Details

Plant Breeding Reviews, Volume 46


Plant Breeding Reviews, Volume 46


Plant Breeding Reviews 1. Aufl.

von: Irwin Goldman

303,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.12.2022
ISBN/EAN: 9781119874133
Sprache: englisch
Anzahl Seiten: 736

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><i>Plant Breeding Reviews</i> presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops.</p>
<p>List of Contributors xi</p> <p><b>1 Dani Zamir: Pioneer in Tomato Genetics and Quantitative Trait Dissection 1</b><br /><i>Irwin L. Goldman</i></p> <p>I. Introduction 2</p> <p>II. Understanding Quantitative Genetic Variation 4</p> <p>III. Cloning of Quantitative Trait Loci 6</p> <p>IV. Characterization of Genetic Phenomena 7</p> <p>V. Sequencing the Tomato Genome 9</p> <p>VI. Practical Plant Breeding 10</p> <p>VII. Scientific Impact 13</p> <p>VIII. List of Scientific Journal Publications of Dani Zamir 14</p> <p>Literature Cited 30</p> <p><b>2 Muscadine Grape Breeding 31</b><br /><i>Patrick J. Conner and Margaret L. Worthington</i></p> <p>I. Introduction 32</p> <p>II. History of Improvement 38</p> <p>III. Breeding Techniques 49</p> <p>IV. Molecular Breeding Resources 52</p> <p>V. Breeding for Specific Characters 58</p> <p>VI. Intersubgeneric Hybridization 79</p> <p>VII. Future Prospects 104</p> <p>Literature Cited 106</p> <p><b>3 Breeding Intermediate Wheatgrass for Grain Production 119</b><br /><i>Prabin Bajgain, Jared L. Crain, Douglas J. Cattani, Steven R. Larson, Kayla R. Altendorf, James A. Anderson, Timothy E. Crews, Ying Hu, Jesse A. Poland, M. Kathryn Turner, Anna Westerbergh, and Lee R. DeHaan</i></p> <p>I. Introduction 122</p> <p>II. Plant Biology and Behavior 125</p> <p>III. History of IWG Breeding 140</p> <p>IV. Breeding Methodologies by Program 146</p> <p>V. Breeding Goals and Progress 162</p> <p>VI. Modern Breeding Tools 175</p> <p>VII. Rate of Intermediate Wheatgrass Domestication 190</p> <p>VIII. Future Directions 195</p> <p>Literature Cited 197</p> <p><b>4 Understanding Environmental Modulation of Heterosis 219</b><br /><i>Zhi Li, Jiabin Sun, and Candice N. Hirsch</i></p> <p>I. Introduction of Heterosis 220</p> <p>II. Models and Mechanisms to Explain Heterosis 221</p> <p>III. Genotype-by-Environment Interaction 224</p> <p>IV. Inbred Lines Generally Have More Instability Across Environments than Hybrids 226</p> <p>V. Higher Heterosis Levels are Observed Under Stress Conditions 227</p> <p>VI. Variation in Heterosis is also Observed Under Natural Conditions 231</p> <p>VII. Conclusion and Future Prospects 232</p> <p>Literature Cited 233</p> <p><b>5 Breeding of Hemp (Cannabis sativa) 239</b><br /><i>Lawrence B. Smart, Jacob A. Toth, George M. Stack, Luis A. Monserrate, and Christine D. Smart</i></p> <p>I. Introduction 240</p> <p>II. Taxonomy and Domestication of Hemp 245</p> <p>III. Sex Determination in Hemp 247</p> <p>IV. Control of Pollination 250</p> <p>V. Breeding and Selection Schemes 255</p> <p>VI. Target Traits for Genetic Improvement 259</p> <p>VII. Germplasm Resources 277</p> <p>VIII. Genomic Resources 278</p> <p>IX. Future Directions 279</p> <p>Literature Cited 279</p> <p><b>6 Genetic Resources and Breeding Priorities in Phaseolus Beans : Vulnerability, Resilience, and Future Challenges 289</b><br /><i>Travis A. Parker, Jorge Acosta Gallegos, James Beaver, Mark Brick, Judith K. Brown, Karen Cichy, Daniel G. Debouck, Alfonso Delgado-Salinas, Sarah Dohle, Emmalea Ernest, Consuelo Estevez de Jensen, Francisco Gomez, Barbara Hellier, Alexander V. Karasev, James D. Kelly, Phillip McClean, Phillip Miklas, James R. Myers, Juan M. Osorno, Julie S. Pasche, Marcial A. Pastor-Corrales, Timothy Porch, James R. Steadman, Carlos Urrea, Lyle Wallace, Christine H. Diepenbrock, and Paul Gepts</i></p> <p>I. Description of Crop Vulnerability and Its Relevance in Phaseolus 294</p> <p>II. Background on the Origin, Diversification, and Domestication of the Genus Phaseolus 296</p> <p>III. Urgency and Extent of Crop Vulnerabilities and Threats to Food Security 318</p> <p>IV. Genetic Erosion in the Centers of Origin 325</p> <p>V. Status of Plant Genetic Resources in the NPGS 352</p> <p>VI. Genomic and Genotypic Characterization Data 361</p> <p>VII. Prospects, Future Development, and Gaps in Genetic Diversity 371</p> <p>VIII. Epilogue 381</p> <p>Literature Cited 385</p> <p><b>7 Club Wheat -- A Review of Club Wheat History, Improvement, and Spike Characteristics in Wheat 421</b><br /><i>Kimberly A. Garland-Campbell</i></p> <p>I. Introduction 423</p> <p>II. Spike Architecture in Grasses 424</p> <p>III. Club Wheat History 426</p> <p>IV. Club Wheat Breeding 432</p> <p>V. Major Genes for Control of Spike Charactersitics in Wheat 444</p> <p>VI. Conclusion 454</p> <p>Literature Cited 455</p> <p><b>8 Predicting Genotype x Environment x Management (G x E x M) Interactions for the Design of Crop Improvement Strategies: Integrating Breeder, Agronomist, and Farmer Perspectives 467</b><br /><i>Mark Cooper, Carlos D. Messina, Tom Tang, Carla Gho, Owen M. Powell, Dean W. Podlich, Frank Technow, and Graeme L. Hammer</i></p> <p>I. Three Perspectives of G x E x M Interactions 470</p> <p>II. Foundations for G x E x M Prediction 476</p> <p>III. The Breeder’s Equation and Beyond 480</p> <p>IV. G x E x M Considerations for Designing Multi-Environment Trials 482</p> <p>V. Breeder’s Questions: G E x M --> G x (E x M) 510</p> <p>VI. Agronomist’s Questions: G x E x M --> M x (E x G) 520</p> <p>VII. Farmer’s Questions: G x E x M --> (G x M) x E 525</p> <p>VIII. Integrating the Different G x E x M Perspectives 531</p> <p>IX. G x E x M Predictions Beyond the Training Data Boundaries 548</p> <p>X. Prediction-Based Crop Improvement: Future Prospects 555</p> <p>Literature Cited 560</p> <p><b>9 Root Phenes for Improving Nutrient Capture in Low-Fertility Environments 587</b><br /><i>Christopher F. Strock and Hannah M. Schneider</i></p> <p>I. The Need for Nutrient-Efficient Crops 589</p> <p>II. Root Phenes are Important for Resource Aqusition and Plant Growth 590</p> <p>III. Root Ideotypes for Improved Nutrient Acquisition 596</p> <p>IV. Phenotyping Methodology and Technology 605</p> <p>V. Deployment Strategies for Root Phenes in Crop Breeding Programs 610</p> <p>VI. Conclusions 614</p> <p>Literature Cited 615</p> <p><b>10 Role of the Genomics--Phenomics--Agronomy Paradigm in Plant Breeding 627</b><br /><i>Chunpeng James Chen, Jessica Rutkoski, James C. Schnable, Seth C. Murray, Lizhi Wang, Xiuliang Jin, Benjamin Stich, Jose Crossa, Ben J. Hayes, and Zhiwu Zhang</i></p> <p>I. Introduction 630</p> <p>II. Agronomy and Genomics (A-G) 631</p> <p>III. Genomics and Phenomics (G-P) 636</p> <p>IV. Phenomics and Agronomy (P-A) 641</p> <p>V. Merge G-P-A through GWAS 644</p> <p>VI. Merge G-P-A through Blup 647</p> <p>VII. Merge G-P-A through Bayesian Methods 649</p> <p>VIII. Merge G-P-A through Ml 654</p> <p>IX. Conclusion and Future Prospects 658</p> <p>Literature Cited 659</p> <p>Cumulative Contributor Index 675</p> <p>Cumulative Subject Index 685</p>
<p><b>Irwin Goldman</b>, University of Wisconsin-Madison, Madison, Wisconsin, USA.</p>

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €