Details

Sustainable Energy Storage in the Scope of Circular Economy


Sustainable Energy Storage in the Scope of Circular Economy

Advanced Materials and Device Design
1. Aufl.

von: Carlos Miguel Costa, Renato Goncalves, Senentxu Lanceros-Mendez

162,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.03.2023
ISBN/EAN: 9781119817703
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Sustainable Energy Storage in the Scope of Circular Economy</b></p> <p><b>Comprehensive resource reviewing recent developments in the design and application of energy storage devices</b></p> <p><i>Sustainable Energy Storage in the Scope of Circular Economy</i> reviews the recent developments in energy storage devices based on sustainable materials within the framework of the circular economy, addressing the sustainable design and application of energy storage devices with consideration of the key advantages and remaining challenges in this rapidly evolving research field.</p> <p>Topics covered include:</p> <ul> <li>Sustainable materials for batteries and fuel cell devices</li> <li>Multifunctional sustainable materials for energy storage</li> <li>Energy storage devices in the scope of the Internet of Things</li> <li>Sustainable energy storage devices and device design for sensors and actuators</li> <li>Waste prevention for energy storage devices based on second life and recycling procedures</li> </ul> <p>With detailed information on today’s most effective energy storage devices, <i>Sustainable Energy Storage in the Scope of Circular Economy</i> is a key resource for academic researchers, industrial scientists and engineers, and students in related programs of study who wish to understand the state of the art in this field.</p>
<p>List of Contributors xi</p> <p>Preface xv</p> <p><b>Part I Introduction 1</b></p> <p><b>1 The Central Role of Energy in the Scope of Circular Economy and Sustainable Approaches in Energy Generation and Storage 3<br /> </b><i>Renato Gonçalves, Arkaitz Fidalgo- Marijuan, Carlos Miguel Costa, and Senentxu Lanceros- Méndez</i></p> <p>1.1 Introduction 3</p> <p>1.2 Circular Economy and the Central Role of Energy 5</p> <p>1.3 The Central Role of Energy in the Scope of Sustainability 8</p> <p>1.3.1 Energy Generation 8</p> <p>1.3.2 Energy Storage 10</p> <p>1.4 Conclusions and Outlook 11</p> <p>Acknowledgments 12</p> <p>References 13</p> <p><b>2 Reactive Metals as Energy Storage and Carrier Media 17<br /> </b><i>Hüseyin Ersoy, Manuel Baumann, Marcel Weil, Linda Barelli, and Stefano Passerini</i></p> <p>2.1 Introduction 17</p> <p>2.2 Significance of a Circular Metal Economy for the Energy Transition 18</p> <p>2.3 Energy Carrier Properties of Reactive Metals 20</p> <p>2.4 Potential Reactive Metal Energy Carrier and Storage Applications 22</p> <p>2.4.1 Metals as Thermal Energy Carriers 22</p> <p>2.4.2 Combustible Metal Fuels, and Hydrogen Carriers 26</p> <p>2.4.3 Reactive Metal- Based Electrochemical Energy Storage 30</p> <p>2.5 Economic and Environmental Implications of Reactive Metals 33</p> <p>2.6 Conclusion and Outlook 36</p> <p>Aknowledgements 37</p> <p>References 37</p> <p><b>Part II Sustainable Materials for Batteries and Supercapacitors 43</b></p> <p><b>3 Lithium- Ion Batteries: Electrodes, Separators, and Solid Polymer Electrolytes 45<br /> </b><i>Manuel Salado, Renato Gonçalves, Carlos Miguel Costa, and Senentxu Lanceros-Méndez</i></p> <p>3.1 Introduction 45</p> <p>3.2 Lithium- Ion Batteries 51</p> <p>3.2.1 Electrodes 51</p> <p>3.2.2 Separator 53</p> <p>3.2.3 Electrolyte 54</p> <p>3.3 Sustainable Materials for Li- Ion Batteries 56</p> <p>3.3.1 Electrodes 56</p> <p>3.3.2 Separator 59</p> <p>3.3.3 Solid Polymer Electrolytes 61</p> <p>3.4 Conclusions and Outlook 61</p> <p>Acknowledgments 62</p> <p>References 62</p> <p><b>4 Solid Batteries Chemistries Beyond Lithium 69<br /> </b><i>Mary York, Karl Larson, Kailot C. Harris, Eric Carmona, Paul Albertus, Rosy Sharma, Malachi Noked, Ela Strauss, Heftsi Ragones, and Diana Golodnitsky</i></p> <p>4.1 Introduction 69</p> <p>4.2 Brief Overview of Solid Alkali- Ion and Alkaline- Earth- Ion Electrolytes 72</p> <p>4.2.1 Types of Solid Electrolytes 72</p> <p>4.2.2 Insights and Developments Regarding Metal Dendrites in Solid Electrolyte Systems 75</p> <p>4.2.2.1 Metal Growth Through Na Ceramic Solid Electrolytes 77</p> <p>4.3 Solid- State Sodium- Ion Batteries 79</p> <p>4.3.1 Solid Electrolytes for Sodium Batteries 80</p> <p>4.3.2 Anode Materials for Solid- State Sodium Batteries 82</p> <p>4.3.3 Cathode Materials for Solid- State Sodium Batteries 84</p> <p>4.3.4 Solid- State Sodium Battery, Full- Cell Results 86</p> <p>4.4 Solid- State Potassium- Ion Batteries 88</p> <p>4.4.1 Solid Electrolytes for Potassium Batteries 89</p> <p>4.4.2 Anode Materials for Solid- State Potassium Batteries 90</p> <p>4.4.3 Cathode Materials and Electrochemical Performance of Solid- State Potassium Batteries 91</p> <p>4.5 Solid- State Magnesium- Ion Batteries 94</p> <p>4.5.1 Solid Electrolytes for Magnesium- Ion Batteries 94</p> <p>4.5.2 Anode Materials for Solid- State Magnesium Batteries 100</p> <p>4.5.3 Cathode Materials and Electrochemical Performance of Magnesium Batteries 101</p> <p>4.6 Specific Challenges and Future Perspectives 104</p> <p>References 106</p> <p><b>5 A Rationale for the Development of Sustainable Biodegradable Batteries 123<br /> </b><i>Marina Navarro- Segarra and Juan P. Esquivel</i></p> <p>5.1 Challenges for Powering a Digital Society 123</p> <p>5.2 State of the Art of Portable Batteries with a Disruptive End of Life 126</p> <p>5.3 How to Design a Truly Sustainable Battery? 130</p> <p>5.3.1 Portable Battery Development in a Doughnut Model 132</p> <p>5.3.1.1 Materials 134</p> <p>5.3.1.2 Fabrication and Distribution 134</p> <p>5.3.1.3 Application 135</p> <p>5.3.1.4 End of Life 136</p> <p>5.4 Global Trends and Opportunities 137</p> <p>Acknowledgments 138</p> <p>Notes 138</p> <p>References 139</p> <p><b>6 Recent Advances of Sustainable Electrode Materials for Supercapacitor Devices 145<br /> </b><i>Shilpi Sengupta and Manab Kundu</i></p> <p>6.1 Introduction 145</p> <p>6.2 Charge Storage Mechanism 148</p> <p>6.2.1 Electric Double- Layer Capacitor 149</p> <p>6.2.1.1 Activated Carbon 150</p> <p>6.2.1.2 Carbon Nanotubes 150</p> <p>6.2.1.3 Graphene 151</p> <p>6.2.1.4 Metal–Organic Frameworks (MOFs) 151</p> <p>6.2.2 Pseudocapacitor 153</p> <p>6.2.2.1 Transition Metal Hydroxides 153</p> <p>6.2.2.2 Transition Metal Oxides 154</p> <p>6.2.2.3 Transition Metal Sulfides 154</p> <p>6.2.2.4 Transition Metal Diselenides 155</p> <p>6.3 Conclusion 156</p> <p>References 156</p> <p><b>Part III Sustainable Approaches for Fuel Cells 159</b></p> <p><b>7 Sustainable Materials for Fuel Cell Devices 161<br /> </b><i>Weidong He, Shijie Zhong, Yunfa Dong, and Qun li</i></p> <p>7.1 Introduction 161</p> <p>7.2 Catalysts 161</p> <p>7.2.1 Introduction 161</p> <p>7.2.2 PGM- Based Catalysts 163</p> <p>7.2.2.1 Carbon- Based Supported PGM Catalysts 163</p> <p>7.2.2.2 Oxide- Based Supported PGM- Based Catalysts 166</p> <p>7.2.2.3 Pt Alloy Catalysts 166</p> <p>7.2.2.4 Pt Core–Shell Structure Catalysts 166</p> <p>7.2.3 PGM- Free Catalysts 166</p> <p>7.2.3.1 Metal- Free Catalysts 167</p> <p>7.2.3.2 Metal–Nitrogen–Carbon Catalysts 168</p> <p>7.3 Proton Exchange Membrane (PEM) 169</p> <p>7.3.1 PFSA and Their Composite Membranes 170</p> <p>7.3.2 SHPs and Their Composite Membranes 174</p> <p>7.3.3 PBI/H <sub>3</sub> PO <sub>4</sub> Membrane 175</p> <p>7.4 The Other Components 176</p> <p>7.4.1 Gas Diffusion Layer (GDL) 176</p> <p>7.4.2 Bipolar Plate (BP) 177</p> <p>7.4.3 Current Collector 177</p> <p>7.4.4 Sealing Material (SM) 178</p> <p>References 179</p> <p><b>8 Recent Advances in Microbial Fuel Cells for Sustainable Energy 183<br /> </b><i>Muhammad R. Sulaiman and Ram K. Gupta</i></p> <p>8.1 Introduction 183</p> <p>8.1.1 Introduction to Microbial Fuel Cells 184</p> <p>8.1.2 Electron Transfer Mechanism 184</p> <p>8.1.3 MFC Substrate 187</p> <p>8.1.4 Electrode Materials 187</p> <p>8.2 Materials for Anode 187</p> <p>8.2.1 Conventional Carbonaceous Materials 188</p> <p>8.2.2 Metal and Metal Oxide- Based Anode for MFC 191</p> <p>8.2.3 Natural Waste- Based Anode Material for MFC 191</p> <p>8.2.4 Modification Approaches for MFC Anode 194</p> <p>8.3 Materials for Cathode 196</p> <p>8.3.1 Pt- Based Cathode 196</p> <p>8.3.2 Nonprecious Metal Cathode 196</p> <p>8.3.3 Biocathodes 197</p> <p>8.3.4 Metal- Free Cathode 197</p> <p>8.4 Conclusion 197</p> <p>References 198</p> <p><b>Part IV Sustainable Energy Storage Devices and Device Design 203</b></p> <p><b>9 Multifunctional Sustainable Materials for Energy Storage 205<br /> </b><i>Michael Thielke and Ana J. Sobrido</i></p> <p>9.1 Redox Flow Batteries as Alternative Energy Storage Technology for Grid- Scale and Off- Grid Applications 205</p> <p>9.1.1 Traditional Carbon Electrodes in Redox Flow Batteries 208</p> <p>9.1.2 Processing of Biomass Into Electroactive Materials 213</p> <p>9.1.3 Examples of Biomass- Derived Electrodes for Redox Flow Batteries 213</p> <p>References 221</p> <p><b>10 Sustainable Energy Storage Devices and Device Design for Sensors and Actuators Applications 225<br /> </b><i>Reeya Agarwal, Sangeeta Singh, and Ahmed E. Shalan</i></p> <p>10.1 Introduction of Sustainable Energy Storage Devices 225</p> <p>10.2 Literature Survey 229</p> <p>10.3 Need for the Sustainable Energy Storage Devices 236</p> <p>10.3.1 Reduce First 236</p> <p>10.3.2 Electricity Generation and Health 237</p> <p>10.3.2.1 The Economic Benefits of Using Renewable Energy Sources are Numerous 237</p> <p>10.3.2.2 Protection of the Energy Supply 237</p> <p>10.3.2.3 Increasing the Economy 238</p> <p>10.3.2.4 Stability of the Currency 238</p> <p>10.3.2.5 Electricity and the Environment 238</p> <p>10.3.3 Energy Storing Approaches 239</p> <p>10.3.4 Storage Systems for Large Amounts of Energy 239</p> <p>10.3.4.1 Electrochemical Storage 239</p> <p>10.3.4.2 Thermochemical Storage 241</p> <p>10.3.4.3 Thermochemical Energy Storage (TCES): Physical Fundamentals 242</p> <p>10.3.4.4 Thermal Energy Storage 243</p> <p>10.3.4.5 Chemical and Hydrogen Energy Storage 243</p> <p>10.4 Sustainable and Ecofriendly Energy Storage 246</p> <p>10.4.1 Longer Charges 248</p> <p>10.4.2 Safer Batteries 249</p> <p>10.4.3 Storing Sunlight as Heat 249</p> <p>10.4.4 Advanced Renewable Fuels 250</p> <p>10.5 Different Energy Storage Mechanisms 250</p> <p>10.5.1 Hydroelectricity 250</p> <p>10.5.2 Hydroelectric Power Was Generated and Then Transferred 252</p> <p>10.5.3 A Compressor That Produces Compressed Air 252</p> <p>10.5.4 Flywheel 253</p> <p>10.5.5 Gravitational Pull of a Massive Object 253</p> <p>10.5.6 Thermal 253</p> <p>10.5.7 Thermal Heat Sensitiveness 254</p> <p>10.5.8 Latent Heat Thermal (LHTES) 254</p> <p>10.5.9 Charging System for the Carnot Battery 254</p> <p>10.5.10 Lithium- Ion Battery 254</p> <p>10.5.11 Supercapacitor 254</p> <p>10.5.12 Chemical 255</p> <p>10.5.13 Hydrogen 255</p> <p>10.5.14 Electrochemical 255</p> <p>10.5.15 Methane 256</p> <p>10.5.16 Biofuels 257</p> <p>10.5.17 Aluminum 257</p> <p>10.5.18 Ways Utilizing Electricity 257</p> <p>10.5.19 Magnetic Materials with Superconductivity 257</p> <p>10.6 Different Novel 2D Materials for Energy Storage 258</p> <p>10.6.1 2D Materials for Energy Storage Devices 260</p> <p>10.6.2 Challenges Facing 2D Energy Technology 261</p> <p>10.7 Nature- Inspired Materials for Sensing and Energy Storage Applications 262</p> <p>10.7.1 Sensing and Energy Storage Artificial Nano and Microstructures 262</p> <p>10.7.2 Bioinspired Hierarchical Nanofibrous Materials 263</p> <p>10.7.3 Nature- Inspired Polymer Nanocomposites 264</p> <p>10.7.4 Skin- Inspired Hierarchical Polymer Materials 265</p> <p>10.7.5 Neuron- Inspired Network Materials 267</p> <p>10.7.6 Tunable Energy Storage Materials 267</p> <p>10.7.7 Tunable Sensing Materials 270</p> <p>10.7.8 Bioinspired Batteries 273</p> <p>10.7.9 Bioinspired Energy Storage Devices 274</p> <p>10.8 Conclusions 276</p> <p>References 276</p> <p><b>11 Sustainable Energy Storage Devices and Device Design for in the Scope of Internet of Things 291<br /> </b><i>Vitor Correia, Carlos Miguel Costa, and Senentxu Lanceros-Méndez</i></p> <p>11.1 Introduction 291</p> <p>11.2 New Materials and Manufacturing Methods for Batteries 296</p> <p>11.3 New Materials and Manufacturing Methods for Supercapacitors 299</p> <p>11.4 New Designs to Optimize the Management and Energy Needs of the Devices 301</p> <p>11.5 Recycling Solutions for Energy Storage Systems 302</p> <p>11.6 Conclusions 302</p> <p>Acknowledgments 303</p> <p>References 303</p> <p><b>Part V Waste Prevention and Recycling 307</b></p> <p><b>12 Waste Prevention for Energy Storage Devices Based on Second- Life Use of Lithium- Ion Batteries 309<br /> </b><i>Oliver Pohl, Gavin Collis, Peter Mahon, and Thomas Rüther</i></p> <p>12.1 Introduction 309</p> <p>12.1.1 Benefits of Second- Life 312</p> <p>12.1.2 Economic Benefits 313</p> <p>12.1.3 Environmental Benefits 315</p> <p>12.2 Challenges 315</p> <p>12.2.1 Chemical Challenges 315</p> <p>12.2.2 Methods of Investigating Lithium- Ion Battery State of Health 318</p> <p>12.2.2.1 Coulomb Counting 318</p> <p>12.2.2.2 Battery Management System Data Extraction 318</p> <p>12.2.2.3 Electrochemical Impedance Spectroscopy (EIS) 319</p> <p>12.2.2.4 Incremental Capacity Analysis (ICA) 320</p> <p>12.2.3 Engineering Challenges 320</p> <p>12.2.4 Economic Challenges 321</p> <p>12.2.5 Legal Challenges 322</p> <p>12.2.6 Current Implementations 323</p> <p>12.2.7 Outlook 324</p> <p>References 324</p> <p><b>13 Recycling Procedures for Energy Storage Devices in the Scope of the Electric Vehicle Implementation 335<br /> </b><i>Carlos Miguel Costa, Yifeng Wang, Eider Goikolea, Qi Zhang, Hélder Castro, Renato Gonçalves, and Senentxu Lanceros-Méndez</i></p> <p>13.1 Introduction 335</p> <p>13.2 Lithium- Ion Batteries: Environmental Impact and Sustainability 336</p> <p>13.3 Lithium- Ion Batteries: Recycling Strategies and Processes 337</p> <p>13.3.1 Electrode Recycling Approaches 337</p> <p>13.3.1.1 Pyrometallurgical Methods 337</p> <p>13.3.2 Separators/electrolytes 356</p> <p>13.4 Status of the Battery Electric Vehicle Fleet 356</p> <p>13.4.1 Battery Demand 356</p> <p>13.4.2 Battery Electric Vehicle Outlook 361</p> <p>13.4.2.1 Sustainability 361</p> <p>13.4.2.2 Production Stage 362</p> <p>13.4.2.3 Use Stage 362</p> <p>13.4.2.4 End of Life and Analysis 363</p> <p>13.5 Conclusions and Outlook 365</p> <p>Acknowledgments 366</p> <p>References 366</p> <p><b>14 Summary and Outlook 375<br /> </b><i>Renato Gonçalves, Arkaitz Fidalgo- Marijuan, Carlos Miguel Costa, and Senentxu Lanceros-Méndez</i></p> <p>Acknowledgments 377</p> <p>References 377</p> <p>Index 379</p>
<p><b>Carlos Miguel Costa,</b> Research, Centre of Physics, University of Minho, Portugal. <p><b>Renato Gonçalves,</b> Research, Centre of Chemistry, University of Minho, Portugal. <p><b>Senentxu Lanceros-Méndez,</b> Research Professor and Scientific Director, BCMaterials, Basque Center for Materials, Applications and Nanostructures, Spain.
<p><b>Comprehensive resource reviewing recent developments in the design and application of energy storage devices</b> <p><i>Sustainable Energy Storage in the Scope of Circular Economy</i> reviews the recent developments in energy storage devices based on sustainable materials within the framework of the circular economy, addressing the sustainable design and application of energy storage devices with consideration of the key advantages and remaining challenges in this rapidly evolving research field. <p>Topics covered include: <ul><li> Sustainable materials for batteries and fuel cell devices</li> <li> Multifunctional sustainable materials for energy storage </li> <li> Energy storage devices in the scope of the Internet of Things</li> <li> Sustainable energy storage devices and device design for sensors and actuators</li> <li> Waste prevention for energy storage devices based on second life and recycling procedures </li></ul> <p>With detailed information on today’s most effective energy storage devices, <i>Sustainable Energy Storage in the Scope of Circular Economy</i> is a key resource for academic researchers, industrial scientists and engineers, and students in related programs of study who wish to understand the state of the art in this field.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €