Details

An Introduction to System Modeling and Control


An Introduction to System Modeling and Control


1. Aufl.

von: John Chiasson

119,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 21.01.2022
ISBN/EAN: 9781119842903
Sprache: englisch
Anzahl Seiten: 752

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A practical and straightforward exploration of the basic tools for the modeling, analysis, and design of control systems</b></p> <p>In <i>An Introduction to System Modeling and Control,</i> Dr. Chiasson delivers an accessible and intuitive guide to understanding modeling and control for students in electrical, mechanical, and aerospace/aeronautical engineering. The book begins with an introduction to the need for control by describing how an aircraft flies complete with figures illustrating roll, pitch, and yaw control using its ailerons, elevators, and rudder, respectively. The book moves on to rigid body dynamics about a single axis (gears, cart rolling down an incline) and then to modeling DC motors, DC tachometers, and optical encoders. Using the transfer function representation of these dynamic models, PID controllers are introduced as an effective way to track step inputs and reject constant disturbances.</p> <p>It is further shown how any transfer function model can be stabilized using output pole placement and on how two-degree of freedom controllers can be used to eliminate overshoot in step responses. Bode and Nyquist theory are then presented with an emphasis on how they give a quantitative insight into a control system's robustness and sensitivity. <i>An Introduction to System Modeling and Control</i> closes with chapters on modeling an inverted pendulum and a magnetic levitation system, trajectory tracking control using state feedback, and state estimation. In addition the book offers:</p> <ul> <li>A complete set of MATLAB/SIMULINK files for examples and problems included in the book.</li> <li>A set of lecture slides for each chapter.</li> <li>A solutions manual with recommended problems to assign.</li> <li>An analysis of the robustness and sensitivity of four different controller designs for an inverted pendulum (cart-pole).</li> </ul> <p>Perfect for electrical, mechanical, and aerospace/aeronautical engineering students, <i>An Introduction to System Modeling and Control</i> will also be an invaluable addition to the libraries of practicing engineers.</p>
<p><b>1 Introduction 1</b></p> <p>1.1 Aircraft 1</p> <p>1.2 Quadrotors 7</p> <p>1.3 Inverted Pendulum 11</p> <p>1.4 Magnetic Levitation 12</p> <p>1.5 General Control Problem 14</p> <p><b>2 Laplace Transforms 15</b></p> <p>2.1 Laplace TransformProperties 17</p> <p>2.2 Partial Fraction Expansion 21</p> <p>2.3 Poles and Zeros 31</p> <p>2.4 Poles and Partial Fractions 32</p> <p>Appendix: Exponential Function 35</p> <p>Problems 38</p> <p><b>3 Differential Equations and Stability 45</b></p> <p>3.1 Differential Equations 45</p> <p>3.2 PhasorMethod of Solution 48</p> <p>3.3 Final Value Theorem 52</p> <p>3.4 Stable Transfer Functions 56</p> <p>3.5 Routh-Hurwitz Stability Test 59</p> <p>3.5.1 Special Case - A Row of the Routh Array has all Zeros* 65</p> <p>3.5.2 Special Case - Zero in First Column, but the Row is Not Identically Zero* 68</p> <p>Problems 71</p> <p><b>4 Mass-Spring-Damper Systems 81</b></p> <p>4.1 Mechanical Work 81</p> <p>4.2 Modeling Mass-Spring-Damper Systems 82</p> <p>4.3 Simulation 88</p> <p>Problems 92</p> <p><b>5 Rigid Body Rotational Dynamics 103</b></p> <p>5.1 Moment of Inertia 103</p> <p>5.2 Newton’s Law of Rotational Motion 104</p> <p>5.3 Gears 111</p> <p>5.3.1 Algebraic Relationships Between Two Gears 112</p> <p>5.3.2 Dynamic Relationships Between Two Gears 112</p> <p>5.4 Rolling Cylinder* 117</p> <p>Problems 125</p> <p><b>6 The Physics of the DC Motor 139</b></p> <p>6.1 Magnetic Force 139</p> <p>6.2 Single-Loop Motor 141</p> <p>6.2.1 Torque Production 141</p> <p>6.2.2 Wound Field DC Motor 143</p> <p>6.2.3 Commutation of the Single-Loop Motor 143</p> <p>6.3 Faraday’s Law 145</p> <p>6.3.1 The Surface Element Vector S 146</p> <p>6.3.2 Interpreting the Sign of 147</p> <p>6.3.3 Back Emf in a Linear DC Machine 147</p> <p>6.3.4 Back Emf in the Single-Loop Motor 149</p> <p>6.3.5 Self-Induced Emf in the Single-Loop Motor 150</p> <p>6.4 Dynamic Equations of the DC Motor 152</p> <p>6.5 Optical Encoder Model 154</p> <p>6.6 Tachometer for a DC Machine* 157</p> <p>6.6.1 Tachometer for the Linear DC Machine 157</p> <p>6.6.2 Tachometer for the Single-Loop DC Motor 157</p> <p>6.7 TheMultiloop DC Motor* 159</p> <p>6.7.1 Increased Torque Production 159</p> <p>6.7.2 Commutation of the Armature Current 159</p> <p>Problems 163</p> <p><b>7 Block Diagrams 173</b></p> <p>7.1 Block Diagramfor a DC Motor 173</p> <p>7.2 Block Diagram Reduction 175</p> <p>Problems 185</p> <p><b>8 System Responses 191</b></p> <p>8.1 First-Order System Response 191</p> <p>8.2 Second-Order System Response 193</p> <p>8.2.1 Transient Response and Closed-Loop Poles 194</p> <p>8.2.2 Peak Time and Percent Overshoot 198</p> <p>8.2.3 Settling Time 200</p> <p>8.2.4 Rise Time 202</p> <p>8.2.5 Summary of 202</p> <p>8.2.6 Choosing the Gain of a Proportional Controller 202</p> <p>8.3 Second-Order Systems with Zeros 205</p> <p>8.4 Third-Order Systems 210</p> <p>Appendix - Root Locus Matlab File 211</p> <p>Problems 212</p> <p><b>9 Tracking and Disturbance Rejection 221</b></p> <p>9.1 Servomechanism 221</p> <p>9.2 Control of a DC Servo Motor 226</p> <p>9.2.1 Tracking 226</p> <p>9.2.2 Disturbance Rejection 231</p> <p>9.2.3 Summary of the PI Controller for a DC Servo 234</p> <p>9.2.4 Proportional plus Integral plus Derivative Control 234</p> <p>9.3 Theory of Tracking and Disturbance Rejection 238</p> <p>9.4 Internal Model Principle 242</p> <p>9.5 Design Example: PI-D Control of Aircraft Pitch 244</p> <p>9.6 Model Uncertainty and Feedback* 250</p> <p>Problems 258</p> <p><b>10 Pole Placement, 2 DOF Controllers, and Internal Stability 271</b></p> <p>10.1 Output Pole Placement 271</p> <p>10.1.1 Disturbance Model 276</p> <p>10.1.2 Effect of the Initial Conditions on the Control Design 278</p> <p>10.2 Two Degrees of Freedom Controllers 283</p> <p>10.3 Internal Stability 292</p> <p>10.3.1 Unstable Pole-Zero Cancellation Inside the Loop (Bad) 295</p> <p>10.3.2 Unstable Pole-Zero Cancellation Outside the Loop (Good) 298</p> <p>10.4 Design Example: 2 DOF Control of Aircraft Pitch 300</p> <p>10.5 Design Example: Satellite with Solar Panels (Collocated Case) 303</p> <p>Appendix: Output Pole Placement 306</p> <p>Appendix:Multinomial Expansions 310</p> <p>Appendix: Overshoot 311</p> <p>Appendix: Unstable Pole-Zero Cancellation 315</p> <p>Appendix: Undershoot 317</p> <p>Problems 320</p> <p><b>11 Frequency Response Methods 339</b></p> <p>11.1 Bode Diagrams 339</p> <p>11.1.1 Simple Examples 343</p> <p>11.1.2 More Bode Diagram Examples 345</p> <p>11.2 Nyquist Theory 359</p> <p>11.2.1 Principle of the Argument 359</p> <p>11.2.2 Nyquist Test for Stability 368</p> <p>11.3 Relative Stability: Gain and Phase Margins 377</p> <p>11.4 Closed-Loop Bandwidth 383</p> <p>11.5 Lead and Lag Compensation 387</p> <p>11.6 Double Integrator Control via Lead-Lag Compensation 392</p> <p>11.7 Inverted Pendulum with Output 399</p> <p>Appendix: Bode and Nyquist Plots in Matlab 401</p> <p>Problems 402</p> <p><b>12 Root Locus 419</b></p> <p>12.1 Angle Condition and Root Locus Rules 420</p> <p>12.2 Asymptotes and Their Intercept 427</p> <p>12.3 Angles of Departure 434</p> <p>12.4 Effect of Open-Loop Poles on the Root Locus 450</p> <p>12.5 Effect of Open-Loop Zeros on the Root Locus 451</p> <p>12.6 Breakaway Points and the Root Locus 452</p> <p>12.7 Design Example: Satellite with Solar Panels (Noncollocated) 453</p> <p>Problems 458</p> <p><b>13 Inverted Pendulum, Magnetic Levitation, and Cart on a Track 467</b></p> <p>13.1 Inverted Pendulum 467</p> <p>13.1.1 Mathematical Model of the Inverted Pendulum 467</p> <p>13.1.2 Linear Approximate Model 470</p> <p>13.1.3 Transfer Function Model 470</p> <p>13.1.4 Inverted Pendulum Control Using Nested Feedback Loops 472</p> <p>13.2 Linearization of Nonlinear Models 475</p> <p>13.3 Magnetic Levitation 478</p> <p>13.3.1 Conservation of Energy 479</p> <p>13.3.2 StatespaceModel 480</p> <p>13.3.3 Linearization About an Equilibrium Point 481</p> <p>13.3.4 Transfer Function Model 483</p> <p>13.4 Cart on a Track System 483</p> <p>13.4.1 Mechanical Equations 484</p> <p>13.4.2 Electrical Equations 485</p> <p>13.4.3 Equations of Motion and Block Diagram 486</p> <p>Problems 488</p> <p><b>14 State Variables 501</b></p> <p>14.1 Statespace Form 501</p> <p>14.2 Transfer Function to Statespace 503</p> <p>14.2.1 Control Canonical Form 505</p> <p>14.3 Laplace Transform of the Statespace Equations 513</p> <p>14.4 Fundamental Matrix Φ 516</p> <p>14.4.1 Exponential Matrix e^At 517</p> <p>14.5 Solution of the Statespace Equation* 520</p> <p>14.5.1 Scalar Case 521</p> <p>14.5.2 Matrix Case 522</p> <p>14.6 Discretization of a Statespace Model* 523</p> <p>Problems 525</p> <p><b>15 State Feedback 529</b></p> <p>15.1 Two Examples 529</p> <p>15.2 General State Feedback Trajectory Tracking 537</p> <p>15.3 Matrix Inverses and the Cayley-Hamilton Theorem 538</p> <p>15.3.1 Matrix Inverse 538</p> <p>15.3.2 Cayley-Hamilton Theorem 541</p> <p>15.4 Stabilization and State Feedback 543</p> <p>15.5 State Feedback and Disturbance Rejection 547</p> <p>15.6 Similarity Transformations 551</p> <p>15.7 Pole Placement 555</p> <p>15.7.1 State Feedback Does Not Change the System Zeros 559</p> <p>15.8 Asymptotic Tracking of Equilibrium Points 560</p> <p>15.9 Tracking Step Inputs via State Feedback 562</p> <p>15.10 Inverted Pendulum on an Inclined Track* 569</p> <p>15.11 Feedback Linearization Control* 574</p> <p>Appendix: Disturbance Rejection in the Statespace 579</p> <p>Problems 581</p> <p><b>16 State Estimators and Parameter Identification 595</b></p> <p>16.1 State Estimators 595</p> <p>16.1.1 General Procedure for State Estimation 600</p> <p>16.1.2 Separation Principle 608</p> <p>16.2 State Feedback and State Estimation in the Laplace Domain* 610</p> <p>16.3 Multi-Output Observer Design for the Inverted Pendulum* 613</p> <p>16.4 Properties of Matrix Transpose and Inverse 615</p> <p>16.5 Duality* 617</p> <p>16.6 Parameter Identification 619</p> <p>Problems 626</p> <p><b>17 Robustness and Sensitivity of Feedback 641</b></p> <p>17.1 Inverted Pendulum with Output 641</p> <p>17.2 Inverted Pendulum with Output 655</p> <p>17.3 Inverted Pendulum with State Feedback 657</p> <p>17.4 Inverted Pendulum with an Integrator and State Feedback 661</p> <p>17.5 Inverted Pendulum with State Feedback via State Estimation 663</p> <p>Problems 666</p> <p>References 671</p> <p>Index 675</p>
<p><b>John Chiasson, PhD,</b> is a Fellow of the IEEE and the author of<i> Modeling and High-Performance Control of Electric Machines</i> (Wiley 2005), <i>Introduction to Probability and Stochastic Processes</i> (Wiley 2013), and <i>Differential-Geometric Approach to Nonlinear Control</i> (2021).</p>
<p><b>A practical and straightforward exploration of the basic tools for the modeling, analysis, and design of control systems</B></p> <p>In <i>An Introduction to System Modeling and Control,</i> Dr. Chiasson delivers an accessible and intuitive guide to understanding modeling and control for students in electrical, mechanical, and aerospace/aeronautical engineering. The book begins with an introduction to the need for control by describing how an aircraft flies complete with figures illustrating roll, pitch, and yaw control using its ailerons, elevators, and rudder, respectively. The book moves on to rigid body dynamics about a single axis (gears, cart rolling down an incline) and then to modeling DC motors, DC tachometers, and optical encoders. Using the transfer function representation of these dynamic models, PID controllers are introduced as an effective way to track step inputs and reject constant disturbances. <p>It is further shown how any transfer function model can be stabilized using output pole placement and on how two-degree of freedom controllers can be used to eliminate overshoot in step responses. Bode and Nyquist theory are then presented with an emphasis on how they give a quantitative insight into a control system’s robustness and sensitivity. <i>An Introduction to System Modeling and Control</i> closes with chapters on modeling an inverted pendulum and a magnetic levitation system, trajectory tracking control using state feedback, and state estimation. In addition the book offers: <ul><li>A complete set of MATLAB/SIMULINK files for examples and problems included in the book.</li> <li>A set of lecture slides for each chapter.</li> <li>A solutions manual with recommended problems to assign.</li> <li>An analysis of the robustness and sensitivity of four different controller designs for an inverted pendulum (cart-pole).</li></ul> <p>Perfect for electrical, mechanical, and aerospace/aeronautical engineering students, <i>An Introduction to System Modeling and Control</i> will also be an in-valuable addition to the libraries of practicing engineers.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €