Details

Convergence of Deep Learning in Cyber-IoT Systems and Security


Convergence of Deep Learning in Cyber-IoT Systems and Security


Artificial Intelligence and Soft Computing for Industrial Transformation 1. Aufl.

von: Rajdeep Chakraborty, Anupam Ghosh, Jyotsna Kumar Mandal, S. Balamurugan

173,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.10.2022
ISBN/EAN: 9781119857679
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>CONVERGENCE OF DEEP LEARNING IN CYBER-IOT SYSTEMS AND SECURITY</b> <p><b>In-depth analysis of Deep Learning-based cyber-IoT systems and security which will be the industry leader for the next ten years. </b> <p>The main goal of this book is to bring to the fore unconventional cryptographic methods to provide cyber security, including cyber-physical system security and IoT security through deep learning techniques and analytics with the study of all these systems. <p>This book provides innovative solutions and implementation of deep learning-based models in cyber-IoT systems, as well as the exposed security issues in these systems. The 20 chapters are organized into four parts. Part I gives the various approaches that have evolved from machine learning to deep learning. Part II presents many innovative solutions, algorithms, models, and implementations based on deep learning. Part III covers security and safety aspects with deep learning. Part IV details cyber-physical systems as well as a discussion on the security and threats in cyber-physical systems with probable solutions. <p><b>Audience</b> <p>Researchers and industry engineers in computer science, information technology, electronics and communication, cybersecurity and cryptography.
<p>Preface xvii</p> <p><b>Part I: Various Approaches from Machine Learning to Deep Learning 1</b></p> <p><b>1 Web-Assisted Noninvasive Detection of Oral Submucous Fibrosis Using IoHT 3<br /> </b><i>Animesh Upadhyaya, Vertika Rai, Debdutta Pal, Surajit Bose and Somnath Ghosh</i></p> <p>1.1 Introduction 3</p> <p>1.2 Literature Survey 6</p> <p>1.2.1 Oral Cancer 6</p> <p>1.3 Primary Concepts 7</p> <p>1.3.1 Transmission Efficiency 7</p> <p>1.4 Propose Model 9</p> <p>1.4.1 Platform Configuration 9</p> <p>1.4.2 Harvard Architectural Microcontroller Base Wireless Communication Board 10</p> <p>1.4.2.1 NodeMCU ESP8266 Microcontroller 10</p> <p>1.4.2.2 Gas Sensor 12</p> <p>1.4.3 Experimental Setup 13</p> <p>1.4.4 Process to Connect to Sever and Analyzing Data on Cloud 14</p> <p>1.5 Comparative Study 16</p> <p>1.6 Conclusion 17</p> <p>References 17</p> <p><b>2 Performance Evaluation of Machine Learning and Deep Learning Techniques: A Comparative Analysis for House Price Prediction 21<br /> </b><i>Sajeev Ram Arumugam, Sheela Gowr, Abimala, Balakrishna and Oswalt Manoj</i></p> <p>2.1 Introduction 22</p> <p>2.2 Related Research 23</p> <p>2.2.1 Literature Review on Comparing the Performance of the ML/DL Algorithms 23</p> <p>2.2.2 Literature Review on House Price Prediction 25</p> <p>2.3 Research Methodology 26</p> <p>2.3.1 Data Collection 27</p> <p>2.3.2 Data Visualization 27</p> <p>2.3.3 Data Preparation 28</p> <p>2.3.4 Regression Models 29</p> <p>2.3.4.1 Simple Linear Regression 29</p> <p>2.3.4.2 Random Forest Regression 30</p> <p>2.3.4.3 Ada Boosting Regression 31</p> <p>2.3.4.4 Gradient Boosting Regression 32</p> <p>2.3.4.5 Support Vector Regression 33</p> <p>2.3.4.6 Artificial Neural Network 34</p> <p>2.3.4.7 Multioutput Regression 36</p> <p>2.3.4.8 Regression Using Tensorflow—Keras 37</p> <p>2.3.5 Classification Models 39</p> <p>2.3.5.1 Logistic Regression Classifier 39</p> <p>2.3.5.2 Decision Tree Classifier 39</p> <p>2.3.5.3 Random Forest Classifier 41</p> <p>2.3.5.4 Naïve Bayes Classifier 41</p> <p>2.3.5.5 K-Nearest Neighbors Classifier 42</p> <p>2.3.5.6 Support Vector Machine Classifier (SVM) 43</p> <p>2.3.5.7 Feed Forward Neural Network 43</p> <p>2.3.5.8 Recurrent Neural Networks 44</p> <p>2.3.5.9 LSTM Recurrent Neural Networks 44</p> <p>2.3.6 Performance Metrics for Regression Models 45</p> <p>2.3.7 Performance Metrics for Classification Models 46</p> <p>2.4 Experimentation 47</p> <p>2.5 Results and Discussion 48</p> <p>2.6 Suggestions 60</p> <p>2.7 Conclusion 60</p> <p>References 62</p> <p><b>3 Cyber Physical Systems, Machine Learning & Deep Learning— Emergence as an Academic Program and Field for Developing Digital Society 67<br /> </b><i>P. K. Paul</i></p> <p>3.1 Introduction 68</p> <p>3.2 Objective of the Work 69</p> <p>3.3 Methods 69</p> <p>3.4 Cyber Physical Systems: Overview with Emerging Academic Potentiality 70</p> <p>3.5 ml and dl Basics with Educational Potentialities 72</p> <p>3.5.1 Machine Learning (ML) 72</p> <p>3.5.2 Deep Learning 73</p> <p>3.6 Manpower and Developing Scenario in Machine Learning and Deep Learning 74</p> <p>3.7 dl & ml in Indian Context 79</p> <p>3.8 Conclusion 81</p> <p>References 82</p> <p><b>4 Detection of Fake News and Rumors in the Social Media Using Machine Learning Techniques With Semantic Attributes 85<br /> </b><i>Diganta Saha, Arijit Das, Tanmay Chandra Nath, Soumyadip Saha and Ratul Das</i></p> <p>4.1 Introduction 86</p> <p>4.2 Literature Survey 87</p> <p>4.3 Proposed Work 88</p> <p>4.3.1 Algorithm 89</p> <p>4.3.2 Flowchart 90</p> <p>4.3.3 Explanation of Approach 91</p> <p>4.4 Results and Analysis 92</p> <p>4.4.1 Datasets 92</p> <p>4.4.2 Evaluation 93</p> <p>4.4.2.1 Result of 1st Dataset 93</p> <p>4.4.2.2 Result of 2nd Dataset 94</p> <p>4.4.2.3 Result of 3rd Dataset 94</p> <p>4.4.3 Relative Comparison of Performance 95</p> <p>4.5 Conclusion 95</p> <p>References 96</p> <p><b>Part II: Innovative Solutions Based on Deep Learning 99</b></p> <p><b>5 Online Assessment System Using Natural Language Processing Techniques 101<br /> </b><i>S. Suriya, K. Nagalakshmi and Nivetha S.</i></p> <p>5.1 Introduction 102</p> <p>5.2 Literature Survey 103</p> <p>5.3 Existing Algorithms 108</p> <p>5.4 Proposed System Design 111</p> <p>5.5 System Implementation 115</p> <p>5.6 Conclusion 120</p> <p>References 121</p> <p><b>6 On a Reference Architecture to Build Deep-Q Learning-Based Intelligent IoT Edge Solutions 123<br /> </b><i>Amit Chakraborty, Ankit Kumar Shaw and Sucharita Samanta</i></p> <p>6.1 Introduction 124</p> <p>6.1.1 A Brief Primer on Machine Learning 124</p> <p>6.1.1.1 Types of Machine Learning 124</p> <p>6.2 Dynamic Programming 128</p> <p>6.3 Deep Q-Learning 129</p> <p>6.4 IoT 130</p> <p>6.4.1 Azure 130</p> <p>6.4.1.1 IoT on Azure 130</p> <p>6.5 Conclusion 144</p> <p>6.6 Future Work 144</p> <p>References 145</p> <p><b>7 Fuzzy Logic-Based Air Conditioner System 147<br /> </b><i>Suparna Biswas, Sayan Roy Chaudhuri, Ayusha Biswas and Arpan Bhawal</i></p> <p>7.1 Introduction 147</p> <p>7.2 Fuzzy Logic-Based Control System 149</p> <p>7.3 Proposed System 149</p> <p>7.3.1 Fuzzy Variables 149</p> <p>7.3.2 Fuzzy Base Class 154</p> <p>7.3.3 Fuzzy Rule Base 155</p> <p>7.3.4 Fuzzy Rule Viewer 156</p> <p>7.4 Simulated Result 157</p> <p>7.5 Conclusion and Future Work 163</p> <p>References 163</p> <p><b>8 An Efficient Masked-Face Recognition Technique to Combat with COVID- 19 165<br /> </b><i>Suparna Biswas</i></p> <p>8.1 Introduction 165</p> <p>8.2 Related Works 167</p> <p>8.2.1 Review of Face Recognition for Unmasked Faces 167</p> <p>8.2.2 Review of Face Recognition for Masked Faces 168</p> <p>8.3 Mathematical Preliminaries 169</p> <p>8.3.1 Digital Curvelet Transform (DCT) 169</p> <p>8.3.2 Compressive Sensing–Based Classification 170</p> <p>8.4 Proposed Method 171</p> <p>8.5 Experimental Results 173</p> <p>8.5.1 Database 173</p> <p>8.5.2 Result 175</p> <p>8.6 Conclusion 179</p> <p>References 179</p> <p><b>9 Deep Learning: An Approach to Encounter Pandemic Effect of Novel Corona Virus (COVID-19) 183<br /> </b><i>Santanu Koley, Pinaki Pratim Acharjya, Rajesh Mukherjee, Soumitra Roy and Somdeep Das</i></p> <p>9.1 Introduction 184</p> <p>9.2 Interpretation With Medical Imaging 185</p> <p>9.3 Corona Virus Variants Tracing 188</p> <p>9.4 Spreading Capability and Destructiveness of Virus 191</p> <p>9.5 Deduction of Biological Protein Structure 192</p> <p>9.6 Pandemic Model Structuring and Recommended Drugs 192</p> <p>9.7 Selection of Medicine 195</p> <p>9.8 Result Analysis 197</p> <p>9.9 Conclusion 201</p> <p>References 202</p> <p><b>10 Question Answering System Using Deep Learning in the Low Resource Language Bengali 207<br /> </b><i>Arijit Das and Diganta Saha</i></p> <p>10.1 Introduction 208</p> <p>10.2 Related Work 210</p> <p>10.3 Problem Statement 215</p> <p>10.4 Proposed Approach 215</p> <p>10.5 Algorithm 216</p> <p>10.6 Results and Discussion 219</p> <p>10.6.1 Result Summary for TDIL Dataset 219</p> <p>10.6.2 Result Summary for SQuAD Dataset 219</p> <p>10.6.3 Examples of Retrieved Answers 220</p> <p>10.6.4 Calculation of TP, TN, FP, FN, Accuracy, Precision, Recall, and F1 score 221</p> <p>10.6.5 Comparison of Result with other Methods and Dataset 222</p> <p>10.7 Analysis of Error 223</p> <p>10.8 Few Close Observations 223</p> <p>10.9 Applications 224</p> <p>10.10 Scope for Improvements 224</p> <p>10.11 Conclusions 224</p> <p>Acknowledgments 225</p> <p>References 225</p> <p><b>Part III: Security and Safety Aspects with Deep Learning 231</b></p> <p><b>11 Secure Access to Smart Homes Using Biometric Authentication With RFID Reader for IoT Systems 233<br /> </b><i>K.S. Niraja and Sabbineni Srinivasa Rao</i></p> <p>11.1 Introduction 234</p> <p>11.2 Related Work 235</p> <p>11.3 Framework for Smart Home Use Case With Biometric 236</p> <p>11.3.1 RFID-Based Authentication and Its Drawbacks 236</p> <p>11.4 Control Scheme for Secure Access (CSFSC) 237</p> <p>11.4.1 Problem Definition 237</p> <p>11.4.2 Biometric-Based RFID Reader Proposed Scheme 238</p> <p>11.4.3 Reader-Based Procedures 240</p> <p>11.4.4 Backend Server-Side Procedures 240</p> <p>11.4.5 Reader Side Final Compute and Check Operations 240</p> <p>11.5 Results Observed Based on Various Features With Proposed and Existing Methods 242</p> <p>11.6 Conclusions and Future Work 245</p> <p>References 246</p> <p><b>12 MQTT-Based Implementation of Home Automation System Prototype With Integrated Cyber-IoT Infrastructure and Deep Learning–Based Security Issues 249<br /> </b><i>Arnab Chakraborty</i></p> <p>12.1 Introduction 250</p> <p>12.2 Architecture of Implemented Home Automation 252</p> <p>12.3 Challenges in Home Automation 253</p> <p>12.3.1 Distributed Denial of Service and Attack 254</p> <p>12.3.2 Deep Learning–Based Solution Aspects 254</p> <p>12.4 Implementation 255</p> <p>12.4.1 Relay 256</p> <p>12.4.2 DHT 11 257</p> <p>12.5 Results and Discussions 262</p> <p>12.6 Conclusion 265</p> <p>References 266</p> <p><b>13 Malware Detection in Deep Learning 269<br /> </b><i>Sharmila Gaikwad and Jignesh Patil</i></p> <p>13.1 Introduction to Malware 270</p> <p>13.1.1 Computer Security 270</p> <p>13.1.2 What Is Malware? 271</p> <p>13.2 Machine Learning and Deep Learning for Malware Detection 274</p> <p>13.2.1 Introduction to Machine Learning 274</p> <p>13.2.2 Introduction to Deep Learning 276</p> <p>13.2.3 Detection Techniques Using Deep Learning 279</p> <p>13.3 Case Study on Malware Detection 280</p> <p>13.3.1 Impact of Malware on Systems 280</p> <p>13.3.2 Effect of Malware in a Pandemic Situation 281</p> <p>13.4 Conclusion 283</p> <p>References 283</p> <p><b>14 Patron for Women: An Application for Womens Safety 285<br /> </b><i>Riya Sil, Snatam Kamila, Ayan Mondal, Sufal Paul, Santanu Sinha and Bishes Saha</i></p> <p>14.1 Introduction 286</p> <p>14.2 Background Study 286</p> <p>14.3 Related Research 287</p> <p>14.3.1 A Mobile-Based Women Safety Application (I safe App) 287</p> <p>14.3.2 Lifecraft: An Android-Based Application System for Women Safety 288</p> <p>14.3.3 Abhaya: An Android App for the Safety of Women 288</p> <p>14.3.4 Sakhi—The Saviour: An Android Application to Help Women in Times of Social Insecurity 289</p> <p>14.4 Proposed Methodology 289</p> <p>14.4.1 Motivation and Objective 290</p> <p>14.4.2 Proposed System 290</p> <p>14.4.3 System Flowchart 291</p> <p>14.4.4 Use-Case Model 291</p> <p>14.4.5 Novelty of the Work 294</p> <p>14.4.6 Comparison with Existing System 294</p> <p>14.5 Results and Analysis 294</p> <p>14.6 Conclusion and Future Work 298</p> <p>References 299</p> <p><b>15 Concepts and Techniques in Deep Learning Applications in the Field of IoT Systems and Security 303<br /> </b><i>Santanu Koley and Pinaki Pratim Acharjya</i></p> <p>15.1 Introduction 304</p> <p>15.2 Concepts of Deep Learning 307</p> <p>15.3 Techniques of Deep Learning 308</p> <p>15.3.1 Classic Neural Networks 309</p> <p>15.3.1.1 Linear Function 309</p> <p>15.3.1.2 Nonlinear Function 309</p> <p>15.3.1.3 Sigmoid Curve 310</p> <p>15.3.1.4 Rectified Linear Unit 310</p> <p>15.3.2 Convolution Neural Networks 310</p> <p>15.3.2.1 Convolution 311</p> <p>15.3.2.2 Max-Pooling 311</p> <p>15.3.2.3 Flattening 311</p> <p>15.3.2.4 Full Connection 311</p> <p>15.3.3 Recurrent Neural Networks 312</p> <p>15.3.3.1 LSTMs 312</p> <p>15.3.3.2 Gated RNNs 312</p> <p>15.3.4 Generative Adversarial Networks 313</p> <p>15.3.5 Self-Organizing Maps 314</p> <p>15.3.6 Boltzmann Machines 315</p> <p>15.3.7 Deep Reinforcement Learning 315</p> <p>15.3.8 Auto Encoders 316</p> <p>15.3.8.1 Sparse 317</p> <p>15.3.8.2 Denoising 317</p> <p>15.3.8.3 Contractive 317</p> <p>15.3.8.4 Stacked 317</p> <p>15.3.9 Back Propagation 317</p> <p>15.3.10 Gradient Descent 318</p> <p>15.4 Deep Learning Applications 319</p> <p>15.4.1 Automatic Speech Recognition (ASR) 319</p> <p>15.4.2 Image Recognition 320</p> <p>15.4.3 Natural Language Processing 320</p> <p>15.4.4 Drug Discovery and Toxicology 321</p> <p>15.4.5 Customer Relationship Management 322</p> <p>15.4.6 Recommendation Systems 323</p> <p>15.4.7 Bioinformatics 324</p> <p>15.5 Concepts of IoT Systems 325</p> <p>15.6 Techniques of IoT Systems 326</p> <p>15.6.1 Architecture 326</p> <p>15.6.2 Programming Model 327</p> <p>15.6.3 Scheduling Policy 329</p> <p>15.6.4 Memory Footprint 329</p> <p>15.6.5 Networking 332</p> <p>15.6.6 Portability 332</p> <p>15.6.7 Energy Efficiency 333</p> <p>15.7 IoT Systems Applications 333</p> <p>15.7.1 Smart Home 334</p> <p>15.7.2 Wearables 335</p> <p>15.7.3 Connected Cars 335</p> <p>15.7.4 Industrial Internet 336</p> <p>15.7.5 Smart Cities 337</p> <p>15.7.6 IoT in Agriculture 337</p> <p>15.7.7 Smart Retail 338</p> <p>15.7.8 Energy Engagement 339</p> <p>15.7.9 IoT in Healthcare 340</p> <p>15.7.10 IoT in Poultry and Farming 340</p> <p>15.8 Deep Learning Applications in the Field of IoT Systems 341</p> <p>15.8.1 Organization of DL Applications for IoT in Healthcare 342</p> <p>15.8.2 DeepSense as a Solution for Diverse IoT Applications 343</p> <p>15.8.3 Deep IoT as a Solution for Energy Efficiency 346</p> <p>15.9 Conclusion 346</p> <p>References 347</p> <p><b>16 Efficient Detection of Bioweapons for Agricultural Sector Using Narrowband Transmitter and Composite Sensing Architecture 349<br /> </b><i>Arghyadeep Nag, Labani Roy, Shruti, Soumen Santra and Arpan Deyasi</i></p> <p>16.1 Introduction 350</p> <p>16.2 Literature Review 353</p> <p>16.3 Properties of Insects 355</p> <p>16.4 Working Methodology 357</p> <p>16.4.1 Sensing 357</p> <p>16.4.1.1 Specific Characterization of a Particular Species 357</p> <p>16.4.2 Alternative Way to Find Those Previously Sensing Parameters 357</p> <p>16.4.3 Remedy to Overcome These Difficulties 358</p> <p>16.4.4 Take Necessary Preventive Actions 358</p> <p>16.5 Proposed Algorithm 359</p> <p>16.6 Block Diagram and Used Sensors 360</p> <p>16.6.1 Arduino Uno 361</p> <p>16.6.2 Infrared Motion Sensor 362</p> <p>16.6.3 Thermographic Camera 362</p> <p>16.6.4 Relay Module 362</p> <p>16.7 Result Analysis 362</p> <p>16.8 Conclusion 363</p> <p>References 363</p> <p><b>17 A Deep Learning–Based Malware and Intrusion Detection Framework 367<br /> </b><i>Pavitra Kadiyala and Kakelli Anil Kumar</i></p> <p>17.1 Introduction 367</p> <p>17.2 Literature Survey 368</p> <p>17.3 Overview of the Proposed Work 371</p> <p>17.3.1 Problem Description 371</p> <p>17.3.2 The Working Models 371</p> <p>17.3.3 About the Dataset 371</p> <p>17.3.4 About the Algorithms 373</p> <p>17.4 Implementation 374</p> <p>17.4.1 Libraries 374</p> <p>17.4.2 Algorithm 376</p> <p>17.5 Results 376</p> <p>17.5.1 Neural Network Models 377</p> <p>17.5.2 Accuracy 377</p> <p>17.5.3 Web Frameworks 377</p> <p>17.6 Conclusion and Future Work 379</p> <p>References 380</p> <p><b>18 Phishing URL Detection Based on Deep Learning Techniques 381<br /> </b><i>S. Carolin Jeeva and W. Regis Anne</i></p> <p>18.1 Introduction 382</p> <p>18.1.1 Phishing Life Cycle 382</p> <p>18.1.1.1 Planning 383</p> <p>18.1.1.2 Collection 384</p> <p>18.1.1.3 Fraud 384</p> <p>18.2 Literature Survey 385</p> <p>18.3 Feature Generation 388</p> <p>18.4 Convolutional Neural Network for Classification of Phishing vs Legitimate URLs 388</p> <p>18.5 Results and Discussion 391</p> <p>18.6 Conclusion 394</p> <p>References 394</p> <p>Web Citation 396</p> <p><b>Part IV: Cyber Physical Systems 397</b></p> <p><b>19 Cyber Physical System—The Gen Z 399<br /> </b><i>Jayanta Aich and Mst Rumana Sultana</i></p> <p>19.1 Introduction 399</p> <p>19.2 Architecture and Design 400</p> <p>19.2.1 Cyber Family 401</p> <p>19.2.2 Physical Family 401</p> <p>19.2.3 Cyber-Physical Interface Family 402</p> <p>19.3 Distribution and Reliability Management in CPS 403</p> <p>19.3.1 CPS Components 403</p> <p>19.3.2 CPS Models 404</p> <p>19.4 Security Issues in CPS 405</p> <p>19.4.1 Cyber Threats 405</p> <p>19.4.2 Physical Threats 407</p> <p>19.5 Role of Machine Learning in the Field of CPS 408</p> <p>19.6 Application 411</p> <p>19.7 Conclusion 411</p> <p>References 411</p> <p><b>20 An Overview of Cyber Physical System (CPS) Security, Threats, and Solutions 415<br /> </b><i>Krishna Keerthi Chennam, Fahmina Taranum and Maniza Hijab</i></p> <p>20.1 Introduction 416</p> <p>20.1.1 Motivation of Work 417</p> <p>20.1.2 Organization of Sections 417</p> <p>20.2 Characteristics of CPS 418</p> <p>20.3 Types of CPS Security 419</p> <p>20.4 Cyber Physical System Security Mechanism—Main Aspects 421</p> <p>20.4.1 CPS Security Threats 423</p> <p>20.4.2 Information Layer 423</p> <p>20.4.3 Perceptual Layer 424</p> <p>20.4.4 Application Threats 424</p> <p>20.4.5 Infrastructure 425</p> <p>20.5 Issues and How to Overcome Them 426</p> <p>20.6 Discussion and Solutions 427</p> <p>20.7 Conclusion 431</p> <p>References 431</p> <p>Index 435</p>
<p><b>Rajdeep Chakraborty, PhD,</b> is an assistant professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, India. His fields of interest are mainly in cryptography and computer security. He was awarded the Adarsh Vidya Saraswati Rashtriya Puraskar, National Award of Excellence 2019 conferred by Glacier Journal Research Foundation, <p><b>Anupam Ghosh, PhD,</b> is a professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata, India. He has published more than 80 international papers in reputed international journals and conferences. His fields of interest are mainly in AI, machine learning, deep learning, image processing, soft computing, bioinformatics, IoT, and data mining. <p><b>Jyotsna Kumar Mandal, PhD,</b> has more than 30 years of industry and academic experience. His fields of interest are coding theory, data and network security, remote sensing & GIS-based applications, data compression error corrections, information security, watermarking, steganography and document authentication, image processing, visual cryptography, MANET, wireless and mobile computing/security, unify computing, chaos theory, and applications. <p><b>S. Balamurugan, PhD,</b> is the Director of Research and Development, Intelligent Research Consultancy Services (iRCS), Coimbatore, Tamilnadu, India. He is also Director of the Albert Einstein Engineering and Research Labs (AEER Labs), as well as Vice-Chairman, Renewable Energy Society of India (RESI), India. He has published 45 books, 200+ international journals/ conferences, and 35 patents.
<p><b>In-depth analysis of Deep Learning-based cyber-IoT systems and security which will be the industry leader for the next ten years. </b> <p>The main goal of this book is to bring to the fore unconventional cryptographic methods to provide cyber security, including cyber-physical system security and IoT security through deep learning techniques and analytics with the study of all these systems. <p>This book provides innovative solutions and implementation of deep learning-based models in cyber-IoT systems, as well as the exposed security issues in these systems. The 20 chapters are organized into four parts. Part I gives the various approaches that have evolved from machine learning to deep learning. Part II presents many innovative solutions, algorithms, models, and implementations based on deep learning. Part III covers security and safety aspects with deep learning. Part IV details cyber-physical systems as well as a discussion on the security and threats in cyber-physical systems with probable solutions. <p><b>Audience</b> <p>Researchers and industry engineers in computer science, information technology, electronics and communication, cybersecurity and cryptography.

Diese Produkte könnten Sie auch interessieren:

Impact of Artificial Intelligence on Organizational Transformation
Impact of Artificial Intelligence on Organizational Transformation
von: S. Balamurugan, Sonal Pathak, Anupriya Jain, Sachin Gupta, Sachin Sharma, Sonia Duggal
EPUB ebook
190,99 €
The CISO Evolution
The CISO Evolution
von: Matthew K. Sharp, Kyriakos Lambros
PDF ebook
33,99 €