetics courses.

Diese Produkte könnten Sie auch interessieren:

From Photon to Pixel
From Photon to Pixel
von: Henri Maître
PDF ebook
139,99 €
Computer Vision in Vehicle Technology
Computer Vision in Vehicle Technology
von: Antonio M. López, Atsushi Imiya, Tomas Pajdla, Jose M. Álvarez
PDF ebook
81,99 €
Foundations of Electromagnetic Compatibility
Foundations of Electromagnetic Compatibility
von: Bogdan Adamczyk
PDF ebook
117,99 €