Details

Cyber-Physical-Human Systems


Cyber-Physical-Human Systems

Fundamentals and Applications
IEEE Press Series on Technology Management, Innovation, and Leadership 1. Aufl.

von: Anuradha M. Annaswamy, Pramod P. Khargonekar, Fran¿oise Lamnabhi-Lagarrigue, Sarah K. Spurgeon

107,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 08.06.2023
ISBN/EAN: 9781119857426
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Cyber–Physical–Human Systems</b> <p><b>A comprehensive edited volume exploring the latest in the interactions between cyber–physical systems and humans</b> <p>In <i>Cyber–Physical–Human Systems: Fundamentals and Applications</i>, a team of distinguished researchers delivers a robust and up-to-date volume of contributions from leading researchers on Cyber–Physical–Human Systems, an emerging class of systems with increased interactions between cyber–physical, and human systems communicating with each other at various levels across space and time, so as to achieve desired performance related to human welfare, efficiency, and sustainability. <p>The editors have focused on papers that address the power of emerging CPHS disciplines, all of which feature humans as an active component during cyber and physical interactions. Articles that span fundamental concepts and methods to various applications in engineering sectors of transportation, robotics, and healthcare and general socio-technical systems such as smart cities are featured. Together, these articles address challenges and opportunities that arise due to the emerging interactions between cyber–physical systems and humans, allowing readers to appreciate the intersection of cyber–physical system research and human behavior in large-scale systems. <p>In the book, readers will also find: <ul><li>A thorough introduction to the fundamentals of cyber–physical–human systems</li> <li>In-depth discussions of cyber–physical–human systems with applications in transportation, robotics, and healthcare</li> <li>A comprehensive treatment of socio-technical systems, including social networks and smart cities</li></ul> <p>Perfect for cyber–physical systems researchers, academics, and graduate students, <i>Cyber–Physical–Human Systems: Fundamentals and Applications </i>will also earn a place in the libraries of research and development professionals working in industry and government agencies.
<p>A Note from the Series Editor xvii</p> <p>About the Editors xviii</p> <p>List of Contributors xix</p> <p>Introduction xxvii</p> <p><b>Part I Fundamental Concepts and Methods 1</b></p> <p><b>1 Human-in-the-Loop Control and Cyber–Physical–Human Systems: Applications and Categorization 3<br /> </b><i>Tariq Samad</i></p> <p>1.1 Introduction 3</p> <p>1.2 Cyber + Physical + Human 4</p> <p>1.2.1 Cyberphysical Systems 5</p> <p>1.2.2 Physical–Human Systems 6</p> <p>1.2.3 Cyber–Human Systems 6</p> <p>1.3 Categorizing Human-in-the-Loop Control Systems 6</p> <p>1.3.1 Human-in-the-Plant 8</p> <p>1.3.2 Human-in-the-Controller 8</p> <p>1.3.3 Human–Machine Control Symbiosis 10</p> <p>1.3.4 Humans-in-Multiagent-Loops 11</p> <p>1.4 A Roadmap for Human-in-the-Loop Control 13</p> <p>1.4.1 Self- and Human-Driven Cars on Urban Roads 13</p> <p>1.4.2 Climate Change Mitigation and Smart Grids 14</p> <p>1.5 Discussion 15</p> <p>1.5.1 Other Ways of Classifying Human-in-the-Loop Control 15</p> <p>1.5.2 Modeling Human Understanding and Decision-Making 16</p> <p>1.5.3 Ethics and CPHS 18</p> <p>1.6 Conclusions 19</p> <p>Acknowledgments 19</p> <p>References 20</p> <p><b>2 Human Behavioral Models Using Utility Theory and Prospect Theory 25<br /> </b><i>Anuradha M. Annaswamy and Vineet Jagadeesan Nair</i></p> <p>2.1 Introduction 25</p> <p>2.2 Utility Theory 26</p> <p>2.2.1 An Example 27</p> <p>2.3 Prospect Theory 27</p> <p>2.3.1 An Example: CPT Modeling for SRS 30</p> <p>2.3.1.1 Detection of CPT Effects via Lotteries 32</p> <p>2.3.2 Theoretical Implications of CPT 33</p> <p>2.3.2.1 Implication I: Fourfold Pattern of Risk Attitudes 34</p> <p>2.3.2.2 Implication II: Strong Risk Aversion Over Mixed Prospects 36</p> <p>2.3.2.3 Implication III: Effects of Self-Reference 37</p> <p>2.4 Summary and Conclusions 38</p> <p>Acknowledgments 39</p> <p>References 39</p> <p><b>3 Social Diffusion Dynamics in Cyber–Physical–Human Systems 43<br /> </b><i>Lorenzo Zino and Ming Cao</i></p> <p>3.1 Introduction 43</p> <p>3.2 General Formalism for Social Diffusion in CPHS 45</p> <p>3.2.1 Complex and Multiplex Networks 45</p> <p>3.2.2 General Framework for Social Diffusion 46</p> <p>3.2.3 Main Theoretical Approaches 48</p> <p>3.3 Modeling Decision-Making 49</p> <p>3.3.1 Pairwise Interaction Models 49</p> <p>3.3.2 Linear Threshold Models 52</p> <p>3.3.3 Game-Theoretic Models 53</p> <p>3.4 Dynamics in CPHS 55</p> <p>3.4.1 Social Diffusion in Multiplex Networks 56</p> <p>3.4.2 Co-Evolutionary Social Dynamics 58</p> <p>3.5 Ongoing Efforts Toward Controlling Social Diffusion and Future Challenges 62</p> <p>Acknowledgments 63</p> <p>References 63</p> <p><b>4 Opportunities and Threats of Interactions Between Humans and Cyber–Physical Systems – Integration and Inclusion Approaches for Cphs 71<br /> </b><i>Frédéric Vanderhaegen and Victor Díaz Benito Jiménez</i></p> <p>4.1 CPHS and Shared Control 72</p> <p>4.2 “Tailor-made” Principles for Human–CPS Integration 73</p> <p>4.3 “All-in-one” based Principles for Human–CPS Inclusion 74</p> <p>4.4 Dissonances, Opportunities, and Threats in a CPHS 76</p> <p>4.5 Examples of Opportunities and Threats 79</p> <p>4.6 Conclusions 85</p> <p>References 86</p> <p><b>5 Enabling Human-Aware Autonomy Through Cognitive Modeling and Feedback Control 91<br /> </b><i>Neera Jain, Tahira Reid, Kumar Akash, Madeleine Yuh, and Jacob Hunter</i></p> <p>5.1 Introduction 91</p> <p>5.1.1 Important Cognitive Factors in HAI 92</p> <p>5.1.2 Challenges with Existing CPHS Methods 93</p> <p>5.1.3 How to Read This Chapter 95</p> <p>5.2 Cognitive Modeling 95</p> <p>5.2.1 Modeling Considerations 95</p> <p>5.2.2 Cognitive Architectures 97</p> <p>5.2.3 Computational Cognitive Models 98</p> <p>5.2.3.1 ARMAV and Deterministic Linear Models 99</p> <p>5.2.3.2 Dynamic Bayesian Models 99</p> <p>5.2.3.3 Decision Analytical Models 100</p> <p>5.2.3.4 POMDP Models 102</p> <p>5.3 Study Design and Data Collection 103</p> <p>5.3.1 Frame Research Questions and Identify Variables 104</p> <p>5.3.2 Formulate Hypotheses or Determine the Data Needed 105</p> <p>5.3.2.1 Hypothesis Testing Approach 105</p> <p>5.3.2.2 Model Training Approach 105</p> <p>5.3.3 Design Experiment and/or Study Scenario 107</p> <p>5.3.3.1 Hypothesis Testing Approach 107</p> <p>5.3.3.2 Model Training Approach 107</p> <p>5.3.4 Conduct Pilot Studies and Get Initial Feedback; Do Preliminary Analysis 108</p> <p>5.3.5 A Note about Institutional Review Boards and Recruiting Participants 109</p> <p>5.4 Cognitive Feedback Control 109</p> <p>5.4.1 Considerations for Feedback Control 110</p> <p>5.4.2 Approaches 111</p> <p>5.4.2.1 Heuristics-Based Planning 111</p> <p>5.4.2.2 Measurement-Based Feedback 112</p> <p>5.4.2.3 Goal-Oriented Feedback 112</p> <p>5.4.2.4 Case Study 112</p> <p>5.4.3 Evaluation Methods 113</p> <p>5.5 Summary and Opportunities for Further Investigation 113</p> <p>5.5.1 Model Generalizability and Adaptability 114</p> <p>5.5.2 Measurement of Cognitive States 114</p> <p>5.5.3 Human Subject Study Design 114</p> <p>References 115</p> <p><b>6 Shared Control with Human Trust and Workload Models 125<br /> </b><i>Murat Cubuktepe, Nils Jansen, and Ufuk Topcu</i></p> <p>6.1 Introduction 125</p> <p>6.1.1 Review of Shared Control Methods 126</p> <p>6.1.2 Contribution and Approach 127</p> <p>6.1.3 Review of IRL Methods Under Partial Information 128</p> <p>6.1.3.1 Organization 129</p> <p>6.2 Preliminaries 129</p> <p>6.2.1 Markov Decision Processes 129</p> <p>6.2.2 Partially Observable Markov Decision Processes 130</p> <p>6.2.3 Specifications 130</p> <p>6.3 Conceptual Description of Shared Control 131</p> <p>6.4 Synthesis of the Autonomy Protocol 132</p> <p>6.4.1 Strategy Blending 132</p> <p>6.4.2 Solution to the Shared Control Synthesis Problem 133</p> <p>6.4.2.1 Nonlinear Programming Formulation for POMDPs 133</p> <p>6.4.2.2 Strategy Repair Using Sequential Convex Programming 134</p> <p>6.4.3 Sequential Convex Programming Formulation 135</p> <p>6.4.4 Linearizing Nonconvex Problem 135</p> <p>6.4.4.1 Linearizing Nonconvex Constraints and Adding Slack Variables 135</p> <p>6.4.4.2 Trust Region Constraints 136</p> <p>6.4.4.3 Complete Algorithm 136</p> <p>6.4.4.4 Additional Specifications 136</p> <p>6.4.4.5 Additional Measures 137</p> <p>6.5 Numerical Examples 137</p> <p>6.5.1 Modeling Robot Dynamics as POMDPs 138</p> <p>6.5.2 Generating Human Demonstrations 138</p> <p>6.5.3 Learning a Human Strategy 139</p> <p>6.5.4 Task Specification 139</p> <p>6.5.5 Results 140</p> <p>6.6 Conclusion 140</p> <p>Acknowledgments 140</p> <p>References 140</p> <p><b>7 Parallel Intelligence for CPHS: An ACP Approach 145<br /> </b><i>Xiao Wang, Jing Yang, Xiaoshuang Li, and Fei-Yue Wang</i></p> <p>7.1 Background and Motivation 145</p> <p>7.2 Early Development in China 147</p> <p>7.3 Key Elements and Framework 149</p> <p>7.4 Operation and Process 151</p> <p>7.4.1 Construction of Artificial Systems 152</p> <p>7.4.2 Computational Experiments in Parallel Intelligent Systems 152</p> <p>7.4.3 Closed-Loop Optimization Based on Parallel Execution 153</p> <p>7.5 Applications 153</p> <p>7.5.1 Parallel Control and Intelligent Control 154</p> <p>7.5.2 Parallel Robotics and Parallel Manufacturing 156</p> <p>7.5.3 Parallel Management and Intelligent Organizations 157</p> <p>7.5.4 Parallel Medicine and Smart Healthcare 158</p> <p>7.5.5 Parallel Ecology and Parallel Societies 160</p> <p>7.5.6 Parallel Economic Systems and Social Computing 161</p> <p>7.5.7 Parallel Military Systems 163</p> <p>7.5.8 Parallel Cognition and Parallel Philosophy 164</p> <p>7.6 Conclusion and Prospect 165</p> <p>References 165</p> <p><b>Part II Transportation 171</b></p> <p><b>8 Regularities of Human Operator Behavior and Its Modeling 173<br /> </b><i>Aleksandr V. Efremov</i></p> <p>8.1 Introduction 173</p> <p>8.2 The Key Variables in Man–Machine Systems 174</p> <p>8.3 Human Responses 177</p> <p>8.4 Regularities of Man–Machine System in Manual Control 180</p> <p>8.4.1 Man–Machine System in Single-loop Compensatory System 180</p> <p>8.4.2 Man–Machine System in Multiloop, Multichannel, and Multimodal Tasks 185</p> <p>8.4.2.1 Man–Machine System in the Multiloop Tracking Task 185</p> <p>8.4.2.2 Man–Machine System in the Multichannel Tracking Task 187</p> <p>8.4.2.3 Man–Machine System in Multimodal Tracking Tasks 188</p> <p>8.4.2.4 Human Operator Behavior in Pursuit and Preview Tracking Tasks 191</p> <p>8.5 Mathematical Modeling of Human Operator Behavior in Manual Control Task 194</p> <p>8.5.1 McRuer’s Model for the Pilot Describing Function 194</p> <p>8.5.1.1 Single-Loop Compensatory Model 194</p> <p>8.5.1.2 Multiloop and Multimodal Compensatory Model 197</p> <p>8.5.2 Structural Human Operator Model 197</p> <p>8.5.3 Pilot Optimal Control Model 199</p> <p>8.5.4 Pilot Models in Preview and Pursuit Tracking Tasks 201</p> <p>8.6 Applications of the Man–Machine System Approach 202</p> <p>8.6.1 Development of Criteria for Flying Qualities and PIO Prediction 203</p> <p>8.6.1.1 Criteria of FQ and PIO Prediction as a Requirement for the Parameters of the Pilot-Aircraft System 203</p> <p>8.6.1.2 Calculated Piloting Rating of FQ as the Criteria 205</p> <p>8.6.2 Interfaces Design 206</p> <p>8.6.3 Optimization of Control System and Vehicle Dynamics Parameters 210</p> <p>8.7 Future Research Challenges and Visions 213</p> <p>8.8 Conclusion 214</p> <p>References 215</p> <p><b>9 Safe Shared Control Between Pilots and Autopilots in the Face of Anomalies 219<br /> </b><i>Emre Eraslan, Yildiray Yildiz, and Anuradha M. Annaswamy</i></p> <p>9.1 Introduction 219</p> <p>9.2 Shared Control Architectures: A Taxonomy 221</p> <p>9.3 Recent Research Results 222</p> <p>9.3.1 Autopilot 224</p> <p>9.3.1.1 Dynamic Model of the Aircraft 224</p> <p>9.3.1.2 Advanced Autopilot Based on Adaptive Control 225</p> <p>9.3.1.3 Autopilot Based on Proportional Derivative Control 228</p> <p>9.3.2 Human Pilot 228</p> <p>9.3.2.1 Pilot Models in the Absence of Anomaly 228</p> <p>9.3.2.2 Pilot Models in the Presence of Anomaly 229</p> <p>9.3.3 Shared Control 230</p> <p>9.3.3.1 SCA1: A Pilot with a CfM-Based Perception and a Fixed-Gain Autopilot 231</p> <p>9.3.3.2 SCA2: A Pilot with a CfM-Based Decision-Making and an Advanced Adaptive Autopilot 232</p> <p>9.3.4 Validation with Human-in-the-Loop Simulations 232</p> <p>9.3.5 Validation of Shared Control Architecture 1 234</p> <p>9.3.5.1 Experimental Setup 234</p> <p>9.3.5.2 Anomaly 235</p> <p>9.3.5.3 Experimental Procedure 235</p> <p>9.3.5.4 Details of the Human Subjects 236</p> <p>9.3.5.5 Pilot-Model Parameters 237</p> <p>9.3.5.6 Results and Observations 237</p> <p>9.3.6 Validation of Shared Control Architecture 2 240</p> <p>9.3.6.1 Experimental Setup 241</p> <p>9.3.6.2 Anomaly 241</p> <p>9.3.6.3 Experimental Procedure 242</p> <p>9.3.6.4 Details of the Human Subjects 243</p> <p>9.3.6.5 Results and Observations 244</p> <p>9.4 Summary and Future Work 246</p> <p>References 247</p> <p><b>10 Safe Teleoperation of Connected and Automated Vehicles 251<br /> </b><i>Frank J. Jiang, Jonas Mårtensson, and Karl H. Johansson</i></p> <p>10.1 Introduction 251</p> <p>10.2 Safe Teleoperation 254</p> <p>10.2.1 The Advent of 5G 258</p> <p>10.3 CPHS Design Challenges in Safe Teleoperation 259</p> <p>10.4 Recent Research Advances 261</p> <p>10.4.1 Enhancing Operator Perception 261</p> <p>10.4.2 Safe Shared Autonomy 264</p> <p>10.5 Future Research Challenges 267</p> <p>10.5.1 Full Utilization of V2X Networks 267</p> <p>10.5.2 Mixed Autonomy Traffic Modeling 268</p> <p>10.5.3 5G Experimentation 268</p> <p>10.6 Conclusions 269</p> <p>References 270</p> <p><b>11 Charging Behavior of Electric Vehicles 273<br /> </b><i>Qing-Shan Jia and Teng Long</i></p> <p>11.1 History, Challenges, and Opportunities 274</p> <p>11.1.1 The History and Status Quo of EVs 274</p> <p>11.1.2 The Current Challenge 276</p> <p>11.1.3 The Opportunities 277</p> <p>11.2 Data Sets and Problem Modeling 278</p> <p>11.2.1 Data Sets of EV Charging Behavior 278</p> <p>11.2.1.1 Trend Data Sets 279</p> <p>11.2.1.2 Driving Data Sets 279</p> <p>11.2.1.3 Battery Data Sets 279</p> <p>11.2.1.4 Charging Data Sets 279</p> <p>11.2.2 Problem Modeling 281</p> <p>11.3 Control and Optimization Methods 284</p> <p>11.3.1 The Difficulty of the Control and Optimization 284</p> <p>11.3.2 Charging Location Selection and Routing Optimization 285</p> <p>11.3.3 Charging Process Control 286</p> <p>11.3.4 Control and Optimization Framework 287</p> <p>11.3.4.1 Centralized Optimization 287</p> <p>11.3.4.2 Decentralized Optimization 288</p> <p>11.3.4.3 Hierarchical Optimization 288</p> <p>11.3.5 The Impact of Human Behaviors 289</p> <p>11.4 Conclusion and Discussion 289</p> <p>References 290</p> <p><b>Part III Robotics 299</b></p> <p><b>12 Trust-Triggered Robot–Human Handovers Using Kinematic Redundancy for Collaborative Assembly in Flexible Manufacturing 301<br /> </b><i>S. M. Mizanoor Rahman, Behzad Sadrfaridpour, Ian D. Walker, and Yue Wang</i></p> <p>12.1 Introduction 301</p> <p>12.2 The Task Context and the Handover 303</p> <p>12.3 The Underlying Trust Model 304</p> <p>12.4 Trust-Based Handover Motion Planning Algorithm 305</p> <p>12.4.1 The Overall Motion Planning Strategy 305</p> <p>12.4.2 Manipulator Kinematics and Kinetics Models 305</p> <p>12.4.3 Dynamic Impact Ellipsoid 306</p> <p>12.4.4 The Novel Motion Control Approach 307</p> <p>12.4.5 Illustration of the Novel Algorithm 308</p> <p>12.5 Development of the Experimental Settings 310</p> <p>12.5.1 Experimental Setup 310</p> <p>12.5.1.1 Type I: Center Console Assembly 310</p> <p>12.5.1.2 Type II: Hose Assembly 311</p> <p>12.5.2 Real-Time Measurement and Display of Trust 311</p> <p>12.5.2.1 Type I: Center Console Assembly 311</p> <p>12.5.2.2 Type II: Hose Assembly 313</p> <p>12.5.2.3 Trust Computation 313</p> <p>12.5.3 Plans to Execute the Trust-Triggered Handover Strategy 314</p> <p>12.5.3.1 Type I Assembly 314</p> <p>12.5.3.2 Type II Assembly 314</p> <p>12.6 Evaluation of the Motion Planning Algorithm 315</p> <p>12.6.1 Objective 315</p> <p>12.6.2 Experiment Design 315</p> <p>12.6.3 Evaluation Scheme 315</p> <p>12.6.4 Subjects 316</p> <p>12.6.5 Experimental Procedures 316</p> <p>12.6.5.1 Type I Assembly 317</p> <p>12.6.5.2 Type II Assembly 317</p> <p>12.7 Results and Analyses, Type I Assembly 318</p> <p>12.8 Results and Analyses, Type II Assembly 322</p> <p>12.9 Conclusions and Future Work 323</p> <p>Acknowledgment 324</p> <p>References 324</p> <p><b>13 Fusing Electrical Stimulation and Wearable Robots with Humans to Restore and Enhance Mobility 329<br /> </b><i>Thomas Schauer, Eduard Fosch-Villaronga, and Juan C. Moreno</i></p> <p>13.1 Introduction 329</p> <p>13.1.1 Functional Electrical Stimulation 330</p> <p>13.1.2 Spinal Cord Stimulation 331</p> <p>13.1.3 Wearable Robotics (WR) 332</p> <p>13.1.4 Fusing FES/SCS and Wearable Robotics 334</p> <p>13.2 Control Challenges 335</p> <p>13.2.1 Feedback Approaches to Promote Volition 336</p> <p>13.2.2 Principles of Assist-as-Needed 336</p> <p>13.2.3 Tracking Control Problem Formulation 336</p> <p>13.2.4 Co-operative Control Strategies 337</p> <p>13.2.5 EMG- and MMG-Based Assessment of Muscle Activation 344</p> <p>13.3 Examples 345</p> <p>13.3.1 A Hybrid Robotic System for Arm Training of Stroke Survivors 345</p> <p>13.3.2 First Certified Hybrid Robotic Exoskeleton for Gait Rehabilitation Settings 347</p> <p>13.3.3 Body Weight-Supported Robotic Gait Training with tSCS 348</p> <p>13.3.4 Modular FES and Wearable Robots to Customize Hybrid Solutions 348</p> <p>13.4 Transfer into Daily Practice: Integrating Ethical, Legal, and Societal Aspects into the Design 350</p> <p>13.5 Summary and Outlook 352</p> <p>Acknowledgments 353</p> <p>Acronyms 353</p> <p>References 354</p> <p><b>14 Contemporary Issues and Advances in Human–Robot Collaborations 365<br /> </b><i>Takeshi Hatanaka, Junya Yamauchi, Masayuki Fujita, and Hiroyuki Handa</i></p> <p>14.1 Overview of Human–Robot Collaborations 365</p> <p>14.1.1 Task Architecture 366</p> <p>14.1.2 Human–Robot Team Formation 368</p> <p>14.1.3 Human Modeling: Control and Decision 369</p> <p>14.1.4 Human Modeling: Other Human Factors 371</p> <p>14.1.5 Industrial Perspective 372</p> <p>14.1.6 What Is in This Chapter 375</p> <p>14.2 Passivity-Based Human-Enabled Multirobot Navigation 376</p> <p>14.2.1 Architecture Design 377</p> <p>14.2.2 Human Passivity Analysis 379</p> <p>14.2.3 Human Workload Analysis 381</p> <p>14.3 Operation Support with Variable Autonomy via Gaussian Process 383</p> <p>14.3.1 Design of the Operation Support System with Variable Autonomy 385</p> <p>14.3.2 User Study 388</p> <p>14.3.2.1 Operational Verification 388</p> <p>14.3.2.2 Usability Test 390</p> <p>14.4 Summary 391</p> <p>Acknowledgments 393</p> <p>References 393</p> <p><b>Part IV Healthcare 401</b></p> <p><b>15 Overview and Perspectives on the Assessment and Mitigation of Cognitive Fatigue in Operational Settings 403<br /> </b><i>Mike Salomone, Michel Audiffren, and Bruno Berberian</i></p> <p>15.1 Introduction 403</p> <p>15.2 Cognitive Fatigue 404</p> <p>15.2.1 Definition 404</p> <p>15.2.2 Origin of Cognitive Fatigue 404</p> <p>15.2.3 Effects on Adaptive Capacities 406</p> <p>15.3 Cyber–Physical System and Cognitive Fatigue: More Automation Does Not Imply Less Cognitive Fatigue 406</p> <p>15.4 Assessing Cognitive Fatigue 409</p> <p>15.4.1 Subjective Measures 409</p> <p>15.4.2 Behavioral Measures 410</p> <p>15.4.3 Physiological Measurements 410</p> <p>15.5 Limitations and Benefits of These Measures 412</p> <p>15.6 Current and Future Solutions and Countermeasures 412</p> <p>15.6.1 Physiological Computing: Toward Real-Time Detection and Adaptation 412</p> <p>15.7 System Design and Explainability 414</p> <p>15.8 Future Challenges 415</p> <p>15.8.1 Generalizing the Results Observed in the Laboratory to Ecological Situations 415</p> <p>15.8.2 Determining the Specificity of Cognitive Fatigue 415</p> <p>15.8.3 Recovering from Cognitive Fatigue 417</p> <p>15.9 Conclusion 418</p> <p>References 419</p> <p><b>16 Epidemics Spread Over Networks: Influence of Infrastructure and Opinions 429<br /> </b><i>Baike She, Sebin Gracy, Shreyas Sundaram, Henrik Sandberg, Karl H. Johansson, andPhilipE.Paré</i></p> <p>16.1 Introduction 429</p> <p>16.1.1 Infectious Diseases 429</p> <p>16.1.2 Modeling Epidemic Spreading Processes 430</p> <p>16.1.3 Susceptible–Infected–Susceptible (SIS) Compartmental Models 431</p> <p>16.2 Epidemics on Networks 432</p> <p>16.2.1 Motivation 432</p> <p>16.2.2 Modeling Epidemics over Networks 433</p> <p>16.2.3 Networked Susceptible–Infected–Susceptible Epidemic Models 434</p> <p>16.3 Epidemics and Cyber–Physical–Human Systems 436</p> <p>16.3.1 Epidemic and Opinion Spreading Processes 437</p> <p>16.3.2 Epidemic and Infrastructure 438</p> <p>16.4 Recent Research Advances 439</p> <p>16.4.1 Notation 439</p> <p>16.4.2 Epidemic and Opinion Spreading Processes 440</p> <p>16.4.2.1 Opinions Over Networks with Both Cooperative and Antagonistic Interactions 440</p> <p>16.4.2.2 Coupled Epidemic and Opinion Dynamics 441</p> <p>16.4.2.3 Opinion-Dependent Reproduction Number 443</p> <p>16.4.2.4 Simulations 444</p> <p>16.4.3 Epidemic Spreading with Shared Resources 445</p> <p>16.4.3.1 The Multi-Virus SIWS Model 445</p> <p>16.4.3.2 Problem Statements 447</p> <p>16.4.3.3 Analysis of the Eradicated State of a Virus 448</p> <p>16.4.3.4 Persistence of a Virus 449</p> <p>16.4.3.5 Simulations 449</p> <p>16.5 Future Research Challenges and Visions 450</p> <p>References 451</p> <p><b>17 Digital Twins and Automation of Care in the Intensive Care Unit 457<br /> </b><i>J. Geoffrey Chase, Cong Zhou, Jennifer L. Knopp, Knut Moeller, Balázs Benyo, Thomas Desaive, Jennifer H. K. Wong, Sanna Malinen, Katharina Naswall, Geoffrey M. Shaw, Bernard Lambermont, and Yeong S. Chiew</i></p> <p>17.1 Introduction 457</p> <p>17.1.1 Economic Context 458</p> <p>17.1.2 Healthcare Context 459</p> <p>17.1.3 Technology Context 460</p> <p>17.1.4 Overall Problem and Need 460</p> <p>17.2 Digital Twins and CPHS 461</p> <p>17.2.1 Digital Twin/Virtual Patient Definition 461</p> <p>17.2.2 Requirements in an ICU Context 463</p> <p>17.2.3 Digital Twin Models in Key Areas of ICU Care and Relative to Requirements 464</p> <p>17.2.4 Review of Digital Twins in Automation of ICU Care 466</p> <p>17.2.5 Summary 467</p> <p>17.3 Role of Social-Behavioral Sciences 467</p> <p>17.3.1 Introduction 467</p> <p>17.3.2 Barriers to Innovation Adoption 467</p> <p>17.3.3 Ergonomics and Codesign 468</p> <p>17.3.4 Summary (Key Takeaways) 469</p> <p>17.4 Future Research Challenges and Visions 470</p> <p>17.4.1 Technology Vision of the Future of CPHS in ICU Care 470</p> <p>17.4.2 Social-Behavioral Sciences Vision of the Future of CPHS in ICU Care 471</p> <p>17.4.3 Joint Vision of the Future and Challenges to Overcome 473</p> <p>17.5 Conclusions 473</p> <p>References 474</p> <p><b>Part V Sociotechnical Systems 491</b></p> <p><b>18 Online Attention Dynamics in Social Media 493<br /> </b><i>Maria Castaldo, Paolo Frasca, and Tommaso Venturini</i></p> <p>18.1 Introduction to Attention Economy and Attention Dynamics 493</p> <p>18.2 Online Attention Dynamics 494</p> <p>18.2.1 Collective Attention Is Limited 494</p> <p>18.2.2 Skewed Attention Distribution 495</p> <p>18.2.3 The Role of Novelty 496</p> <p>18.2.4 The Role of Popularity 496</p> <p>18.2.5 Individual Activity Is Bursty 499</p> <p>18.2.6 Recommendation Systems Are the Main Gateways for Information 500</p> <p>18.2.7 Change Is the Only Constant 500</p> <p>18.3 The New Challenge: Understanding Recommendation Systems Effect in Attention Dynamics 501</p> <p>18.3.1 Model Description 502</p> <p>18.3.2 Results and Discussion 503</p> <p>18.4 Conclusion 505</p> <p>Acknowledgments 505</p> <p>References 505</p> <p><b>19 Cyber–Physical–Social Systems for Smart City 511<br /> </b><i>Gang Xiong, Noreen Anwar, Peijun Ye, Xiaoyu Chen, Hongxia Zhao, Yisheng Lv, Fenghua Zhu, Hongxin Zhang, Xu Zhou, and Ryan W. Liu</i></p> <p>19.1 Introduction 511</p> <p>19.2 Social Community and Smart Cities 513</p> <p>19.2.1 Smart Infrastructure 513</p> <p>19.2.2 Smart Energy 515</p> <p>19.2.3 Smart Transportation 515</p> <p>19.2.4 Smart Healthcare 517</p> <p>19.3 CPSS Concepts, Tools, and Techniques 518</p> <p>19.3.1 CPSS Concepts 518</p> <p>19.3.2 CPSS Tools 519</p> <p>19.3.3 CPSS Techniques 520</p> <p>19.3.3.1 IoT in Smart Cities 520</p> <p>19.3.3.2 Big Data in Smart Cities 525</p> <p>19.4 Recent Research Advances 528</p> <p>19.4.1 Recent Research Advances of CASIA 528</p> <p>19.4.2 Recent Research in European Union 531</p> <p>19.4.3 Future Research Challenges and Visions 533</p> <p>19.5 Conclusions 537</p> <p>Acknowledgments 538</p> <p>References 538</p> <p><b>Part VI Concluding Remarks 543</b></p> <p><b>20 Conclusion and Perspectives 545<br /> </b><i>Anuradha M. Annaswamy, Pramod P. Khargonekar, Françoise Lamnabhi-Lagarrigue, and Sarah K. Spurgeon</i></p> <p>20.1 Benefits to Humankind: Synthesis of the Chapters and their Open Directions 545</p> <p>20.2 Selected Areas for Current and Future Development in CPHS 547</p> <p>20.2.1 Driver Modeling for the Design of Advanced Driver Assistance Systems 547</p> <p>20.2.2 Cognitive Cyber–Physical Systems and CPHS 547</p> <p>20.2.3 Emotion–Cognition Interactions 548</p> <p>20.3 Ethical and Social Concerns: Few Directions 549</p> <p>20.3.1 Frameworks for Ethics 550</p> <p>20.3.2 Technical Approaches 550</p> <p>20.4 Afterword 551</p> <p>References 551</p> <p>Index 555</p>
<p><b>ANURADHA M. ANNASWAMY, PhD, </b>is a Senior Research Scientist at the Massachusetts Institute of Technology, USA. <p><b>PRAMOD P. KHARGONEKAR, PhD, </b>is Vice Chancellor for Research and a Distinguished Professor of Electrical Engineering and Computer Science at the University of California, Irvine, USA. <p><b>FRANÇOISE LAMNABHI-LAGARRIGUE, PhD, </b>is a Distinguished Research Fellow at Laboratoire des Signaux et Systèmes CNRS, CentraleSupelec, Paris-Saclay University, France. <p><b>SARAH K. SPURGEON, PhD, </b>is the Head of the Department of Electronic and Electrical Engineering and Professor of Control Engineering at University College London, UK.
<p><b>A comprehensive edited volume exploring the latest in the interactions between cyber–physical systems and humans</b> <p>In <i>Cyber–Physical–Human Systems: Fundamentals and Applications</i>, a team of distinguished researchers delivers a robust and up-to-date volume of contributions from leading researchers on Cyber–Physical–Human Systems, an emerging class of systems with increased interactions between cyber–physical, and human systems communicating with each other at various levels across space and time, so as to achieve desired performance related to human welfare, efficiency, and sustainability. <p>The editors have focused on papers that address the power of emerging CPHS disciplines, all of which feature humans as an active component during cyber and physical interactions. Articles that span fundamental concepts and methods to various applications in engineering sectors of transportation, robotics, and healthcare and general socio-technical systems such as smart cities are featured. Together, these articles address challenges and opportunities that arise due to the emerging interactions between cyber–physical systems and humans, allowing readers to appreciate the intersection of cyber–physical system research and human behavior in large-scale systems. <p>In the book, readers will also find: <ul><li>A thorough introduction to the fundamentals of cyber–physical–human systems</li> <li>In-depth discussions of cyber–physical–human systems with applications in transportation, robotics, and healthcare</li> <li>A comprehensive treatment of socio-technical systems, including social networks and smart cities</li></ul> <p>Perfect for cyber–physical systems researchers, academics, and graduate students, <i>Cyber–Physical–Human Systems: Fundamentals and Applications </i>will also earn a place in the libraries of research and development professionals working in industry and government agencies.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €