Details

Control of Power Electronic Converters with Microgrid Applications


Control of Power Electronic Converters with Microgrid Applications


IEEE Press Series on Power and Energy Systems 1. Aufl.

von: Arindam Ghosh, Firuz Zare

103,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 13.09.2022
ISBN/EAN: 9781119815440
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Control of Power Electronic Converters with Microgrid Applications</b> <p><b>Discover a systematic approach to design controllers for power electronic converters and circuits</b> <p>In <i>Control of Power Electronic Converters with Microgrid Applications</i>, distinguished academics and authors Drs. Arindam Ghosh and Firuz Zare deliver a systematic exploration of design controllers for power electronic converters and circuits. The book offers readers the knowledge necessary to effectively design intelligent control mechanisms. It covers the theoretical requirements, like advanced control theories and the analysis and conditioning of AC signals as well as controller development and control. <p>The authors provide readers with discussions of custom power devices, as well as both DC and AC microgrids. They also discuss the harmonic issues that are crucial in this area, as well as harmonic standardization. The book addresses a widespread lack of understanding in the control philosophy that can lead to a stable operation of converters, with a focus on the application of power electronics to power distribution systems. <p>Readers will also benefit from the inclusion of: <ul><li>A thorough introduction to controller design for different power electronic converter configurations in microgrid systems (both AC and DC)</li> <li>A presentation of emerging technology in power distribution systems to integrate different renewable energy sources</li> <li>Chapters on DC-DC converters and DC microgrids, as well as DC-AC converter modulation techniques and custom power devices, predictive control, and AC microgrids</li></ul> <p>Perfect for manufacturers of power converters, microgrid developers and installers, as well as consultants who work in this area, <i>Control of Power Electronic Converters with Microgrid Applications</i> is also an indispensable reference for graduate students, senior undergraduate students, and researchers seeking a one-stop resource for the design of controllers for power electronic converters and circuits.
<p>Author Biographies xv</p> <p>Preface xvii</p> <p>Acknowledgments xxi</p> <p><b>1 Introduction 1</b></p> <p>1.1 Introduction to Power Electronics 4</p> <p>1.2 Power Converter Modes of Operation 7</p> <p>1.3 Power Converter Topologies 9</p> <p>1.4 Harmonics and Filters 10</p> <p>1.5 Power Converter Operating Conditions, Modelling, and Control 12</p> <p>1.6 Control of Power Electronic Systems 14</p> <p>1.6.1 Open-loop Versus Closed-loop Control 14</p> <p>1.6.2 Nonlinear Systems 16</p> <p>1.6.3 Piecewise Linear Systems 17</p> <p>1.7 Power Distribution Systems 18</p> <p>1.8 Concluding Remarks 20</p> <p>References 20</p> <p><b>2 Analysis of AC Signals 23</b></p> <p>2.1 Symmetrical Components 24</p> <p>2.1.1 Voltage Unbalanced Factor (VUF) 25</p> <p>2.1.2 Real and Reactive Power 26</p> <p>2.2 Instantaneous Symmetrical Components 27</p> <p>2.2.1 Estimating Symmetrical Components from Instantaneous Measurements 29</p> <p>2.2.2 Instantaneous Real and Reactive Power 34</p> <p>2.3 Harmonics 37</p> <p>2.4 Clarke and Park Transforms 39</p> <p>2.4.1 Clarke Transform 39</p> <p>2.4.2 Park Transform 40</p> <p>2.4.3 Real and Reactive Power 41</p> <p>2.4.4 Analyzing a Three-phase Circuit 43</p> <p>2.4.5 Relation Between Clarke and Park Transforms 45</p> <p>2.5 Phase Locked Loop (PLL) 46</p> <p>2.5.1 Three-phase PLL System 47</p> <p>2.5.2 PLL for Unbalanced System 50</p> <p>2.5.3 Frequency Estimation of Balanced Signal Using αβ Components 52</p> <p>2.6 Concluding Remarks 53</p> <p>Problems 54</p> <p>Notes and References 56</p> <p><b>3 Review of SISO Control Systems 59</b></p> <p>3.1 Transfer Function and Time Response 60</p> <p>3.1.1 Steady State Error and DC Gain 60</p> <p>3.1.2 System Damping and Stability 62</p> <p>3.1.3 Shaping a Second-order Response 63</p> <p>3.1.4 Step Response of First- and Higher-order Systems 65</p> <p>3.2 Routh–Hurwitz’s Stability Test 66</p> <p>3.3 Root Locus 69</p> <p>3.3.1 Number of Branches and Terminal Points 70</p> <p>3.3.2 Real Axis Locus 71</p> <p>3.3.3 Breakaway and Break-in Points 73</p> <p>3.4 PID Control 76</p> <p>3.4.1 PI Controller 77</p> <p>3.4.2 PD Controller 78</p> <p>3.4.3 Tuning of PID Controllers 81</p> <p>3.5 Frequency Response Methods 83</p> <p>3.5.1 Bode Plot 85</p> <p>3.5.2 Nyquist (Polar) Plot 89</p> <p>3.5.3 Nyquist Stability Criterion 91</p> <p>3.6 Relative Stability 95</p> <p>3.6.1 Phase and Gain Margins 95</p> <p>3.6.2 Bandwidth 101</p> <p>3.7 Compensator Design 104</p> <p>3.7.1 Lead Compensator 104</p> <p>3.7.2 Lag Compensator 108</p> <p>3.7.3 Lead–lag Compensator 108</p> <p>3.8 Discrete-time Control 110</p> <p>3.8.1 Discrete-time Representation 110</p> <p>3.8.2 The z-transform 111</p> <p>3.8.3 Transformation from Continuous Time to Discrete Time 112</p> <p>3.8.4 Mapping s-Plane into z-Plane 112</p> <p>3.8.5 Difference Equation and Transfer Function 113</p> <p>3.8.6 Digital PID Control 115</p> <p>3.9 Concluding Remarks 115</p> <p>Problems 116</p> <p>Notes and References 120</p> <p><b>4 Power Electronic Control Design Challenges 123</b></p> <p>4.1 Analysis of Buck Converter 123</p> <p>4.1.1 Designing a Buck Converter 126</p> <p>4.1.2 The Need for a Controller 128</p> <p>4.1.3 Dynamic State of a Power Converter 133</p> <p>4.1.4 Averaging Method 133</p> <p>4.1.5 Small Signal Model of Buck Converter 135</p> <p>4.1.6 Transfer Function of Buck Converter 136</p> <p>4.1.7 Control of Buck Converter 136</p> <p>4.2 Transfer Function of Boost Converter 140</p> <p>4.2.1 Control of Boost Converter 141</p> <p>4.2.2 Two-loop Control of Boost Converter 144</p> <p>4.2.3 Some Practical Issues 150</p> <p>4.3 Concluding Remarks 151</p> <p>Problems 151</p> <p>Notes and References 152</p> <p><b>5 State Space Analysis and Design 153</b></p> <p>5.1 State Space Representation of Linear Systems 154</p> <p>5.1.1 Continuous-time Systems 154</p> <p>5.1.2 Discrete-time Systems 155</p> <p>5.2 Solution of State Equation of a Continuous-time System 156</p> <p>5.2.1 State Transition Matrix 156</p> <p>5.2.2 Properties of State Transition Matrix 158</p> <p>5.2.3 State Transition Equation 159</p> <p>5.3 Solution of State Equation of a Discrete-time System 160</p> <p>5.3.1 State Transition Matrix 161</p> <p>5.3.2 Computation of State Transition Matrix 161</p> <p>5.3.3 Discretization of a Continuous-time System 162</p> <p>5.4 Relation Between State Space Form and Transfer Function 164</p> <p>5.4.1 Continuous-time System 164</p> <p>5.4.2 Discrete-time System 166</p> <p>5.5 Eigenvalues and Eigenvectors 167</p> <p>5.5.1 Eigenvalues 167</p> <p>5.5.2 Eigenvectors 168</p> <p>5.6 Diagonalization of a Matrix Using Similarity Transform 170</p> <p>5.6.1 Matrix with Distinct Eigenvalues 170</p> <p>5.6.2 Matrix with Repeated Eigenvalues 173</p> <p>5.7 Controllability of LTI Systems 174</p> <p>5.7.1 Implication of Cayley–Hamilton Theorem 176</p> <p>5.7.2 Controllability Test Condition 176</p> <p>5.8 Observability of LTI Systems 178</p> <p>5.9 Pole Placement Through State Feedback 180</p> <p>5.9.1 Pole Placement with Integral Action 183</p> <p>5.9.2 Linear Quadratic Regulator (LQR) 185</p> <p>5.9.3 Discrete-time State Feedback with Integral Control 187</p> <p>5.10 Observer Design (Full Order) 187</p> <p>5.10.1 Separation Principle 188</p> <p>5.11 Control of DC-DC Converter 190</p> <p>5.11.1 Steady State Calculation 192</p> <p>5.11.2 Linearized Model of a Boost Converter 195</p> <p>5.11.3 State Feedback Control of a Boost Converter 196</p> <p>5.12 Concluding Remarks 200</p> <p>Problems 201</p> <p>Notes and References 204</p> <p><b>6 Discrete-time Control 207</b></p> <p>6.1 Minimum Variance (MV) Prediction and Control 208</p> <p>6.1.1 Discrete-time Models for SISO Systems 208</p> <p>6.1.2 MV Prediction 209</p> <p>6.1.3 MV Control Law 212</p> <p>6.1.4 One-step-ahead Control 214</p> <p>6.2 Pole Placement Controller 218</p> <p>6.2.1 Pole Shift Control 222</p> <p>6.3 Generalized Predictive Control (GPC) 225</p> <p>6.3.1 Simplified GPC Computation 233</p> <p>6.4 Adaptive Control 234</p> <p>6.5 Least-squares Estimation 235</p> <p>6.5.1 Matrix Inversion Lemma 237</p> <p>6.5.2 Recursive Least-squares (RLS) Identification 238</p> <p>6.5.3 Bias and Consistency 242</p> <p>6.6 Self-tuning Controller 244</p> <p>6.6.1 MV Self-tuning Control 244</p> <p>6.6.2 Pole Shift Self-tuning Control 248</p> <p>6.6.3 Self-tuning Control of Boost Converter 249</p> <p>6.7 Concluding Remarks 252</p> <p>Problems 253</p> <p>Notes and References 254</p> <p><b>7 DC-AC Converter Modulation Techniques 257</b></p> <p>7.1 Single-phase Bridge Converter 258</p> <p>7.1.1 Hysteresis Current Control 259</p> <p>7.1.2 Bipolar Sinusoidal Pulse Width Modulation (SPWM) 263</p> <p>7.1.3 Unipolar Sinusoidal Pulse Width Modulation 265</p> <p>7.2 SPWM of Three-phase Bridge Converter 267</p> <p>7.3 Space Vector Modulation (SVM) 271</p> <p>7.3.1 Calculation of Space Vectors 272</p> <p>7.3.2 Common Mode Voltage 273</p> <p>7.3.3 Timing Calculations 274</p> <p>7.3.4 An Alternate Method for Timing Calculations 277</p> <p>7.3.5 Sequencing of Space Vectors 279</p> <p>7.4 SPWM with Third Harmonic Injection 282</p> <p>7.5 Multilevel Converters 285</p> <p>7.5.1 Diode-clamped Multilevel Converter 290</p> <p>7.5.2 Switching States of Diode-clamped Multilevel Converters 291</p> <p>7.5.3 Flying Capacitor Multilevel Converter 295</p> <p>7.5.4 Cascaded Multilevel Converter 302</p> <p>7.5.5 Modular Multilevel Converter (MMC) 302</p> <p>7.5.6 PWM of Multilevel Converters 303</p> <p>7.6 Concluding Remarks 306</p> <p>Problems 307</p> <p>Notes and References 307</p> <p><b>8 Control of DC-AC Converters 311</b></p> <p>8.1 Filter Structure and Design 311</p> <p>8.1.1 Filter Design 313</p> <p>8.1.2 Filter with Passive Damping 315</p> <p>8.2 State Feedback Based PWM Voltage Control 315</p> <p>8.2.1 HPF-based Control Design 318</p> <p>8.2.2 Observer-based Current Estimation 321</p> <p>8.3 State Feedback Based SVPWM Voltage Control 323</p> <p>8.4 Sliding Mode Control 324</p> <p>8.4.1 Sliding Mode Voltage Control 326</p> <p>8.5 State Feedback Current Control 330</p> <p>8.6 Output Feedback Current Control 333</p> <p>8.7 Concluding Remarks 336</p> <p>Problems 337</p> <p>Notes and References 338</p> <p><b>9 VSC Applications in Custom Power 341</b></p> <p>9.1 DSTATCOM in Voltage Control Mode 342</p> <p>9.1.1 Discrete-time PWM State Feedback Control 346</p> <p>9.1.2 Discrete-time Output Feedback PWM Control 348</p> <p>9.1.3 Voltage Control Using Four-leg Converter 351</p> <p>9.1.4 The Effect of System Frequency 353</p> <p>9.1.5 Power Factor Correction 357</p> <p>9.2 Load Compensation 360</p> <p>9.2.1 Classical Load Compensation Technique 360</p> <p>9.2.2 Load Compensation Using VSC 363</p> <p>9.3 Other Custom Power Devices 367</p> <p>9.4 Concluding Remarks 370</p> <p>Problems 370</p> <p>Notes and References 373</p> <p><b>10 Microgrids 377</b></p> <p>10.1 Operating Modes of a Converter 380</p> <p>10.2 Grid Forming Converters 381</p> <p>10.2.1 PI Control in dq-domain 382</p> <p>10.2.2 State Feedback Control in dq-domain 385</p> <p>10.3 Grid Feeding Converters 389</p> <p>10.4 Grid Supporting Converters for Islanded Operation of Microgrids 392</p> <p>10.4.1 Active and Reactive Over a Feeder 393</p> <p>10.4.2 Inductive Grid 394</p> <p>10.4.3 Resistive Grid 398</p> <p>10.4.4 Consideration of Line Impedances 400</p> <p>10.4.5 Virtual Impedance 402</p> <p>10.4.6 Inclusion of Nondispatchable Sources 405</p> <p>10.4.7 Angle Droop Control 406</p> <p>10.5 Grid-connected Operation of Microgrid 411</p> <p>10.6 DC Microgrids 415</p> <p>10.6.1 P-V Droop Control 417</p> <p>10.6.2 The Effect of Line Resistances 419</p> <p>10.6.3 I-V Droop Control 421</p> <p>10.6.4 DCMG Operation with DC-DC Converters 423</p> <p>10.7 Integrated AC-DC System 424</p> <p>10.7.1 Dual Active Bridge (DAB) 425</p> <p>10.7.2 AC Utility Connected DCMG 429</p> <p>10.8 Control Hierarchies of Microgrids 430</p> <p>10.8.1 Primary Control 430</p> <p>10.8.2 Secondary Control 432</p> <p>10.8.3 Tertiary Control 433</p> <p>10.9 Smart Distribution Networks: Networked Microgrids 434</p> <p>10.9.1 Interconnection of Networked Microgrids 435</p> <p>10.10 Microgrids in Cluster 439</p> <p>10.10.1 The Concept of Power Exchange Highway (PEH) 442</p> <p>10.10.2 Operation of DC Power Exchange Highway (DC-PEH) 444</p> <p>10.10.3 Overload Detection and Surplus Power Calculation 445</p> <p>10.10.4 Operation of DC-PEH 447</p> <p>10.10.5 Dynamic Droop Gain Selection 448</p> <p>10.11 Concluding Remarks 456</p> <p>Problems 457</p> <p>Notes and References 460</p> <p><b>11 Harmonics in Electrical and Electronic Systems 465</b></p> <p>11.1 Harmonics and Interharmonics 465</p> <p>11.1.1 High-frequency Harmonics (2–150 kHz) 467</p> <p>11.1.2 EMI in the Frequency Range of 150 kHz–30 MHz 468</p> <p>11.1.3 Common Mode and Differential Mode Harmonics and Noises 469</p> <p>11.1.4 Stiff and Weak Grids 470</p> <p>11.2 Power Quality Factors and Definitions 471</p> <p>11.2.1 Harmonic Distortion 471</p> <p>11.2.2 Power and Displacement Factors 473</p> <p>11.3 Harmonics Generated by Power Electronics in Power Systems 474</p> <p>11.3.1 Harmonic Analysis at a Load Side (a Three-phase Inverter) 477</p> <p>11.3.2 Harmonic Analysis at a Grid Side (a Three-phase Rectifier) 479</p> <p>11.3.3 Harmonic Analysis at Grid Side (Single-phase Rectifier with and without PF Correction System) 484</p> <p>11.3.4 Harmonic Analysis at Grid Side (AFE) 488</p> <p>11.4 Power Quality Regulations and Standards 491</p> <p>11.4.1 IEEE Standards 491</p> <p>11.4.2 IEEE 519 491</p> <p>11.4.3 IEEE 1547 494</p> <p>11.4.4 IEEE 1662-2008 494</p> <p>11.4.5 IEEE 1826-2012 495</p> <p>11.4.6 IEEE 1709-2010 496</p> <p>11.4.7 IEC Standards 497</p> <p>11.5 Concluding Remarks 499</p> <p>Notes and References 499</p> <p>Index 501</p>
<p><b>Arindam Ghosh, PhD,</b> is a Research Academic Professor at Curtin University, Perth, Australia. He obtained his PhD from the University of Calgary, Canada. He was with the Indian Institute of Technology Kanpur from 1985 to 2006 and a Research Capacity Building Professor at Queensland University of Technology, Brisbane, Australia from 2006 to 2013. He was a Fulbright Scholar in 2003. He is a Fellow of the Indian National Academy of Engineering: INAE (2005) and a Fellow of the Institute of Electrical and Electronics Engineers: IEEE (2006). He was conferred the IEEE PES Nari Hingorani Custom Power Award in 2019. He has published over 450 peer reviewed journal and conference articles and has authored 2 books. <p><b>Firuz Zare, PhD,</b> is Head of the School of Electrical Engineering and Robotics, Queensland University of Technology, and an IEEE Fellow. He has over 20 years of experience in academia and industry and has published 250 peer-reviewed journal and conference papers.
<p><b>Discover a systematic approach to design controllers for power electronic converters and circuits</b> <p>In <i>Control of Power Electronic Converters with Microgrid Applications</i>, distinguished academics and authors Drs. Arindam Ghosh and Firuz Zare deliver a systematic exploration of design controllers for power electronic converters and circuits. The book offers readers the knowledge necessary to effectively design intelligent control mechanisms. It covers the theoretical requirements, like advanced control theories and the analysis and conditioning of AC signals as well as controller development and control. <p>The authors provide readers with discussions of custom power devices, as well as both DC and AC microgrids. They also discuss the harmonic issues that are crucial in this area, as well as harmonic standardization. The book addresses a widespread lack of understanding in the control philosophy that can lead to a stable operation of converters, with a focus on the application of power electronics to power distribution systems. <p>Readers will also benefit from the inclusion of: <ul><li>A thorough introduction to controller design for different power electronic converter configurations in microgrid systems (both AC and DC)</li> <li>A presentation of emerging technology in power distribution systems to integrate different renewable energy sources</li> <li>Chapters on DC-DC converters and DC microgrids, as well as DC-AC converter modulation techniques and custom power devices, predictive control, and AC microgrids</li></ul> <p>Perfect for manufacturers of power converters, microgrid developers and installers, as well as consultants who work in this area, <i>Control of Power Electronic Converters with Microgrid Applications</i> is also an indispensable reference for graduate students, senior undergraduate students, and researchers seeking a one-stop resource for the design of controllers for power electronic converters and circuits.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €