Details

Nanomaterials in Clinical Therapeutics


Nanomaterials in Clinical Therapeutics

Synthesis and Applications
1. Aufl.

von: Mainak Mukhopadhyay, Arindam Kuila

191,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.08.2022
ISBN/EAN: 9781119857730
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>NANOMATERIALS IN CLINICAL THERAPEUTICS</b> <p><b>In this rapidly developing field, the book focuses on the practical elements of nanomaterial creation, characterization, and development, as well as their usage in clinical research.</b> <p>Nanotechnology-based applications is a rapidly growing field encompassing a diverse range of disciplines that impact our daily lives. Nanotechnology is being used to carry out large-scale reactions in practically every field of biotechnology and healthcare. The incredible progress being made in these applications is particularly true for the healthcare sector, where they are used in cancer detection and treatment, medical implants, tissue engineering, and so forth. Expansions in this discipline are expected to continue in the future, resulting in the creation of a variety of life-saving medical technology and treatment procedures. <p>The primary goal of this book is to disseminate information on nanotechnology’s applications in the biological sciences. A broad array of nanotechnological approaches utilized in different biological applications are highlighted in the book’s 17 chapters, including the employment of nanotechnology in drug delivery. The first three chapters provide an overview of the history and principles of nanotechnology. The synthesis, characterization, and applications of nanomaterials are covered in the next 10 chapters. The last four chapters discuss the use of nanomaterials in clinical research. <p><b>Audience</b><br> The book will be useful for researchers and graduate students in the many areas of science such as biomedicine, environmental biotechnology, bioprocess engineering, renewable energy, chemical engineering, nanotechnology, biotechnology, microbiology, etc.
<p>Preface xix</p> <p><b>Part 1: History and Basic Principles of Nanotechnology 1</b></p> <p><b>1 Introduction to Nanotechnology 3<br /> </b><i>Rekha Sharma, Kritika S. Sharma and Dinesh Kumar</i></p> <p>1.1 Introduction 4</p> <p>1.2 Nanoscale Materials: Importance 5</p> <p>1.3 Nanotechnology: Historical Advances 8</p> <p>1.4 Nanofabrication Methods in Nanotechnology 9         </p> <p>1.4.1 Top-Down Method 10</p> <p>1.4.2 Bottom-Up Method 11</p> <p>1.5 Carbon Nanoallotropes 13</p> <p>1.5.1 Fullerene 13</p> <p>1.5.2 Carbon Nanotubes 14</p> <p>1.5.3 Graphene 15</p> <p>1.6 Classification of the Nanomaterials 16</p> <p>1.6.1 Based on Dimensions 16</p> <p>1.6.2 Based on the Structural Configuration 17</p> <p>1.7 Applications of Nanotechnology 18</p> <p>1.7.1 Chip-Based Plasmonic Sensors 18</p> <p>1.7.2 Nanoparticle-Based Colorimetric Sensors 20</p> <p>1.7.3 Colloidal Nanoparticle-Based Plasmonic Sensors 21</p> <p>1.8 Conclusions and Future Perspectives 23</p> <p>Acknowledgment 23</p> <p>References 24</p> <p><b>2 Functional Principal of Nanotechnology in Clinical Research 33<br /> </b><i>Kalyanee Bera, Biva Ghosh and Mainak Mukhopadhyay</i></p> <p>2.1 Introduction 34</p> <p>2.2 Nanoparticles 36</p> <p>2.3 Carbon-Based Nanoparticles 37</p> <p>2.4 Metal Nanoparticles 37</p> <p>2.4.1 Gold Nanoparticles 38</p> <p>2.4.2 Silver Nanoparticles 39</p> <p>2.4.3 Zinc Nanoparticles 39</p> <p>2.5 Magnetic Nanoparticles 40</p> <p>2.6 Ceramic Nanoparticles 41</p> <p>2.7 Lipid Nanoparticles 41</p> <p>2.8 Polymeric Nanoparticles (Nanoparticles Made of Polymers) 42</p> <p>2.8.1 Synthetic 43</p> <p>2.8.2 Natural 43</p> <p>2.9 Hydrogel 44</p> <p>2.10 Nanofibers 45</p> <p>2.11 Nanocomposites 45</p> <p>2.12 Nanotechnologies for Clinical Laboratory Diagnosis 46</p> <p>2.12.1 Nanotechnology-Based Biochips and Microarrays 46</p> <p>2.12.2 Protein Microarrays/Chips 47</p> <p>2.12.3 Nanobiosensors 48</p> <p>2.12.4 PEBBLE Nanosensors (Probes Encapsulated by Biologically Localized Embedding) 48</p> <p>2.12.5 Quantum Dots 48</p> <p>2.12.6 Fluorescence Microscopy for Chromosomal Changes 49</p> <p>2.12.7 Nanobarcodes 49</p> <p>2.12.8 Protein Biobarcode Assay 50</p> <p>2.12.9 Cantilever Arrays 50</p> <p>2.12.10 DNA-Protein and Nanoparticles Conjugates 51</p> <p>2.12.11 Resonance Light Scattering Technology 52</p> <p>2.12.12 Method of Colorimetric DNA Detection 52</p> <p>2.12.13 Upcoming Phosphor Technology Based on Nanoparticles 53</p> <p>2.13 Clinical Uses of Nanotechnology 53</p> <p>2.13.1 Application of Nanocrystals in Immunohistochemistry 54</p> <p>2.13.2 Detection of Illness Biomarkers 54</p> <p>2.13.3 Disease Gene Detection 54</p> <p>2.13.4 Detection of Microorganisms 55</p> <p>2.13.5 Dental Nanotechnology 55</p> <p>2.14 Nanofilm Applications 56</p> <p>2.15 Nanomedicine Implementation 57</p> <p>2.16 Future Prospects 58</p> <p>2.17 Conclusion 58</p> <p>References 59</p> <p><b>3 Application of Nanotechnology in Clinical Research: Present and Future Prospects 75<br /> </b><i>Mansi Sharma, Pragati Chauhan, Rekha Sharma and Dinesh Kumar</i></p> <p>3.1 Introduction 76</p> <p>3.2 Scope of Nanotechnology in Clinical Research 77</p> <p>3.3 Classification 78</p> <p>3.3.1 Nanomaterials 78</p> <p>3.3.1.1 Nanocrystal 80</p> <p>3.3.1.2 Nanostructures 81</p> <p>3.3.2 Nanodevices 89</p> <p>3.4 Applications of Nanotechnology 91</p> <p>3.4.1 Drug Delivery 93</p> <p>3.4.2 Cancer Treatment 93</p> <p>3.4.3 Gene Therapy 95</p> <p>3.4.4 Tissue Engineering 95</p> <p>3.4.5 Wound Treatment 96</p> <p>3.4.6 Visualization 96</p> <p>3.4.7 Tuberculosis Treatment 97</p> <p>3.4.8 In Ophthalmology 97</p> <p>3.4.9 Neurodegenerative Treatment 97</p> <p>3.4.10 Diabetes Treatment 98</p> <p>3.4.11 Protein Detection 98</p> <p>3.4.12 In Surgery 99</p> <p>3.4.13 Antibiotic Resistance 99</p> <p>3.4.14 Immune Response 99</p> <p>3.4.15 Operative Dentistry 101</p> <p>3.4.16 Diagnostic Techniques 102</p> <p>3.5 Conclusion 103</p> <p>Acknowledgment 103</p> <p>References 104</p> <p><b>Part 2: Synthesis, Characterization and Applications of Nanomaterials 115</b></p> <p><b>4 Fermentation Process Versus Nanotechnology 117<br /> </b><i>Nabya Nehal, Anushka Mathur, Modhumita Ganguli and Priyanka Singh</i></p> <p>4.1 Overview of Microbial Technology 118</p> <p>4.1.1 Biological Methodologies for Extraction and Purification of Biomolecules 118</p> <p>4.1.2 Recent Advancements in Bioprocess Technology 119</p> <p>4.1.2.1 Genetic Engineering and Random Mutagenesis 120</p> <p>4.1.2.2 Immobilization Techniques 120</p> <p>4.2 Nanotechnology 123</p> <p>4.2.1 Classification of Nanostructures 125</p> <p>4.2.1.1 Organic Nanocarriers 126</p> <p>4.2.1.2 Inorganic Nanocarriers 127</p> <p>4.2.2 Self-Assembly 128</p> <p>4.2.3 Methodology for Synthesis of Nanoparticles 129</p> <p>4.3 Biogenic Sources 131</p> <p>4.3.1 From Bacteria 131</p> <p>4.3.2 Filamentous Fungi 133</p> <p>4.3.3 Plants 135</p> <p>4.3.4 Microalgae 135</p> <p>4.4 The Extent of Biogenic Nanoparticles in Industrial Sectors 139</p> <p>4.4.1 Biomedical and Pharmaceutical Sectors 143</p> <p>4.4.2 Environmental Remediation 146</p> <p>4.4.3 Food Sectors 148</p> <p>References 158</p> <p><b>5 Application of Geno-Sensors and Nanoparticles in Gene Therapy: A New Avenue for Gene Delivery 177<br /> </b><i>Sharmili Roy, Monalisha Ghosh Dastidar, Vivek Sharma, Beom Soo Kim and Rajiv Chandra Rajak</i></p> <p>5.1 Introduction 178</p> <p>5.2 Inorganic Nanomaterials and Their Application in Gene Delivery 179</p> <p>5.2.1 Magnetic Nanoparticles 180</p> <p>5.2.2 Quantum Dots 181</p> <p>5.2.3 Gold, Silver, and Platinum Nanoparticles 182</p> <p>5.2.4 Graphene-Based Nanoparticles 186</p> <p>5.3 Carbon-Based Nanotubes and Their Applications in Gene Delivery 187</p> <p>5.4 Polymer-Based Nanomaterials and Their Applications in Gene Delivery 188</p> <p>5.5 Protein, Lipid, and Peptide-Based Nanomaterials and Their Advantages for Gene Delivery 192</p> <p>5.6 Conclusion: Challenges and Outlook 194</p> <p>References 196</p> <p><b>6 Flexuous Plant Viruses as Nanomaterials for Biomedical Applications 205<br /> </b><i>De Swarnalok</i></p> <p>6.1 Introduction 205</p> <p>6.2 Plant Virus Particle Structures 207</p> <p>6.2.1 Viruses With Icosahedral Symmetry 207</p> <p>6.2.2 Viruses with Helical Symmetry 208</p> <p>6.2.2.1 Rigid Rod-Like Viruses 208</p> <p>6.2.2.2 Flexuous Filament-Like Viruses 209</p> <p>6.3 Virus Nanoparticles and Virus-Like Particles 209</p> <p>6.3.1 VNPs 209</p> <p>6.3.2 VLPs 210</p> <p>6.4 Production Platforms for VNPs and VLPs 210</p> <p>6.4.1 VNPs/VLPs in Plants 211</p> <p>6.4.2 VLPs via In Vitro Assembly 212</p> <p>6.5 Functionalization of Viruses 212</p> <p>6.5.1 Genetic Engineering 213</p> <p>6.5.2 Chemical Conjugation 213</p> <p>6.5.3 Other Functionalization Strategies 214</p> <p>6.6 Uses of Flexuous Plant Viruses in Medicine 214</p> <p>6.6.1 Vaccination and Immunotherapy 214</p> <p>6.6.2 3D Tissue Engineering 215</p> <p>6.6.3 Drug Delivery and Targeting 215</p> <p>6.6.4 Bioimaging 216</p> <p>6.6.5 Biosensing 217</p> <p>6.7 Conclusions 217</p> <p>References 218</p> <p><b>7 Role of Plants in Nanoparticle Synthesis 225<br /> </b><i>Tanya Kapoor, Md Azizur Rahman, Shally Pandit and Anand Prakash</i></p> <p>7.1 Introduction 225</p> <p>7.2 Characterization of Nanoparticles 227</p> <p>7.3 Classification of Nanoparticles 227</p> <p>7.4 Biochemical Synthesis of Nanoparticles 228</p> <p>7.5 Green Synthesis Approach for NPs 232</p> <p>7.6 Plants’ Role in the Green Synthesis of NPs 232</p> <p>7.7 Green Synthesis Using Enzymes 234</p> <p>7.8 Nanoparticles Role in Photosynthesis 235</p> <p>7.9 Applications of Green Synthesis NPs 235</p> <p>7.10 Conclusion 237</p> <p>References 237</p> <p><b>8 Static DNA Nanostructures and Their Applications 245<br /> </b><i>Debalina Bhattacharya</i></p> <p>8.1 Introduction 245</p> <p>8.1.1 DNA Structure 245</p> <p>8.1.2 Types of DNA Structures 247</p> <p>8.2 Static DNA Nanostructures 247</p> <p>8.2.1 DNA Tile Assembly 248</p> <p>8.2.2 DNA Origami and Brick Assembly 251</p> <p>8.3 DNA Origami Nanostructure 251</p> <p>8.4 DNA Polyhedra 252</p> <p>8.5 DNA-Functionalized Nanoparticles 253</p> <p>8.6 Stability in Biological Fluid and Cellular Uptake of DNA-NSs and DNA-NPs 254</p> <p>8.7 Application 255</p> <p>8.7.1 DNA Nanostructures as Biosensors 255</p> <p>8.7.2 DNA in Therapeutics 257</p> <p>8.7.3 Photo Thermal Therapy and Photo Dynamic Therapy 258</p> <p>8.7.4 DNA-Based Enzyme Reactors 259</p> <p>8.7.5 DNA-Based Gene Delivery 260</p> <p>8.7.6 DNA Scaffolds for Nanophotonics 261</p> <p>8.7.7 Conclusion 261</p> <p>References 262</p> <p><b>9 Protein-Based Nanostructures 269<br /> </b><i>Ditipriya Hazra and Amlan Roychowdhury</i></p> <p>9.1 Introduction 269</p> <p>9.2 Peptide-Based Nanoparticle 270</p> <p>9.3 Protein-Based Nanostructure 271</p> <p>9.3.1 Oligomerization of Protein 272</p> <p>9.3.2 Repeat Domain Proteins 273</p> <p>9.3.3 Protein-Based 2D and 3D Lattice Assembly of Nanoparticles 274</p> <p>9.3.4 Covalently Assembled Single Chain-Based Nanostructure 274</p> <p>9.4 Application of Protein-Based Nanostructures in Therapeutics 275</p> <p>9.4.1 Protein Nanoparticle for Drug Delivery 275</p> <p>9.4.2 Nanoparticle-Based Vaccines 275</p> <p>9.4.3 Hydrogel 277</p> <p>References 278</p> <p><b>10 Nanocomposites-Based Biodegradable Polymers 285<br /> </b><i>Pragati Chauhan, Mansi Sharma, Rekha Sharma and Dinesh Kumar</i></p> <p>10.1 Introduction 286</p> <p>10.2 Nanocomposite 287</p> <p>10.3 Biodegradable Polymer 288</p> <p>10.4 Biopolymer 289</p> <p>10.5 Nanofillers 289</p> <p>10.6 Cellulose and Its Sources 289</p> <p>10.7 Nanocellulose 291</p> <p>10.8 Nanocellulose Composite Processing 292</p> <p>10.8.1 Melt Mixing Method 293</p> <p>10.8.1.1 Injection Molding Method 294</p> <p>10.8.1.2 Resin Transfer Molding Method 295</p> <p>10.8.1.3 Extrusion Method 296</p> <p>10.8.2 Solution Casting Method 297</p> <p>10.8.3 Particle Suspensions Method 299</p> <p>10.8.4 In-Situ Polymerization Method 300</p> <p>10.8.5 Layer-by-Layer Lamination Method 303</p> <p>10.9 Nanocomposites Used as Packaging Materials 305</p> <p>10.10 Future Perspective and Application 306</p> <p>10.11 Conclusions 307</p> <p>References 308</p> <p><b>11 Instrumentation for the Analysis and Characterization of Nanomaterials 317<br /> </b><i>Andrea Komesu, Johnatt Oliveira, Débora Kono Taketa Moreira, Yvan Jesus Olortiga Asencios, João Moreira Neto and Luiza Helena da Silva Martins</i></p> <p>11.1 Introduction 318</p> <p>11.2 Scanning Electron Microscopy [SEM] 319</p> <p>11.3 Energy Dispersive X-Ray Analysis [EDX] 320</p> <p>11.4 Atomic Force Microscopy [AFM] 322</p> <p>11.5 Transmission Electron Microscopy [TEM] 323</p> <p>11.6 Scanning Tunneling Microscopy [STM] 325</p> <p>11.7 Ultraviolet-Visible Spectroscopy 327</p> <p>11.8 Raman Spectroscopy 329</p> <p>11.9 Fourier Transform Infrared Spectroscopy 330</p> <p>11.10 X-Ray Diffraction [XRD] 332</p> <p>11.11 X-Ray Photoelectron Spectroscopy [XPS] 333</p> <p>11.12 Zeta Potential 335</p> <p>11.13 Conclusions 336</p> <p>References 337</p> <p><b>12 Application of Microbial Nanoparticles 343<br /> </b><i>Monika Yadav, Sneha Upreti and Priyanka Singh</i></p> <p>12.1 Introduction 344</p> <p>12.2 Categorization of Nanoparticles 346</p> <p>12.2.1 Polymeric Nanoparticles 346</p> <p>12.2.1.1 Polymeric Micelles 346</p> <p>12.2.1.2 Nanosphere 347</p> <p>12.2.1.3 Nanocapsules 347</p> <p>12.2.1.4 Polymerosome 347</p> <p>12.2.1.5 Nanogels 348</p> <p>12.2.1.6 Dendrimers 348</p> <p>12.2.1.7 Nanocomplex 349</p> <p>12.2.2 Lipid-Based Nanoparticles 349</p> <p>12.2.2.1 Liposomes 349</p> <p>12.2.2.2 Solid Lipid Nanoparticles 349</p> <p>12.2.2.3 Lipoplexes 349</p> <p>12.2.3 Inorganic Nanoparticles 350</p> <p>12.2.3.1 Gold Nanoparticles 350</p> <p>12.2.3.2 Magnetic Nanoparticles 350</p> <p>12.2.3.3 Silica Nanoparticles 351</p> <p>12.2.3.4 Quantum Dots 351</p> <p>12.2.3.5 Nanocarbons 351</p> <p>12.2.4 Bioinspired Nanoparticles 352</p> <p>12.2.4.1 Exosomes 352</p> <p>12.2.4.2 Protein Nanoparticles 352</p> <p>12.2.4.3 DNA Nanostructures 352</p> <p>12.2.5 Hybrid Nanoparticles 353</p> <p>12.2.5.1 Cell Membrane-Coated Nanoparticles 353</p> <p>12.2.5.2 Organic-Inorganic Nanocomposites 353</p> <p>12.2.5.3 Lipid-Polymer Nanoparticles (LPNs) 354</p> <p>12.3 Microbial-Mediated Synthesis of Nanoparticles for Therapeutic and Biomedical Applications 354</p> <p>12.3.1 Bacteria 355</p> <p>12.3.2 Molds and Yeast 356</p> <p>12.3.3 Microalgae 357</p> <p>12.4 Agriculture and Food Nanotechnology 358</p> <p>12.4.1 Food Nanotechnology 359</p> <p>12.4.1.1 Food Processing 359</p> <p>12.4.1.2 Food Packaging 359</p> <p>12.4.2 Agriculture Nanotechnology 360</p> <p>12.4.3 Enzyme Nanotechnology 360</p> <p>12.5 Role of Nanoparticles in the Medical Field 361</p> <p>12.5.1 Nanoparticles Drug Delivery Applications 362</p> <p>12.5.1.1 Drug Loading 362</p> <p>12.5.1.2 Covalent Bonding (Prodrug) 362</p> <p>12.5.1.3 Noncovalent Encapsulation 363</p> <p>12.6 Application of Microbial Nanoparticles 363</p> <p>12.6.1 Application of NPs in Food Industry 364</p> <p>12.6.2 Applications of Nanoparticles in the Pharmaceuticals Industry 368</p> <p>12.6.2.1 Biopolymeric Nanoparticles in Detection, Diagnosis and Imaging 369</p> <p>12.6.2.2 In Drug Liberation 370</p> <p>12.6.2.3 In Magnetic Partition and Recognition 372</p> <p>12.6.3 Application of Nanoparticles in Cosmetic Sector 373</p> <p>12.6.4 Nanoparticles in Bioremediation 375</p> <p>12.6.4.1 Dendrimers in the Process of Bioremediation 376</p> <p>12.6.4.2 Carbon Nanoparticles in Bioremediation 377</p> <p>12.6.4.3 Biogenic Uraninite NMs in Bioremediation 378</p> <p>12.7 Conclusion 378</p> <p>References 379</p> <p><b>13 Bio-Nanostructures: Applications and Perspectives 393<br /> </b><i>Tanya Kapoor, Shally Pandit and Anand Prakash</i></p> <p>13.1 Introduction 393</p> <p>13.2 Classification of Nanostructures 394</p> <p>13.2.1 Self-Assembled Nanostructures 394</p> <p>13.2.2 Carbon-Based Nanostructures 394</p> <p>13.2.3 Nanocellulose Nanostructures 395</p> <p>13.2.4 Graphene Oxide-Based Nanostructures 395</p> <p>13.2.5 Silica-Based Nanostructures 396</p> <p>13.3 Characterization Method of Nanostructures 396</p> <p>13.4 Applications of Bio-Nanoparticles 401</p> <p>13.5 Conclusion 404</p> <p>References 405</p> <p><b>Part 3: Application of Nanomaterials in Clinical Research 411</b></p> <p><b>14 Nanomaterials for Tissue Grafting 413<br /> </b><i>Paramjeet Singh, Atanu Kotal and Avik Acharya Chowdhury</i></p> <p>14.1 Introduction 414</p> <p>14.2 Tissue Engineering 415</p> <p>14.2.1 Bone Tissue Engineering 416</p> <p>14.2.2 Cartilage Tissue Engineering 418</p> <p>14.2.3 Tissue Grafting 420</p> <p>14.3 What is Nanotechnology? 422</p> <p>14.4 Nanomaterials and Nanoparticles 423</p> <p>14.4.1 Nanomaterials 423</p> <p>14.4.1.1 Organic Nanomaterials 423</p> <p>14.4.1.2 Inorganic Nanomaterials 424</p> <p>14.4.1.3 Composite Nanomaterials 424</p> <p>14.4.2 Nanoparticles 425</p> <p>14.4.2.1 Nanoparticles as Bioactive Agents 431</p> <p>14.4.2.2 Scaffolds and Nanoparticles 431</p> <p>14.5 Future Prospects 433</p> <p>14.6 Conclusion 435</p> <p>References 436</p> <p><b>15 Nanoparticles for Cancer Therapy 441<br /> </b><i>Kaliyaperumal Rekha, Nalok Dutta, Muthu Thiruvengadam, Mohammad Ali Shariati, Muhammad Usman Khan, Muhammad Usman, Mihir Bhatta, Kunal Ghosh, Shaheer Arif and Muhammad Naeem</i></p> <p>15.1 Introduction 442</p> <p>15.2 Nanoparticles as Drug Delivery in Cancer Treatment 442</p> <p>15.3 Drug Nanocarriers Classification 444</p> <p>15.4 Organic Nanocarriers 444</p> <p>15.4.1 Liposomes 444</p> <p>15.4.2 Solid Lipid Nanoparticles 445</p> <p>15.4.3 Polymer Nanoparticles 446</p> <p>15.4.4 Polymer Micelles 446</p> <p>15.4.5 Dendrimers 446</p> <p>15.4.6 Polymersomes 447</p> <p>15.4.7 Hydrogel Nanoparticles 447</p> <p>15.4.8 Mineral Nanoparticles 448</p> <p>15.5 Tumor Targeting by Nanoparticles 448</p> <p>15.6 Utilization of Nanoparticles in Imaging and Treatment for Cancer 449</p> <p>15.7 Use of Nanoparticles in the Diagnosis and Treatment of Breast Cancer 450</p> <p>15.8 The Use of Nanoparticles in the Diagnosis and Treatment of Brain Cancer 451</p> <p>15.9 Conclusion 452</p> <p>References 452</p> <p><b>16 Nanoantibiotics 459<br /> </b><i>Rituparna Saha and Mainak Mukhopadhyay</i></p> <p>16.1 Introduction 460</p> <p>16.2 Nanoantibiotics—A Potent Alternative to Antibiotics? 461</p> <p>16.3 Developmental Strategy of Nanoantibiotics Over Antibiotics 462</p> <p>16.4 Mechanism of Action of Nanoantibiotics 463</p> <p>16.5 Common Functions of Nanoantibiotics 463</p> <p>16.6 Nanomaterials—A Suitable Source of Nanoantibiotics 464</p> <p>16.7 Types of Nanoantibiotics 465</p> <p>16.7.1 Through Direct Formulations 465</p> <p>16.7.1.1 Metal-Based Nanoparticles 465</p> <p>16.7.1.2 Carbon-Based Nanomaterials 466</p> <p>16.7.1.3 Nanoemulsions 466</p> <p>16.7.1.4 Nanocomposites 466</p> <p>16.7.2 Through Indirect Formulations 467</p> <p>16.7.2.1 Polymers 467</p> <p>16.7.2.2 Dendrimers 467</p> <p>16.7.2.3 Hydrogels 468</p> <p>16.7.2.4 Liposomes 468</p> <p>16.8 Advantages of Nanoantibiotics 468</p> <p>16.9 Disadvantages of Nanoantibiotics 469</p> <p>16.10 Treatment of Multidrug-Resistant Bacteria with Nanoantibiotics 469</p> <p>16.11 Treatment of Methicillin-Resistant Staphylococcus aureus with Nanoantibiotics 470</p> <p>16.12 Development of Targeted Therapy Using Nanoantibiotics 470</p> <p>16.13 Future Prospects of Nanoantibiotics 471</p> <p>16.14 Conclusion 471</p> <p>References 472</p> <p><b>17 Theranostic Nanomaterials and Its Use in Biomedicine 479<br /> </b><i>Arka Mukhopadhyay</i></p> <p>17.1 Introduction 480</p> <p>17.2 Biomedical Payloads 482</p> <p>17.2.1 Imaging 482</p> <p>17.2.1.1 Optical Imaging 482</p> <p>17.2.1.2 Magnetic Resonance Imaging 486</p> <p>17.2.1.3 Computed Tomography 486</p> <p>17.2.1.4 Positron Emission Tomography 486</p> <p>17.2.1.5 Photo Acoustic Tomography 486</p> <p>17.2.1.6 Ultrasound 488</p> <p>17.2.1.7 Multimodal Image Therapy 488</p> <p>17.2.2 Photodynamic Therapy 488</p> <p>17.2.3 Targeted Gene Therapy 489</p> <p>17.2.4 Photothermal Therapy 489</p> <p>17.3 Carrier 490</p> <p>17.3.1 Polymers 491</p> <p>17.3.2 Lipids 491</p> <p>17.3.3 Dendrimers 491</p> <p>17.3.4 Inorganic Nanocarriers 492</p> <p>17.4 Theranostic Nanomaterials and Applications 492</p> <p>17.4.1 Magnetic Nanoparticles 492</p> <p>17.4.2 Quantum Dots 493</p> <p>17.4.3 Anisotropic Nanoparticles 494</p> <p>17.4.4 Upconverting Nanoparticles 494</p> <p>17.4.5 Carbon Nanotubes 495</p> <p>17.4.6 Dendrimers 496</p> <p>17.4.7 Other Nanomaterials 496</p> <p>17.4.7.1 Gold (Au) Nanoparticles (GNPs) 496</p> <p>17.4.7.2 Conjugated Polymers 498</p> <p>17.5 Pharmacokinetics and Pharmacodynamics 499</p> <p>17.6 Conclusions: Challenges and Future Perspectives 501</p> <p>References 503</p> <p>Appendix 509</p> <p>Index 511</p>
<p><b> Mainak Mukhopadhyay, PhD,</b> is an assistant professor in the Department of Biotechnology, JIS University, Kolkata, India. He obtained his PhD from the Indian Institute of Technology in Kharagpur, India in 2014. His research interests include enzymology, nanobiotechnology, and biomass conversion technology. He was awarded Petrotech Research Fellowship in 2008. In 2016 he was awarded the Early Career Research Award from DST-SERB. He has co-authored 15 peer-reviewed papers and three review papers, edited one book and 15 book chapters, and filed three patents.</p> <p><b> Arindam Kuila</b> is an assistant professor at the Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan, India. Previously, he worked as a research associate at Hindustan Petroleum Green R&D Centre, Bangalore, India. He gained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013 in the area of lignocellulosic biofuel production. He has co-authored 18 peer-reviewed research papers and seven review papers, edited four books and eight book chapters, and filed five patents.
<p><b>In this rapidly developing field, the book focuses on the practical elements of nanomaterial creation, characterization, and development, as well as their usage in clinical research.</b></p> <p>Nanotechnology-based applications is a rapidly growing field encompassing a diverse range of disciplines that impact our daily lives. Nanotechnology is being used to carry out large-scale reactions in practically every field of biotechnology and healthcare. The incredible progress being made in these applications is particularly true for the healthcare sector, where they are used in cancer detection and treatment, medical implants, tissue engineering, and so forth. Expansions in this discipline are expected to continue in the future, resulting in the creation of a variety of life-saving medical technology and treatment procedures. <p>The primary goal of this book is to disseminate information on nanotechnology’s applications in the biological sciences. A broad array of nanotechnological approaches utilized in different biological applications are highlighted in the book’s 17 chapters, including the employment of nanotechnology in drug delivery. The first three chapters provide an overview of the history and principles of nanotechnology. The synthesis, characterization, and applications of nanomaterials are covered in the next 10 chapters. The last four chapters discuss the use of nanomaterials in clinical research. <p><b>Audience</b><br> The book will be useful for researchers and graduate students in the many areas of science such as biomedicine, environmental biotechnology, bioprocess engineering, renewable energy, chemical engineering, nanotechnology, biotechnology, microbiology, etc.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €