Details

Hydrogen Sulfide


Hydrogen Sulfide

Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies
Wiley Series in Drug Discovery and Development 1. Aufl.

von: Michael D. Pluth, Binghe Wang

192,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.09.2022
ISBN/EAN: 9781119799887
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>HYDROGEN SULFIDE</b> <p><b>Covers H<sub>2</sub>S interactions, methods of detection and delivery in biological environments, and a wide range of applications</b> <p>Research on hydrogen sulfide (H<sub>2</sub>S) spans diverse disciplines including chemistry, biology, and physiology. In recent years, new materials and approaches have been developed to deliver H<sub>2</sub>S and related reactive sulfur species in various clinical contexts. Although many biological pathways involving H<sub>2</sub>S are complex, all are governed by fundamental chemical interactions between reactive sulfur species and other molecular entities. <p><i>Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies</i> provides the foundation required for understanding the fundamental chemical biology of H<sub>2</sub>S while highlighting the compound’s therapeutic potential and medicinal applications. This book covers key aspects of H<sub>2</sub>S chemical biology, including the fundamental chemistry of reactive sulfur species; the measurement, detection, and delivery of H<sub>2</sub>S in biological environments; and the therapeutic and medicinal uses of exogenous H<sub>2</sub>S delivery in various pharmacologically relevant systems. Throughout the text, editor Michael Pluth and chapter contributors discuss the opportunities and future of the multidisciplinary field. <ul><li>Provides approaches for delivering H<sub>2</sub>S with relevance to biological and therapeutic applications</li> <li>Describes complex interactions of H<sub>2</sub>S with bioinorganic complexes and reactive sulfur, nitrogen, and oxygen species </li> <li>Summarizes advances in available tools to detect, measure, and modulate H<sub>2</sub>S levels in biological environments, such as real-time methods for H<sub>2</sub>S fluorescence imaging in live cell and animal systems </li> <li>Helps readers understand known systems and make connections to new and undiscovered pathways and mechanisms of action </li> <li>Includes in-depth case studies of different systems in which H<sub>2</sub>S plays an important role</li></ul> <p><i>Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies</i> is an important source of current knowledge for researchers, academics, graduate students, and industrial scientists in the fields of redox biology, hydrogen sulfide research, and medicinal chemistry of small biological molecules.
<p>Preface xvii</p> <p>List of Contributors xix</p> <p><b>1 Fundamental and Biologically Relevant Chemistry of H<sub>2</sub>S and Related Species </b><b>1<br /></b><i>Jon M. Fukuto</i></p> <p>List of Abbreviations 1</p> <p>1.1 Introduction 2</p> <p>1.2 The Chemical Biology of H<sub>2</sub>S 2</p> <p>1.2.1 Basic Chemical Properties of H<sub>2</sub>S 3</p> <p>1.2.2 H<sub>2</sub>S Redox Chemistry 4</p> <p>1.2.3 Reactions of H<sub>2</sub>S with Metals/Metalloproteins 5</p> <p>1.2.4 H<sub>2</sub>S and Sulfheme Formation 6</p> <p>1.2.5 H<sub>2</sub>S and Heavy Metals 7</p> <p>1.3 H<sub>2</sub>S Reactions with Other Sulfur Species 8</p> <p>1.3.1 Sulfane Sulfur 8</p> <p>1.3.2 Generation of RSSH 8</p> <p>1.3.3 RSH Versus RSSH Comparison 9</p> <p>1.3.4 RSSH Interactions with Metals/Metalloproteins 14</p> <p>1.3.5 The Electrophilicity of RSSH 14</p> <p>1.3.6 Higher-Order Polysulfides 15</p> <p>1.3.7 RSSH Instability 16</p> <p>1.4 The Biochemical Utility of RSSH 17</p> <p>1.5 Summary/Conclusion 18</p> <p>References 18</p> <p><b>2 Signaling by Hydrogen Sulfide (H<sub>2</sub>S) and Polysulfides (H<sub>2</sub>S<i><sub>n</sub></i>) and the Interaction with Other Signaling Pathways </b><b>27<br /></b><i>Hideo Kimura</i></p> <p>List of Abbreviations 27</p> <p>2.1 Introduction 28</p> <p>2.2 Determination of the Endogenous Concentrations of H<sub>2</sub>S 29</p> <p>2.3 H<sub>2</sub>S and H<sub>2</sub>S<i><sub>n</sub> </i>as Signaling Molecules 31</p> <p>2.4 Crosstalk Between H<sub>2</sub>S and NO 32</p> <p>2.4.1 The Chemical Interaction of H<sub>2</sub>S and NO Produces H<sub>2</sub>S<i><sub>n</sub> </i>32</p> <p>2.4.2 Regulation of NO-Producing Enzymes by H<sub>2</sub>S and Vice Versa 33</p> <p>2.5 Cytoprotective Effect of H<sub>2</sub>S, H<sub>2</sub>S<i><sub>n</sub></i>, and H<sub>2</sub>SO<sub>3</sub> 34</p> <p>2.6 Energy Formation in Mitochondria with H<sub>2</sub>S 34</p> <p>2.7 <i>S</i>-Sulfurated Proteins and Bound Sulfane Sulfur in Cells 35</p> <p>2.8 Regulating the Activity of Target Proteins by H<sub>2</sub>S and H<sub>2</sub>S<i><sub>n</sub> </i>36</p> <p>2.8.1 S-Sulfuration by H<sub>2</sub>S 37</p> <p>2.8.2 S-Sulfuration by H<sub>2</sub>S<i><sub>n</sub> </i>38</p> <p>2.9 Perspectives 38</p> <p>Acknowledgments 40</p> <p>Author Disclosure Statement 41</p> <p>References 41</p> <p><b>3 Persulfides and Their Reactions in Biological Contexts </b><b>49<br /></b><i>Dayana Benchoam, Ernesto Cuevasanta, Matías N. Möller, and Beatriz Alvarez</i></p> <p>List of Abbreviations 49</p> <p>3.1 Persulfides Are Key Intermediates in Sulfur Metabolism and Signaling 49</p> <p>3.2 Persulfides Are Formed in Biological Systems through Different Pathways 51</p> <p>3.2.1 Disulfides Form Persulfides in the Presence of H<sub>2</sub>S 51</p> <p>3.2.2 Sulfenic Acids Can Also Form Persulfides by Reaction with H<sub>2</sub>S 53</p> <p>3.2.3 Other Persulfide Formation Pathways Involve Oxidation Products of H<sub>2</sub>S 53</p> <p>3.2.4 Some Sulfur Atoms for Persulfides Are Donated by Free Cysteine 54</p> <p>3.2.5 Trisulfides Are Also a Source of Persulfides 55</p> <p>3.2.6 Persulfides Can Be Prepared in the Lab 56</p> <p>3.3 Persulfides Are More Acidic Than Thiols 56</p> <p>3.4 Persulfides Are Stronger Nucleophiles Than Thiols 58</p> <p>3.5 Persulfidation Protects Against Irreversible Oxidation 60</p> <p>3.6 Persulfides Interact with Metals and Metalloproteins 61</p> <p>3.7 Persulfides Have Electrophilic Character in Both Sulfur Atoms 62</p> <p>3.8 Persulfides Are Efficient One-Electron Reductants 63</p> <p>3.9 Concluding Remarks 64</p> <p>References 64</p> <p><b>4 Hydrogen Sulfide, Reactive Nitrogen Species, and “The Joy of the Experimental Play” </b><b>77<br /></b><i>Miriam M. Cortese-Krott</i></p> <p>4.1 Introduction 77</p> <p>4.2 Basic Physicochemical Properties of Nitric Oxide and Its Biological Relevant Metabolites 79</p> <p>4.2.1 Nitric Oxide 79</p> <p>4.2.2 Nitrite 80</p> <p>4.2.3 Nitrosothiols (RSNOs) 81</p> <p>4.3 Basic Physicochemical Properties of H<sub>2</sub>S and Its Biological Relevant Metabolites 82</p> <p>4.3.1 H<sub>2</sub>S/HS− 83</p> <p>4.3.2 Polysulfides and Persulfide 85</p> <p>4.4 Inorganic Sulfur–Nitrogen Compounds 86</p> <p>4.4.1 HSNO/SNO− 87</p> <p>4.4.2 SSNO− 89</p> <p>4.4.3 SULFI/NO 90</p> <p>4.5 Putative Biological Relevance of the NO/H<sub>2</sub>S Chemical Interaction 90</p> <p>4.5.1 Pharmacological Activity 90</p> <p>4.5.2 Putative Sources of SSNO− and SULFI/NO <i>In Vivo </i>91</p> <p>4.5.3 Methods of Detection <i>In Vivo </i>92</p> <p>4.6 Summary and Conclusions 93</p> <p>Acknowledgment 93</p> <p>References 93</p> <p><b>5 H<sub>2</sub>S and Bioinorganic Metal Complexes </b><b>103<br /></b><i>Zachary J. Tonzetich</i></p> <p>List of Abbreviations 103</p> <p>5.1 Introduction 104</p> <p>5.2 Basic Ligative Properties of H<sub>2</sub>S/HS− 105</p> <p>5.3 H<sub>2</sub>S and Heme Iron 106</p> <p>5.4 H<sub>2</sub>S and Nonheme Iron 112</p> <p>5.5 H<sub>2</sub>S Chemistry with Other Metals 122</p> <p>5.6 H<sub>2</sub>S Sensing with Transition Metal Complexes 126</p> <p>5.7 Summary 131</p> <p>Acknowledgments 134</p> <p>References 134</p> <p><b>6 Measurement of Hydrogen Sulfide Metabolites Using the Monobromobimane Method </b><b>143<br /></b><i>Xinggui Shen, Ellen H. Speers, and Christopher G. Kevil</i></p> <p>List of Abbreviations 143</p> <p>6.1 Introduction 143</p> <p>6.1.1 Hydrogen Sulfide: Biological Significance 143</p> <p>6.1.2 Hydrogen Sulfide Chemistry 144</p> <p>6.1.3 Bioavailable Sulfide 144</p> <p>6.2 Monobromobimane: An Optimal Method of Bioavailable Sulfur Detection 145</p> <p>6.2.1 Monobromobimane Derivatization of Hydrogen Sulfide 146</p> <p>6.2.2 History of the Monobromobimane Method 147</p> <p>6.3 Procedures 148</p> <p>6.3.1 Sulfide-Dibimane Standard Synthesis 148</p> <p>6.3.2 Bioavailable Sulfide Preparation 149</p> <p>6.3.3 Monobromobimane Derivatization 149</p> <p>6.3.4 HPLC with Fluorescence Detection 150</p> <p>6.3.5 Mass Spectrometry Detection 150</p> <p>6.4 Caveats and Considerations 151</p> <p>Acknowledgment 152</p> <p>Disclosures 152</p> <p>References 152</p> <p><b>7 Fluorescent Probes for H<sub>2</sub>S Detection: Cyclization-Based Approaches </b><b>157<br /></b><i>Yingying Wang, Yannie Lam, Caitlin McCartney, Brock Brummett, Geat Ramush, and Ming Xian</i></p> <p>List of Abbreviations 157</p> <p>7.1 Introduction 157</p> <p>7.2 General Design of Nucleophilic Reaction-Cyclization Based Fluorescent Probes 159</p> <p>7.2.1 WSP Probes 159</p> <p>7.2.2 2,2′-Dithiosalicylic Ester-Based Probes 164</p> <p>7.2.3 Alkyl Halide-Based Probes 166</p> <p>7.2.4 Diselenide-Based Probes 167</p> <p>7.2.5 Selenenyl Sulfide-Based Probes 167</p> <p>7.2.6 Aldehyde Addition-Based Probes 169</p> <p>7.2.7 Michael Addition-Cyclization Based Probes 175</p> <p>7.3 Conclusions and Perspectives 177</p> <p>Acknowledgments 177</p> <p>References 177</p> <p><b>8 Fluorescent Probes for H<sub>2</sub>S Detection: Electrophile-Based Approaches </b><b>183<br /></b><i>Long Yi and Zhen Xi</i></p> <p>8.1 Introduction 183</p> <p>8.2 Selected Probes Based on Different Reaction Types 185</p> <p>8.2.1 Cleavage of C—O Bond 185</p> <p>8.2.2 Cleavage of C—S Bond 188</p> <p>8.2.3 Cleavage of C—Cl Bond 190</p> <p>8.2.4 Michael Addition 191</p> <p>8.2.5 Cleavage of C—N Bond 193</p> <p>8.2.6 Reduction of Aryl Azide 193</p> <p>8.3 Conclusion and Future Prospects 197</p> <p>References 199</p> <p><b>9 Fluorescent Probes for H<sub>2</sub>S Detection: Metal-Based Approaches </b><b>203<br /></b><i>Maria Strianese and Claudio Pellecchia</i></p> <p>9.1 Introduction 203</p> <p>9.2 Metal Displacement Approach 205</p> <p>9.2.1 Copper-Based Systems 205</p> <p>9.2.2 Zinc-Based Systems 214</p> <p>9.2.3 Different Metal-Based Systems 216</p> <p>9.3 Coordinative-Based Approach 218</p> <p>9.3.1 Metalloporphyrin-Based Systems 218</p> <p>9.3.1.1 Synthetic Systems 219</p> <p>9.3.1.2 Natural Systems 220</p> <p>9.3.2 Salen-Based Systems 220</p> <p>9.3.3 Systems with Different Organic Ligands 221</p> <p>9.4 H<sub>2</sub>S-Mediated Reduction of the Metal Center 223</p> <p>9.5 Conclusions and Future Outlooks 224</p> <p>References 225</p> <p><b>10 H<sub>2</sub>S Release from P=S and Se—S Motifs </b><b>235<br /></b><i>Rynne A. Hankins and John C. Lukesh III</i></p> <p>List of Abbreviations 235</p> <p>10.1 Introduction 235</p> <p>10.2 H<sub>2</sub>S Release from P=S Motifs 236</p> <p>10.2.1 GYY4137: Synthesis and Characterization of H<sub>2</sub>S Release 237</p> <p>10.2.2 GYY4137: Biological Studies 238</p> <p>10.2.3 GYY4137: Mechanistic Studies 240</p> <p>10.2.4 GYY4137: Structural Modifications and Activity of Analogs 242</p> <p>10.2.5 JK Donors: Cyclization-Assisted H<sub>2</sub>S Release from P=S Motifs 248</p> <p>10.3 H2S Release from Se—S Motifs 249</p> <p>10.3.1 Acyl Selenylsulfides: Synthesis and Characterization of H<sub>2</sub>S Release 251</p> <p>10.3.2 Acyl Selenylsulfides: Mechanistic Studies 251</p> <p>10.4 Acyl Selenylsulfides: Structural Modifications and Activity of Analogs 253</p> <p>10.5 Conclusions 253</p> <p>References 254</p> <p><b>11 Hydrogen Sulfide: The Hidden Player of Isothiocyanates Pharmacology </b><b>261<br /></b><i>Valentina Citi, Eugenia Piragine, Vincenzo Calderone, and Alma Martelli</i></p> <p>11.1 Organic Isothiocyanates as H<sub>2</sub>S-Donors 261</p> <p>11.2 Organic ITCs and Cardiovascular System 266</p> <p>11.2.1 Effect of ITCs as H<sub>2</sub>S Donors in Vascular Inflammation 266</p> <p>11.2.2 Vasorelaxing Effect of ITCs as H<sub>2</sub>S Donors 269</p> <p>11.2.3 Organic ITCs and Heart 270</p> <p>11.3 Chemopreventive Properties of ITCs 272</p> <p>11.4 Anti-nociceptive Effects of ITCs 274</p> <p>11.5 Anti-inflammatory and Antiviral Effects of ITCs 277</p> <p>11.6 Conclusion 280</p> <p>Acknowledgment 281</p> <p>References 281</p> <p><b>12 Persulfide Prodrugs </b><b>293<br /></b><i>Bingchen Yu, Zhengnan Yuan, and Binghe Wang</i></p> <p>List of Abbreviations 293</p> <p>12.1 Introduction 293</p> <p>12.2 Persulfide Prodrugs 295</p> <p>12.2.1 Structural Moieties That Have Been Studied for Their Ability to Cage and Release Persulfide Species 296</p> <p>12.2.2 Enzyme-Sensitive Prodrugs 298</p> <p>12.2.3 ROS-Sensitive Persulfide Prodrugs 303</p> <p>12.2.4 pH-Sensitive Persulfide Prodrugs 306</p> <p>12.2.5 Photo-Sensitive Persulfide Prodrugs 308</p> <p>12.2.6 H<sub>2</sub>S Prodrugs That Release H<sub>2</sub>S Via Persulfide Intermediate 309</p> <p>12.3 Challenges in Persulfide Prodrug Design and Potential Therapeutic Applications 310</p> <p>References 313</p> <p><b>13 COS-Based H<sub>2</sub>S Donors </b><b>321<br /></b><i>Annie K. Gilbert and Michael D. Pluth</i></p> <p>13.1 Introduction 321</p> <p>13.2 Properties of COS 322</p> <p>13.3 COS-Based H<sub>2</sub>S Delivery 323</p> <p>13.3.1 Stimuli Responsive COS/H<sub>2</sub>S Donors 325</p> <p>13.3.2 Bio-orthogonal Donor Activation 326</p> <p>13.3.3 Donors Activated by Nucleophiles 329</p> <p>13.3.4 Enzyme-Activated Donors 334</p> <p>13.3.5 pH-Activated Donors 337</p> <p>13.3.6 Fluorescent Donors 339</p> <p>13.4 Conclusions and Outlook 341</p> <p>Acknowledgments 342</p> <p>References 342</p> <p><b>14 Light-Activatable H<sub>2</sub>S Donors </b><b>347<br /></b><i>Petr Klán, Tomáš Slanina, and Peter Štacko</i></p> <p>14.1 Introduction 347</p> <p>14.2 Photophysical and Photochemical Concepts 347</p> <p>14.3 Phototherapeutic Window 349</p> <p>14.4 Light Sources 349</p> <p>14.5 (Photo)Physical Properties of H<sub>2</sub>S 351</p> <p>14.6 Mechanisms and Examples of H<sub>2</sub>S Photorelease 351</p> <p>14.6.1 Photorelease of H<sub>2</sub>S from Excited State 352</p> <p>14.6.2 Release of H<sub>2</sub>S from a Reactive Intermediate 355</p> <p>14.6.3 Photorelease of Potential H<sub>2</sub>S Donors 357</p> <p>14.6.4 Photosensitized H<sub>2</sub>S Release 362</p> <p>14.6.5 Photothermal Effect 364</p> <p>14.7 Outlook 365</p> <p>Acknowledgment 366</p> <p>References 366</p> <p><b>15 Macromolecular and Supramolecular Approaches for H<sub>2</sub>S Delivery </b><b>373<br /></b><i>Sarah N. Swilley-Sanchez, Zhao Li, and John B. Matson</i></p> <p>List of Abbreviations 373</p> <p>15.1 Introduction 375</p> <p>15.2 H<sub>2</sub>S-Donating Linear Polymers 377</p> <p>15.2.1 Pendant H<sub>2</sub>S Donors 378</p> <p>15.2.2 H<sub>2</sub>S Donors on Chain Ends 379</p> <p>15.2.3 Depolymerizable Polymers for the Release of H<sub>2</sub>S via COS 383</p> <p>15.3 H<sub>2</sub>S Delivery from Branched and Graft Polymer Topologies 384</p> <p>15.3.1 Graft Polymers for the Delivery of H<sub>2</sub>S 386</p> <p>15.4 Polymer Micelles for H<sub>2</sub>S Delivery 388</p> <p>15.4.1 H<sub>2</sub>S Donors Covalently Attached to Polymer Amphiphiles 389</p> <p>15.5 Polymer Networks for Localized H<sub>2</sub>S Delivery 394</p> <p>15.5.1 Physical Encapsulation of H<sub>2</sub>S Donors Within Networks 394</p> <p>15.5.2 Covalent Attachment of H<sub>2</sub>S Donors Within Hydrogels 396</p> <p>15.6 Other Polymeric Systems for the Encapsulation of H<sub>2</sub>S Donors 399</p> <p>15.6.1 Microfibers as H<sub>2</sub>S Donors 400</p> <p>15.6.2 Membranes as H<sub>2</sub>S Donors 400</p> <p>15.6.3 Microparticles and Nanoparticles as H<sub>2</sub>S Donors 401</p> <p>15.7 H<sub>2</sub>S Release via Supramolecular Systems 404</p> <p>15.7.1 Self-Assembled, Peptide-Based Materials for H<sub>2</sub>S Delivery 405</p> <p>15.7.2 Self-Assembled Nanoparticles and Proteins for H<sub>2</sub>S Delivery 410</p> <p>15.8 Conclusions and Future Perspectives 414</p> <p>References 416</p> <p><b>16 H2S and Hypertension </b><b>427<br /></b><i>Vincenzo Brancaleone, Mariarosaria Bucci, and Giuseppe Cirino</i></p> <p>List of Abbreviations 427</p> <p>16.1 Hypertension, Vascular Homeostasis and Mediators Controlling Blood Pressure 428</p> <p>16.2 Generation of H<sub>2</sub>S in the Cardiovascular System 429</p> <p>16.2.1 Biosynthetic Pathways 429</p> <p>16.2.2 Catabolic Pathway for H<sub>2</sub>S 430</p> <p>16.3 Relevance of H<sub>2</sub>S in Hypertension 432</p> <p>16.3.1 Preclinical Evidence 432</p> <p>16.3.2 Clinical Evidence 436</p> <p>16.4 Conclusions 437</p> <p>References 438</p> <p><b>17 H2S Supplementation and Augmentation: Approaches for Healthy Aging </b><b>445<br /></b><i>Christopher Hine, Jie Yang, Aili Zhang, Natalia Llarena, and Christopher Link</i></p> <p>List of Abbreviations 445</p> <p>17.1 Introduction and Background 445</p> <p>17.1.1 Global Aging Populations 445</p> <p>17.1.2 Pathophysiological Aspects of Aging 447</p> <p>17.1.3 Alterations in Sulfur Amino Acid Metabolism and Hydrogen Sulfide During Aging 448</p> <p>17.1.4 Geroscience Approaches to Address Longevity and Improved Healthspan, and Their Connection to Hydrogen Sulfide 451</p> <p>17.2 Hydrogen Sulfide Metabolism and Applications in Non-mammalian Aging 454</p> <p>17.2.1 Plants 454</p> <p>17.2.2 Bacteria 454</p> <p>17.2.3 Yeast 455</p> <p>17.2.4 Worms 458</p> <p>17.2.5 Flies 459</p> <p>17.3 Hydrogen Sulfide Metabolism and Applications in Nonhuman Mammalian Aging 460</p> <p>17.3.1 Standard Laboratory Rodents (Mice and Rats) 460</p> <p>17.3.2 Naked Mole-Rats 464</p> <p>17.4 Hydrogen Sulfide Metabolism and Applications in Human Aging and Aging-Related Disorders 464</p> <p>17.4.1 Human Exposure to H<sub>2</sub>S and Advances in Clinical Biomarker and Interventional H<sub>2</sub>S Approaches 464</p> <p>17.4.2 Cardiovascular Diseases 467</p> <p>17.4.3 Oncological Diseases 469</p> <p>17.5 Conclusions and Summary 472</p> <p>Acknowledgments 472</p> <p>References 472</p> <p><b>18 Aberrant Hydrogen Sulfide Signaling in Alzheimer’s Disease </b><b>489<br /></b><i>Bindu D. Paul</i></p> <p>List of Abbreviations 489</p> <p>18.1 Introduction 490</p> <p>18.1.1 Hydrogen Sulfide 490</p> <p>18.1.2 Protein Sulfhydration/Persulfidation 492</p> <p>18.1.3 Reciprocity of Protein Sulfhydration and Nitrosylation 492</p> <p>18.2 Alzheimer’s Disease 494</p> <p>18.2.1 Neuropathology of AD 494</p> <p>18.2.2 H<sub>2</sub>S Signaling in Alzheimer’s Disease 496</p> <p>18.2.3 Sulfhydration in Aging and AD 496</p> <p>18.3 Therapeutic Avenues 497</p> <p>Acknowledgments 499</p> <p>References 500</p> <p><b>19 Multifaceted Actions of Hydrogen Sulfide in the Kidney </b><b>507<br /></b><i>Balakuntalam S. Kasinath and Hak Joo Lee</i></p> <p>List of Abbreviations 507</p> <p>19.1 Introduction 508</p> <p>19.2 H<sub>2</sub>S Synthesis in the Kidney 509</p> <p>19.3 H<sub>2</sub>S and Kidney Physiology 511</p> <p>19.4 H<sub>2</sub>S and the Aging Kidney 513</p> <p>19.5 H<sub>2</sub>S and Acute Kidney Injury (AKI) 517</p> <p>19.5.1 H<sub>2</sub>S in AKI Due to Intrinsic Kidney Injury 517</p> <p>19.5.1.1 Ischemia-Induced AKI 517</p> <p>19.5.1.2 Rhabdomyolysis-Induced AKI 519</p> <p>19.5.1.3 Nephrotoxic AKI 519</p> <p>19.5.1.4 Glomerulonephritis-Associated AKI 520</p> <p>19.5.2 H<sub>2</sub>S in AKI Due to Obstruction of the Genitourinary Tract 521</p> <p>19.5.3 Injurious Role of H<sub>2</sub>S in AKI 521</p> <p>19.6 H<sub>2</sub>S in Chronic Kidney Disease (CKD) 521</p> <p>19.6.1 H<sub>2</sub>S in Obesity-Related CKD 524</p> <p>19.6.2 H<sub>2</sub>S in Diabetic Kidney Disease (DKD) 525</p> <p>19.6.3 H<sub>2</sub>S in Congestive Heart Failure (CHF) Associated CKD 530</p> <p>19.7 H<sub>2</sub>S and Preeclampsia 530</p> <p>19.8 H<sub>2</sub>S and Genitourinary Cancers 531</p> <p>19.9 Conclusion and Future Directions 531</p> <p>Acknowledgments 532</p> <p>References 532</p> <p>Index 551</p>
<p><b>MICHAEL D. PLUTH, PhD</b> is a Professor at the University of Oregon in the Department of Chemistry and Biochemistry. He is also a member of the Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology at the University of Oregon.
<p><b>Covers H<sub>2</sub>S interactions, methods of detection and delivery in biological environments, and a wide range of applications</b> <p>Research on hydrogen sulfide (H<sub>2</sub>S) spans diverse disciplines including chemistry, biology, and physiology. In recent years, new materials and approaches have been developed to deliver H<sub>2</sub>S and related reactive sulfur species in various clinical contexts. Although many biological pathways involving H<sub>2</sub>S are complex, all are governed by fundamental chemical interactions between reactive sulfur species and other molecular entities. <p><i>Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies</i> provides the foundation required for understanding the fundamental chemical biology of H<sub>2</sub>S while highlighting the compound’s therapeutic potential and medicinal applications. This book covers key aspects of H<sub>2</sub>S chemical biology, including the fundamental chemistry of reactive sulfur species; the measurement, detection, and delivery of H<sub>2</sub>S in biological environments; and the therapeutic and medicinal uses of exogenous H<sub>2</sub>S delivery in various pharmacologically relevant systems. Throughout the text, editor Michael Pluth and chapter contributors discuss the opportunities and future of the multidisciplinary field. <ul><li>Provides approaches for delivering H<sub>2</sub>S with relevance to biological and therapeutic applications</li> <li>Describes complex interactions of H<sub>2</sub>S with bioinorganic complexes and reactive sulfur, nitrogen, and oxygen species </li> <li>Summarizes advances in available tools to detect, measure, and modulate H<sub>2</sub>S levels in biological environments, such as real-time methods for H<sub>2</sub>S fluorescence imaging in live cell and animal systems </li> <li>Helps readers understand known systems and make connections to new and undiscovered pathways and mechanisms of action </li> <li>Includes in-depth case studies of different systems in which H<sub>2</sub>S plays an important role</li></ul> <p><i>Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies</i> is an important source of current knowledge for researchers, academics, graduate students, and industrial scientists in the fields of redox biology, hydrogen sulfide research, and medicinal chemistry of small biological molecules.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €