Details

The Technology of Discovery


The Technology of Discovery

Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration
JPL Space Science and Technology Series 1. Aufl.

von: David Friedrich Woerner

103,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.02.2023
ISBN/EAN: 9781119811374
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The Technology of Discovery <p><b>Incisive discussions of a critical mission-enabling technology for deep space missions</b> <p>In <i>The Technology of Discovery: Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration</i>, distinguished JPL engineer and manager David Woerner delivers an insightful discussion of how radioisotope thermoelectric generators (RTGs) are used in the exploration of space. It also explores their history, function, their market potential, and the governmental forces that drive their production and design. Finally, it presents key technologies incorporated in RTGs and their potential for future missions and design innovation. <p>The author provides a clear and understandable treatment of the subject, ranging from straightforward overviews of the technology to complex discussions of the field of thermoelectrics. Included is also background on NASA’s decision to resurrect the GPHS-RTG and discussion of the future of commercialization of nuclear space missions. Readers will also find: <ul><li> A thorough introduction to RTGs, as well as their invention, history, and evolution</li> <li> Comprehensive explorations of the contributions made by RTGs to US space exploration</li> <li>Practical discussions of the evolution, selection, and production of RPS fuels</li> <li> In-depth examinations of technologies and generators currently in development, including skutterudite thermoelectrics for an enhanced MMRTG</li></ul> <p>Perfect for space explorers, aerospace engineers, managers, and scientists, <i>The Technology of Discovery</i> will also earn a place in the libraries of NASA archivists and other historians.
<p>Foreward xi</p> <p>Note from the Series Editor xiii</p> <p>Preface xv</p> <p>Authors xix</p> <p>Reviewers xxi</p> <p>Acknowledgments xxiii</p> <p>Glossary xxv</p> <p>List of Acronyms and Abbreviations xxxiii</p> <p><b>1 The History of the Invention of Radioisotope Thermoelectric Generators (RTGs) for Space Exploration 1<br /> </b><i>Chadwick D. Barklay</i></p> <p>References 5</p> <p><b>2 The History of the United States’s Flight and Terrestrial RTGs 7<br /> </b><i>Andrew J. Zillmer</i></p> <p>2.1 Flight RTGs 7</p> <p>2.1.1 SNAP Flight Program 7</p> <p>2.1.1.1 Snap-3 8</p> <p>2.1.1.2 Snap-9 8</p> <p>2.1.1.3 Snap-19 9</p> <p>2.1.1.4 Snap-27 11</p> <p>2.1.2 Transit-RTG 13</p> <p>2.1.3 Multi-Hundred-Watt RTG 13</p> <p>2.1.4 General Purpose Heat Source RTG 15</p> <p>2.1.4.1 General Purpose Heat Source 15</p> <p>2.1.4.2 GPHS-RTG System 16</p> <p>2.1.5 Multi-Mission Radioisotope Thermoelectric Generator 17</p> <p>2.1.6 US Flight RTGs 18</p> <p>2.2 Unflown Flight RTGs 18</p> <p>2.2.1.1 Snap-1 18</p> <p>2.2.1.2 Snap-11 18</p> <p>2.2.1.3 Snap-13 18</p> <p>2.2.1.4 Snap-17 22</p> <p>2.2.1.5 Snap-29 22</p> <p>2.2.1.6 Selenide Isotope Generator 23</p> <p>2.2.1.7 Modular Isotopic Thermoelectric Generator 24</p> <p>2.2.1.8 Modular RTG 24</p> <p>2.3 Terrestrial RTGs 25</p> <p>2.3.1 SNAP Terrestrial RTGs 25</p> <p>2.3.1.1 Snap-7 25</p> <p>2.3.1.2 Snap-15 26</p> <p>2.3.1.3 Snap-21 26</p> <p>2.3.1.4 Snap-23 26</p> <p>2.3.2 Sentinel 25 and 100 Systems 27</p> <p>2.3.3 Sentry 28</p> <p>2.3.4 URIPS-P 1 28</p> <p>2.3.5 RG-1 29</p> <p>2.3.6 BUP-500 30</p> <p>2.3.7 Millibatt-1000 31</p> <p>2.4 Conclusion 31</p> <p>References 31</p> <p><b>3 US Space Flights Enabled by RTGs 35<br /> </b><i>Young H. Lee and Brian K. Bairstow</i></p> <p>3.1 SNAP-3B Missions (1961) 35</p> <p>3.1.1 Transit 4A and Transit 4B 35</p> <p>3.2 SNAP-9A Missions (1963–1964) 36</p> <p>3.2.1 Transit 5BN-1, 5BN-2, and 5BN-3 36</p> <p>3.3 SNAP-19 Missions (1968–1975) 38</p> <p>3.3.1 Nimbus-B and Nimbus III 38</p> <p>3.3.2 Pioneer 10 and 11 41</p> <p>3.3.3 Viking 1 and 2 Landers 43</p> <p>3.4 SNAP-27 Missions (1969–1972) 45</p> <p>3.4.1 Apollo 12–17 45</p> <p>3.5 Transit-RTG Mission (1972) 47</p> <p>3.5.1 TRIAD 47</p> <p>3.6 MHW-RTG Missions (1976–1977) 48</p> <p>3.6.1 Lincoln Experimental Satellites 8 and 9 48</p> <p>3.6.2 Voyager 1 and 2 50</p> <p>3.7 GPHS-RTG Missions (1989–2006) 52</p> <p>3.7.1 Galileo 52</p> <p>3.7.2 Ulysses 53</p> <p>3.7.3 Cassini 55</p> <p>3.7.4 New Horizons 57</p> <p>3.8 MMRTG Missions: (2011-Present (2021)) 59</p> <p>3.8.1 Curiosity 59</p> <p>3.8.2 Perseverance 61</p> <p>3.8.3 Dragonfly–Scheduled Future Mission 62</p> <p>3.9 Discussion of Flight Frequency 64</p> <p>3.10 Summary of US Missions Enabled by RTGs 73</p> <p>References 74</p> <p><b>4 Nuclear Systems Used for Space Exploration by Other Countries 77<br /> </b><i>Christofer E. Whiting</i></p> <p>4.1 Soviet Union 77</p> <p>4.2 China 81</p> <p>References 82</p> <p><b>5 Nuclear Physics, Radioisotope Fuels, and Protective Components 85<br /> </b><i>Michael B.R. Smith, Emory D. Collins, David W. DePaoli, Nidia C. Gallego, Lawrence H. Heilbronn, Chris L. Jensen, Kaara K. Patton, Glenn R. Romanoski, George B. Ulrich, Robert M. Wham, and Christofer E. Whiting</i></p> <p>5.1 Introduction 85</p> <p>5.2 Introduction to Nuclear Physics 86</p> <p>5.2.1 The Atom 86</p> <p>5.2.2 Radioactivity and Decay 88</p> <p>5.2.3 Emission of Radiation 90</p> <p>5.2.3.1 Alpha Decay 91</p> <p>5.2.3.2 Beta Decay 92</p> <p>5.2.3.3 Photon Emission 92</p> <p>5.2.3.4 Neutron Emission 93</p> <p>5.2.3.5 Decay Chains 94</p> <p>5.2.4 Interactions of Radiation with Matter 94</p> <p>5.2.4.1 Charged Particle Interactions with Matter 96</p> <p>5.2.4.2 Neutral Particle Interactions with Matter 97</p> <p>5.2.4.3 Biological Interactions of Radiation with Matter 100</p> <p>5.3 Historic Radioisotope Fuels 102</p> <p>5.3.1 Polonium-210 104</p> <p>5.3.2 Cerium-144 104</p> <p>5.3.3 Strontium-90 105</p> <p>5.3.4 Curium-242 106</p> <p>5.3.5 Curium-244 106</p> <p>5.3.6 Cesium-137 107</p> <p>5.3.7 Promethium-147 107</p> <p>5.3.8 Thallium-204 108</p> <p>5.4 Producing Modern PuO<sub>2</sub> 108</p> <p>5.4.1 Cermet Target Design, Fabrication, and Irradiation 110</p> <p>5.4.2 Improved Target Design 111</p> <p>5.4.3 Post-Irradiation Chemical Processing 112</p> <p>5.4.4 Waste Management 113</p> <p>5.4.5 Conversion to Production Mode of Operation 114</p> <p>5.5 Fuel, Cladding, and Encapsulations for Modern Spaceflight RTGs 115</p> <p>5.5.1 Evolution of Radioisotope Heat Source Protection 115</p> <p>5.5.2 General Purpose Heat Source 119</p> <p>5.5.3 Fine Weave Pierced Fabric (FWPF) 120</p> <p>5.5.4 Carbon-Bonded Carbon Fiber (CBCF) 121</p> <p>5.5.5 Heat Transfer Considerations 122</p> <p>5.5.6 Cladding 122</p> <p>5.6 Summary 125</p> <p>References 125</p> <p><b>6 A Primer on the Underlying Physics in Thermoelectrics 133<br /> </b><i>Hsin Wang</i></p> <p>6.1 Underlying Physics in Thermoelectric Materials 133</p> <p>6.1.1 Reciprocal Lattice and Brillouin Zone 135</p> <p>6.1.2 Electronic Band Structure 135</p> <p>6.1.3 Lattice Vibration and Phonons 138</p> <p>6.2 Thermoelectric Theories and Limitations 141</p> <p>6.2.1 Best Thermoelectric Materials 141</p> <p>6.2.2 Imbalanced Thermoelectric Legs 143</p> <p>6.3 Thermal Conductivity and Phonon Scattering 144</p> <p>6.3.1 Highlights of SiGe 145</p> <p>References 145</p> <p><b>7 End-to-End Assembly and Pre-flight Operations for RTGs 151<br /> </b><i>Shad E. Davis</i></p> <p>7.1 GPHS Assembly 151</p> <p>7.2 RTG Fueling and Testing 159</p> <p>7.3 RTG Delivery, Spacecraft Checkout, and RTG Integration for Flight 172</p> <p>References 181</p> <p><b>8 Lifetime Performance of Spaceborne RTGs 183<br /> </b><i>Christofer E. Whiting and David Friedrich Woerner</i></p> <p>8.1 Introduction 183</p> <p>8.2 History of RTG Performance at a Glance 185</p> <p>8.3 RTG Performance by Generator Type 189</p> <p>8.3.1 Snap-3B 189</p> <p>8.3.2 Snap-9A 189</p> <p>8.3.3 Snap-19B 191</p> <p>8.3.4 Snap-27 194</p> <p>8.3.5 Transit-RTG 196</p> <p>8.3.6 Snap-19 197</p> <p>8.3.7 Multi-Hundred Watt RTG 201</p> <p>8.3.8 General Purpose Heat Source RTG 204</p> <p>8.3.9 Multi-Mission RTG 207</p> <p>References 210</p> <p><b>9 Modern Analysis Tools and Techniques for RTGs 213<br /> </b><i>Christofer E. Whiting, Michael B.R. Smith, and Thierry Caillat</i></p> <p>9.1 Analytical Tools for Evaluating Performance Degradation and Extrapolating Future Power 213</p> <p>9.1.1 Integrated Rate Law Equation 214</p> <p>9.1.2 Multiple Degradation Mechanisms 215</p> <p>9.1.3 Solving for <i>k</i>′ and <i>x</i> 217</p> <p>9.1.4 Integrated Rate Equation 220</p> <p>9.1.5 Analysis of Residuals 220</p> <p>9.1.6 Rate Law Equations: RTGs versus Chemistry versus Math 221</p> <p>9.1.6.1 Application to RTG Performance 222</p> <p>9.2 Effects of Thermal Inventory on Lifetime Performance 222</p> <p>9.2.1 Analysis of GPHS-RTG 223</p> <p>9.2.2 Analysis of MMRTG 226</p> <p>9.3 (Design) Life Performance Prediction 228</p> <p>9.3.1 RTG’s Degradation Mechanisms 229</p> <p>9.3.2 Physics-based RTG Life Performance Prediction 233</p> <p>9.4 Radioisotope Power System Dose Estimation Tool (RPS-DET) 235</p> <p>9.4.1 Motivation 235</p> <p>9.4.2 RPS-DET Software Components 236</p> <p>9.4.3 RPS-DET Geometries 237</p> <p>9.4.4 RPS-DET Source Terms and Radiation Transport 238</p> <p>9.4.5 Simulation Results 239</p> <p>9.4.6 Validation and Verification 240</p> <p>9.4.7 Conclusion 240</p> <p>References 241</p> <p><b>10 Advanced US RTG Technologies in Development 245<br /> </b><i>Chadwick D. Barklay</i></p> <p>10.1 Introduction 245</p> <p>10.1.1 Background 246</p> <p>10.2 Skutterudite-based Thermoelectric Converter Technology for a Potential MMRTG Retrofit 247<br /> <i>Thierry Caillat, Stan Pinkowski, Ike C. Chi, Kevin L. Smith, Jong-Ah Paik, Brian Phan, Ying Song, Joe VanderVeer, Russell Bennett, Steve Keyser, Patrick E. Frye, Karl A. Wefers, Andrew M. Lane, and Tim Holgate</i></p> <p>10.2.1 Introduction 247</p> <p>10.2.2 Thermoelectric Couple and 48-Couple Module Design and Fabrication 248</p> <p>10.2.3 Performance Testing of Couples and 48-Couple Module 252</p> <p>10.2.4 Generator Life Performance Prediction 255</p> <p>10.3 Next Generation RTG Technology Evolution 257<br /> <i>Chadwick D. Barklay</i></p> <p>10.3.1 Introduction 257</p> <p>10.3.2 Challenges to Reestablishing a Production Capability 260</p> <p>10.3.2.1 Design Trades 260</p> <p>10.3.2.2 Silicon Germanium Unicouple Production 261</p> <p>10.3.2.3 Converter Assembly 262</p> <p>10.3.3 Opportunities for Enhancements 264</p> <p>10.4 Considerations for Emerging Commercial RTG Concepts 265<br /> <i>Chadwick D. Barklay</i></p> <p>10.4.1 Introduction 265</p> <p>10.4.2 Challenges for Commercial Space RTGs 266</p> <p>10.4.2.1 Radioisotopes 267</p> <p>10.4.2.2 Specific Power 267</p> <p>10.4.2.3 Launch Approval 268</p> <p>10.4.3 Launch Safety Analyses and Testing 270</p> <p>10.4.3.1 Modeling Approaches 270</p> <p>10.4.3.2 Safety Testing 271</p> <p>10.4.3.3 Leveraging Legacy Design Concepts 271</p> <p>References 273</p> <p>Index 277</p>
<p><b>David Friedrich Woerner</b> is the Systems Formulation manager for NASA's Radioisotope Power Systems Program (RPSP) where he oversees several RPS developments. Before joining the RPSP, he oversaw the MMRTG's development and integration for the Mars Science Laboratory Project, and he was the MMRTG and Launch Services office manager for the MSL Project that successfully landed the MMRTG-powered Curiosity rover on Mars on August 6, 2012. He has won numerous NASA awards including earning NASA's Exceptional Service and Exceptional Achievement Medals.</p>
<p><b>Incisive discussions of a critical mission-enabling technology for deep space missions</b> <p>In <i>The Technology of Discovery: Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration</i>, distinguished JPL engineer and manager David Woerner delivers an insightful discussion of how radioisotope thermoelectric generators (RTGs) are used in the exploration of space. It also explores their history, function, their market potential, and the governmental forces that drive their production and design. Finally, it presents key technologies incorporated in RTGs and their potential for future missions and design innovation. <p>The author provides a clear and understandable treatment of the subject, ranging from straightforward overviews of the technology to complex discussions of the field of thermoelectrics. Included is also background on NASA’s decision to resurrect the GPHS-RTG and discussion of the future of commercialization of nuclear space missions. Readers will also find: <ul><li> A thorough introduction to RTGs, as well as their invention, history, and evolution</li> <li> Comprehensive explorations of the contributions made by RTGs to US space exploration</li> <li>Practical discussions of the evolution, selection, and production of RPS fuels</li> <li> In-depth examinations of technologies and generators currently in development, including skutterudite thermoelectrics for an enhanced MMRTG</li></ul> <p>Perfect for space explorers, aerospace engineers, managers, and scientists, <i>The Technology of Discovery</i> will also earn a place in the libraries of NASA archivists and other historians.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €