Details

A Guide to Noise in Microwave Circuits


A Guide to Noise in Microwave Circuits

Devices, Circuits and Measurement
1. Aufl.

von: Peter Heymann, Matthias Rudolph

106,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 02.12.2021
ISBN/EAN: 9781119859383
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>A GUIDE TO NOISE IN MICROWAVE CIRCUITS</b> <p><b>A fulsome exploration of critical considerations in microwave circuit noise</b> <p>In <i>A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement,</i> a team of distinguished researchers deliver a comprehensive introduction to noise in microwave circuits, with a strong focus on noise characterization of devices and circuits. The book describes fluctuations beginning with their physical origin and touches on the general description of noise in linear and non-linear circuits. <p>Several chapters are devoted to the description of noise measurement ­techniques and the interpretation of measured data. A full chapter is dedicated to noise sources as well, including thermal, shot, plasma, and current. <p><i>A Guide to Noise in Microwave Circuits</i> offers examples of measurement problems—like low noise block (LNB) of satellite television – and explores equipment and measurement methods, like the Y, cold source, and 7-state method. This book also includes: <ul><li>A thorough introduction to foundational terms in microwave circuit noise, including average values, amplitude distribution, autocorrelation, cross-correlation, and noise spectra</li> <li>Comprehensive explorations of common noise sources, including thermal noise, the Nyquist formula and thermal radiation, shot noise, plasma noise, and more</li> <li>Practical discussions of noise and linear networks, including narrowband noise</li> <li>In-depth examinations of calculation methods for noise quantities, including noise voltages, currents, and spectra, the noise correlation matrix, and the noise of simple passive networks</li></ul> <p>Perfect for graduate students specializing in microwave and wireless electronics, <i>A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement</i> will also earn a place in the libraries of professional engineers working in microwave or wireless circuits and system design.
<p>Author Biographies xiii</p> <p>Preface xv</p> <p><b>1 Introduction 1</b></p> <p>Preliminary Remarks 1</p> <p>History 6</p> <p>References 7</p> <p><b>2 Basic Terms 9</b></p> <p>Average Values 9</p> <p>Amplitude Distribution 10</p> <p>Autocorrelation 12</p> <p>Cross-Correlation 15</p> <p>Noise Spectra 18</p> <p>Autocorrelation Function and Spectral Power Density 19</p> <p>Band-Limited Noise on the Spectrum Analyzer 20</p> <p>References 22</p> <p><b>3 Noise Sources 23</b></p> <p>Thermal Noise 23</p> <p>Nyquist Formula and Thermal Radiation 24</p> <p>Validity and Experimental Confirmation of the Nyquist Formula 27</p> <p>Thermal Noise Under Extreme Conditions 28</p> <p>Shot Noise 29</p> <p>Plasma Noise 33</p> <p>Current Noise of Resistors and Contacts 34</p> <p>Technical Resistors 34</p> <p>Resistors Consisting of Semiconductor Material 36</p> <p>Contact Noise 37</p> <p>Generation–Recombination Noise 38</p> <p>LF Noise from Transistors 40</p> <p>References 42</p> <p><b>4 Noise and Linear Networks 45</b></p> <p>Narrowband Noise 45</p> <p>Calculating with Phasors 45</p> <p>Noise Source with Complex Internal Resistance 51</p> <p>The Equivalent Noise Bandwidth 52</p> <p>Network Components at Different Temperatures 54</p> <p>Noise Generator and Attenuator 58</p> <p>References 58</p> <p><b>5 Nonlinear Networks 59</b></p> <p>Mixing 59</p> <p>Band-Limited RF Noise at Input 59</p> <p>Amplitude Clipping 62</p> <p>The Detector as a Nonlinear Network 63</p> <p>The Noise Spectrum Behind a Quadratic Detector 65</p> <p>The Noise Spectrum Behind a Linear Detector 69</p> <p>The Sensitivity Limit 70</p> <p>Noise with Signal 73</p> <p>The Phase Sensitive Rectifier 74</p> <p>Trace Averaging 76</p> <p>References 78</p> <p><b>6 The Noise Factor 79</b></p> <p>Amplifier and Noise Power 79</p> <p>The Noise Factor F 80</p> <p>Cascaded Amplifiers 83</p> <p>The Noise measure m 85</p> <p>Definitions of Gain 85</p> <p>Source and Load 89</p> <p>Broadband and Spot Noise Factor 91</p> <p>Noise Factor of a Passive Network 92</p> <p>Antenna Temperature 93</p> <p>The Reference Temperature T 0 = 290 K 98</p> <p>Noise Factor and Detection Limit 99</p> <p>References 100</p> <p><b>7 Noise of Linear Two-Ports 101</b></p> <p>Representation of Two-Ports 101</p> <p>Noise Modeling Using the Chain Matrix 102</p> <p>References 108</p> <p><b>8 Calculation Methods for Noise Quantities 109</b></p> <p>Noise Voltages, Currents, and Spectra 109</p> <p>Calculating with Current, Voltage, and Noise Waves 112</p> <p>The Noise Correlation Matrix 115</p> <p>The Correlation Matrix of Passive Components 117</p> <p>The Noise of Simple Passive Networks 119</p> <p>Transformation of Noise Sources in Different Network Representations 128</p> <p>Correlation Matrix and IEEE Elements 131</p> <p>FET-Like Network with the Y-Correlation Matrix 134</p> <p>Noise Sources at Input with ABCD Correlation Matrix 138</p> <p>References 142</p> <p><b>9 Diodes and Bipolar Transistors 143</b></p> <p>Semiconductor Diode 143</p> <p>Bipolar Transistor 145</p> <p>Small-Signal Equivalent Circuit 147</p> <p>Hawkins BJT Noise Model 148</p> <p>Two Approaches for the Collector Noise Current Source 155</p> <p>BJT Noise Model with Correlation Matrices 157</p> <p>The Π-Model 157</p> <p>The T-Model with Correlation Matrices 161</p> <p>Transformation of the Y-Sources to the Input 165</p> <p>Modeling of a Microwave Transistor with Correlation Matrices 168</p> <p>Simplest Π-Model 174</p> <p>Contour Diagram 177</p> <p>Transistor in the Circuit 179</p> <p>Using the Contour Diagram 183</p> <p>References 185</p> <p><b>10 Operational Amplifier 187</b></p> <p>Operational Amplifier as Circuit Element 187</p> <p>Noise Sources of the Operational Amplifier 188</p> <p>Consideration of 1/f Noise 193</p> <p>Operational Amplifier as an Active Low-Pass Filter 195</p> <p>References 198</p> <p><b>11 Field Effect Transistors 201</b></p> <p>Jfet 201</p> <p>Mode of Operation of the FET 201</p> <p>The Channel Noise 204</p> <p>NoiseSourcesattheGate 205</p> <p>The Correlation 206</p> <p>Transformation to the Input 206</p> <p>Simple Approximations 211</p> <p>Field Effect Transistors for the Microwave Range (MESFET, HFET) 214</p> <p>The Pucel Model 215</p> <p>The Pospieszalski model 218</p> <p>Discussion of the Results 225</p> <p>Criteria for Noise Data 225</p> <p>References 229</p> <p><b>12 Theory of Noise Measurement 231</b></p> <p>Measurements of Two-Ports 231</p> <p>The Equivalent Noise Resistance 234</p> <p>Voltage and Current Source 235</p> <p>Voltage and Current Source with Correlation 237</p> <p>3 dB and Y-Method 241</p> <p>References 243</p> <p><b>13 Basics of Measuring Technique 245</b></p> <p>Principles of the RF-Receiver 245</p> <p>The Detection Limit 245</p> <p>Diode as RF Receiver (Video Detector) 249</p> <p>RF and Microwave Range Receiver 254</p> <p>Dicke Radiometer 258</p> <p>Correlation Radiometer in the Microwave Range 261</p> <p>Network Analyzer as a Noise Measurement Device 263</p> <p>References 265</p> <p><b>14 Equipment and Measurement Methods 267</b></p> <p>Noise Measurement Receiver 267</p> <p>Spectrum Analyzer 269</p> <p>The Y-Method 273</p> <p>Measurements in the Microwave Range 275</p> <p>Selection Criteria of the Mixer 278</p> <p>Image Rejection 279</p> <p>Complete Noise Characterization 282</p> <p>Analysis of Multi-impedance Measurements 283</p> <p>Cold Source Method 285</p> <p>The 7-State Method 287</p> <p>On-Wafer Measurement of Cold Source 288</p> <p>On-Wafer with Noise Generator According to the Y-method 293</p> <p>References 296</p> <p><b>15 Noise Generators 299</b></p> <p>Vacuum Diode 299</p> <p>Gas Discharge 300</p> <p>Semiconductor Diodes 302</p> <p>Excess Noise Ratio (ENR) 303</p> <p>Hot–Cold Sources 305</p> <p>References 307</p> <p><b>16 Impedance Tuners 309</b></p> <p>Impedance Transformation with Simple Methods 309</p> <p>Mechanical Components for the Microwave Range 311</p> <p>Electronic Components 313</p> <p>Precision Automatic Tuner 315</p> <p>Attenuation of the Tuner 317</p> <p>References 318</p> <p><b>17 Examples of Measurement Problems 319</b></p> <p>Transistor in a Test Fixture 319</p> <p>The Low Noise Block (LNB) of Satellite Television 322</p> <p>Verification of a Noise Measurement 325</p> <p>References 327</p> <p><b>18 Measurement and Modeling of Low-Frequency Noise 329</b></p> <p>Correlation Radiometer for Low Frequencies (f < 10 MHz) 329</p> <p>The Low-Frequency Noise of Transistors 333</p> <p>Measurement Setup for LF Noise 334</p> <p>Examples of LF Noise Measurements on GaAs-HBT 336</p> <p>Modeling of LF Noise 337</p> <p>The Noise of the Microphone 337</p> <p>References 342</p> <p><b>19 Measurement Accuracy and Sources of Error 345</b></p> <p>Accuracy of Measured Data 345</p> <p>Error of Measurements 345</p> <p>Inaccuracies of the Noise Measurement 346</p> <p>Uncertainty of the ENR Calibration 349</p> <p>Noise Source Mismatch 350</p> <p>T<sub>0</sub> = 290 K Is not T<sub>OFF</sub> 352</p> <p>Mismatch in the System 353</p> <p>Linearity of the Receiver 356</p> <p>References 357</p> <p><b>20 Phase Noise 359</b></p> <p>Basics 359</p> <p>Reciprocal Mixing 361</p> <p>Description of Phase Noise 363</p> <p>Spectral Power Density of Phase Fluctuations S<sub>φ</sub> (f) 364</p> <p>The Single Sideband Phase Noise L(f) 365</p> <p>Spectral Power Density of Frequency Fluctuations S<sub>Δf </sub>(f) 365</p> <p>Excursus on Frequency and Phase Modulation 366</p> <p>The Allan Variance σ<sup>2</sup><i><sub>Y</sub></i> (τ) 368</p> <p>Residual FM 370</p> <p>Multiplication and Division 371</p> <p>Amplitude Noise 371</p> <p>Phase Noise and Jitter 372</p> <p>References 374</p> <p><b>21 Physics of the Oscillator 377</b></p> <p>Oscillation Condition [1] 377</p> <p>Simple Model of the Phase Disturbance [2] 378</p> <p>Phase Slope, Resonator Quality, and Frequency Stability [3] 379</p> <p>The Formula of Leeson [4] 382</p> <p>Components of Oscillators 384</p> <p>Influence of the Varactor Diode 386</p> <p>Upward Mixing of LF Noise 390</p> <p>The Influence of Microwave Noise on Phase Noise 393</p> <p>References 396</p> <p><b>22 Phase Noise Measurement 399</b></p> <p>Basic Parameters 399</p> <p>Spectrum Analyzer 399</p> <p>Phase Detector Method 406</p> <p>The Sensitivity of the Phase Detector 407</p> <p>Example Calibration and Measurement 409</p> <p>Keeping the Quadrature by a PLL 410</p> <p>Delay Line as Frequency Discriminator 412</p> <p>The Sensitivity of the Delay-Line Method 414</p> <p>Configuration and Calibration 418</p> <p>Resonator as Frequency Discriminator 420</p> <p>Detection Limit 421</p> <p>Comparison of Measurement Systems 422</p> <p>Cross-Correlation Technique 423</p> <p>Amplitude Noise 425</p> <p>Problems with On-Wafer Measurement 429</p> <p>Residual Phase Noise 430</p> <p>References 432</p> <p>Appendix 435</p> <p>Noise Signals and Deterministic Signals 435</p> <p>Random Signals 436</p> <p>Characteristic Values 437</p> <p>The Probability Density Function 438</p> <p>Example Sine Function 439</p> <p>Example Sawtooth Voltage 440</p> <p>Example White Noise 440</p> <p>Example Sinusoidal Signal with Noise 441</p> <p>Example Narrowband Noise 441</p> <p>The Autocorrelation Function 444</p> <p>Example Sine 444</p> <p>Example Sawtooth 444</p> <p>Example Noisy Sine 445</p> <p>Example White Noise 446</p> <p>Example Low-Pass Noise 447</p> <p>Example Bandpass Noise 449</p> <p>Fourier Series 451</p> <p>Sine–Cosine Spectrum 452</p> <p>Amplitude–Phase Spectrum 452</p> <p>Complex Fourier Series 452</p> <p>The Fourier Integral 453</p> <p>Energy and Power Signals 456</p> <p>Example Transient Time Function 457</p> <p>The Parseval Equation 459</p> <p>Example Voltage Pulse 460</p> <p>Fourier Transform and Power Spectral Density 462</p> <p>Example Rectangular Pulse 463</p> <p>Time-Limited Noise Signal 465</p> <p>Example of a Time-Limited Wave Train 466</p> <p>The Wiener–Khinchin Theorem 468</p> <p>Cross Correlation 470</p> <p>Example of Two Sine Functions 471</p> <p>Example of Two White Noise Signals 472</p> <p>Example of Two Bandpass Noise Signals 472</p> <p>Example White Noise and Bandpass Noise 474</p> <p>Cross-Correlation After Splitting into Two Branches 474</p> <p>Power Spectral Density Real and Complex 477</p> <p>The Cross-Spectral Density 478</p> <p>Complex Representation of the Cross-Spectral Density 479</p> <p>Transmission of Noise by Networks 479</p> <p>References 485</p> <p>Glossary of Symbols 487</p> <p>Index 491</p>
<p><B>Dr. Peter Heymann,</b> retired, was the Head of the Microwave Measurement Laboratory at the Ferdinand-Braun-Institut (FBH), Leibniz-Institute for High Frequency Technology in Berlin, Germany.</p> <p><b>Dr. Matthias Rudolph,</b> is Ulrich L. Rohde Professor for RF and Microwave Techniques at Brandenburg University of Technology in Cottbus, Germany. He heads the Low-Noise components laboratory at the FBH.
<p><b>A fulsome exploration of critical considerations in microwave circuit noise</b></p> <p>In <i>A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement,</i> a team of distinguished researchers deliver a comprehensive introduction to noise in microwave circuits, with a strong focus on noise characterization of devices and circuits. The book describes fluctuations beginning with their physical origin and touches on the general description of noise in linear and non-linear circuits. <p>Several chapters are devoted to the description of noise measurement ­techniques and the interpretation of measured data. A full chapter is dedicated to noise sources as well, including thermal, shot, plasma, and current. <p><i>A Guide to Noise in Microwave Circuits</i> offers examples of measurement problems—like low noise block (LNB) of satellite television – and explores equipment and measurement methods, like the Y, cold source, and 7-state method. This book also includes: <ul><li>A thorough introduction to foundational terms in microwave circuit noise, including average values, amplitude distribution, autocorrelation, cross-correlation, and noise spectra</li> <li>Comprehensive explorations of common noise sources, including thermal noise, the Nyquist formula and thermal radiation, shot noise, plasma noise, and more</li> <li>Practical discussions of noise and linear networks, including narrowband noise</li> <li>In-depth examinations of calculation methods for noise quantities, including noise voltages, currents, and spectra, the noise correlation matrix, and the noise of simple passive networks</li></ul> <p>Perfect for graduate students specializing in microwave and wireless electronics, <i>A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement</i> will also earn a place in the libraries of professional engineers working in microwave or wireless circuits and system design.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €