Details

Liquid Biofuels


Liquid Biofuels

Fundamentals, Characterization, and Applications
1. Aufl.

von: Krushna Prasad Shadangi

211,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.05.2021
ISBN/EAN: 9781119793021
Sprache: englisch
Anzahl Seiten: 752

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Compiled by a well-known expert in the field, <i>Liquid Biofuels</i> provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area.</p> <p>Written with the objective of offering both theoretical concepts and practical applications of those concepts, <i>Liquid Biofuels</i> can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization.</p> <p>The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector.</p> <p>A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels.  It is a must-have for any library.</p>
<p>Preface xxi</p> <p><b>1 Introduction to Biomass to Biofuels Technologies 1<br /></b><i>Ezgi Rojda Taymaz, Mehmet Emin Uslu and Irem Deniz</i></p> <p>1.1 Introduction 1</p> <p>1.2 Lignocellulosic Biomass and Its Composition 2</p> <p>1.2.1 Cellulose 3</p> <p>1.2.2 Hemicellulose 4</p> <p>1.2.3 Lignin 5</p> <p>1.3 Types and Category of the Biomass 6</p> <p>1.3.1 Marine Biomass 6</p> <p>1.3.2 Forestry Residue and Crops 7</p> <p>1.3.3 Animal Manure 7</p> <p>1.3.4 Industrial Waste 8</p> <p>1.4 Methods of Conversion of Biomass to Liquid Biofuels 8</p> <p>1.4.1 Pyrolysis and Types of the Pyrolysis Processes 9</p> <p>1.4.2 Types of Reactors Used in Pyrolysis 12</p> <p>1.4.2.1 Bubble Fluidized Bed Reactor 12</p> <p>1.4.2.2 Circulating Fluidized Bed and Transport Bed Reactor 12</p> <p>1.4.2.3 Ablative Pyrolysis Reactor 14</p> <p>1.4.2.4 Rotary Cone Reactor 14</p> <p>1.4.3 Chemical Conversion 14</p> <p>1.4.4 Electrochemical Conversion 14</p> <p>1.4.5 Biochemical Methods 16</p> <p>1.4.6 Co-Conversion Methods of Pyrolysis (Copyrolysis) 16</p> <p>1.5 Bioethanol and Biobutanol Conversion Techniques 16</p> <p>1.6 Biogas and Syngas Conversion Techniques 20</p> <p>1.7 Advantages and Drawbacks of Biofuels 23</p> <p>1.8 Applications of Biofuels 25</p> <p>1.9 Future Prospects 26</p> <p>1.10 Conclusion 27</p> <p>References 29</p> <p><b>2 Advancements of Cavitation Technology in Biodiesel Production – from Fundamental Concept to Commercial Scale-Up 39<br /></b><i>Ritesh S. Malani, Vijayanand S. Moholkar, Nimir O. Elbashir and Hanif A. Choudhury</i></p> <p>2.1 Introduction 40</p> <p>2.2 Principles of Ultrasound and Cavitation 43</p> <p>2.3 Intensification of Biodiesel Production Processes Through Cavitational Reactors 45</p> <p>2.3.1 Acoustic Cavitation (or Ultrasound Irradiation) Assisted Processes 46</p> <p>2.3.2 Acoustic or Ultrasonic Cavitation Assisted Processes 46</p> <p>2.4 Designing the Cavitation Reactors 59</p> <p>2.5 Scale-Up of Cavitational Reactors 63</p> <p>2.6 Application of Cavitational Reactors for Large-Scale Biodiesel Production 66</p> <p>2.7 Future Prospects and Challenges 67</p> <p>References 67</p> <p><b>3 Heterogeneous Catalyst for Pyrolysis and Biodiesel Production 77<br /></b><i>Anjana P Anantharaman and Niju Subramania Pillai</i></p> <p>3.1 Biodiesel Production 78</p> <p>3.1.1 Homogeneous Catalyst 79</p> <p>3.1.2 Heterogeneous Catalyst 80</p> <p>3.1.3 Natural Catalyst 84</p> <p>3.1.4 Catalyst Characterization 88</p> <p>3.1.4.1 Morphology and Surface Property 88</p> <p>3.1.4.2 X-Ray Diffraction (XRD) 88</p> <p>3.1.4.3 Fourier Transform Infrared (FTIR) Spectroscopy 90</p> <p>3.1.4.4 Thermogravimetric Analysis (TGA) 91</p> <p>3.1.4.5 Temperature Programmed Desorption (TPD) 91</p> <p>3.1.4.6 X-Ray Photoemission Spectroscopy (XPS) 92</p> <p>3.1.5 Kinetics of Biodiesel 93</p> <p>3.2 Plastic Pyrolysis 97</p> <p>3.2.1 Zeolite 99</p> <p>3.2.2 Activated Carbon (AC) 103</p> <p>3.2.3 Natural Catalyst 104</p> <p>3.2.4 Characterization of Catalyst 107</p> <p>3.2.4.1 Fourier Transform Infrared Spectroscopy (FTIR) 107</p> <p>3.2.4.2 Surface Characteristics 107</p> <p>3.2.4.3 NH3-Temperature Programmed Desorption (NH3-TPD) 107</p> <p>3.2.5 Pyrolysis Kinetics 111</p> <p>3.3 Conclusion 113</p> <p>References 114</p> <p><b>4 Algal Biofuel: Emergent Applications in Next-Generation Biofuel Technology 119<br /></b><i>Bidhu Bhusan Makut</i></p> <p>4.1 Introduction 120</p> <p>4.2 Burgeoning of Biofuel Resources 120</p> <p>4.2.1 Potential Role of Microalgae Towards Biofuel Production 121</p> <p>4.3 Common Steps Adopted for Microalgal Biofuel Production 122</p> <p>4.3.1 Screening and Development of Robust Microalgal Strain 122</p> <p>4.3.2 Cultivation for Algal Biomass Production 123</p> <p>4.3.3 Harvesting of Microalgae Biomass 127</p> <p>4.3.4 Dewatering and Drying Process 127</p> <p>4.3.5 Extraction and Purification of Lipids from Microalgal Biomass for Biodiesel Production 130</p> <p>4.3.6 Microalgal Biomass Conversion Technology Towards Different Types of Biofuel Production 130</p> <p>4.3.6.1 Chemical Conversion 131</p> <p>4.3.6.2 Biochemical Conversion 132</p> <p>4.3.6.3 Thermochemical Conversion 134</p> <p>4.3.6.4 Direct Conversion 136</p> <p>4.4 Types of Microalgal Biofuels and their Emerging Applications 137</p> <p>4.4.1 Biodiesel 137</p> <p>4.4.2 Bioethanol 139</p> <p>4.4.3 Biogas 140</p> <p>4.4.4 Bio-Oil 140</p> <p>4.5 Conclusion 141</p> <p>References 141</p> <p><b>5 Co-Liquefaction of Biomass to Biofuels 145<br /></b><i>Gerardo Martínez-Narro and Anh N. Phan</i></p> <p>5.1 Introduction 145</p> <p>5.2 Hydrothermal Liquefaction (HTL) 147</p> <p>5.2.1 Background 147</p> <p>5.2.2 Operating Parameters Affecting HTL Process 149</p> <p>5.3 Co-Liquefaction of Biomass 151</p> <p>5.3.1 Food Waste with Others 151</p> <p>5.3.2 Lignocellulosic Biomass with Others 162</p> <p>5.3.3 Biomass with Crude Glycerol 163</p> <p>5.3.4 Algal Biomass with Others 164</p> <p>5.3.5 Sludge with Others 168</p> <p>5.3.6 Biomass with Plastic Waste 169</p> <p>5.4 Current Development, Challenges and Future Perspectives 171</p> <p>5.5 Conclusions 174</p> <p>Acknowledgments 174</p> <p>References 174</p> <p><b>6 Biomass to Bio Jet Fuels: A Take Off to the Aviation Industry 183<br /></b><i>Anjani R K Gollakota, Anil Kumar Thandlam and Chi-Min Shu</i></p> <p>6.1 Introduction 184</p> <p>6.2 The Transition of Biomass to Biofuels 185</p> <p>6.3 Properties of Aviation Jet Fuel (Bio-Jet Fuel) 187</p> <p>6.4 Fuel Specification for Civil Aviation 188</p> <p>6.5 Choice of Feedstock (Renewable Sources) 192</p> <p>6.5.1 Camelina 192</p> <p>6.5.2 Jatropha 192</p> <p>6.5.3 Wastes 193</p> <p>6.5.4 Algae 193</p> <p>6.5.5 Halophytes 193</p> <p>6.5.6 Fiber Feedstock 193</p> <p>6.6 Pathways of Biomass to Bio-Jet Fuels 194</p> <p>6.6.1 Hydrogenated Esters and Fatty Acids (HEFA) 194</p> <p>6.6.2 Catalytic Hydrothermolysis (CH) 195</p> <p>6.6.3 Hydro Processed Depolymerized Cellulosic Jet (HDCJ) 195</p> <p>6.6.4 Fischer-Tropsch Process (FT) 196</p> <p>6.6.5 Lignin to Jet 197</p> <p>6.6.6 Direct Sugars to Hydrocarbons (DSHC) 202</p> <p>6.6.7 Aqueous Phase Reforming (APR) 203</p> <p>6.6.8 Alcohol to Bio-Jet 203</p> <p>6.7 Challenges Associates with the Future of Bio-Jet Fuel Development 204</p> <p>6.7.1 Ecological Challenges 204</p> <p>6.7.2 Feedstock Availability and Sustainability 205</p> <p>6.7.3 Production Challenge 205</p> <p>6.7.4 Distribution Challenge 205</p> <p>6.7.5 Compatibility Issues 206</p> <p>6.8 Future Perspective 206</p> <p>6.9 Conclusion 207</p> <p>Acknowledgements 209</p> <p>References 209</p> <p><b>7 Advance in Bioethanol Technology: Production and Characterization 215<br /></b><i>Soumya Sasmal and Kaustubha Mohanty</i></p> <p>7.1 Introduction 216</p> <p>7.2 Production Technology of Ethanol and Global Players 218</p> <p>7.3 Microbiology of Bioethanol Production 220</p> <p>7.4 Fermentation Technology 222</p> <p>7.5 Downstream Process 224</p> <p>7.5.1 Distillation 224</p> <p>7.5.2 Molecular Sieves 225</p> <p>7.6 Ethanol Analysis 225</p> <p>7.6.1 Gas Chromatography 225</p> <p>7.6.2 High-Performance Liquid Chromatography 226</p> <p>7.6.3 Infrared Spectroscopy 226</p> <p>7.6.4 Olfactometry 226</p> <p>7.7 Conclusion 227</p> <p>References 228</p> <p><b>8 Effect of Process Parameters on the Production of Pyrolytic Products from Biomass Through Pyrolysis 231<br /></b><i>Ranjeet Kumar Mishra and Kaustubha Mohanty</i></p> <p>8.1 Introduction 232</p> <p>8.2 Biomass to Energy Conversion Technologies 233</p> <p>8.2.1 Biochemical Conversion of Biomass 233</p> <p>8.2.2 Thermochemical Conversion (TCC) of Biomass 234</p> <p>8.2.2.1 Combustion 235</p> <p>8.2.2.2 Gasification 235</p> <p>8.2.2.3 Pyrolysis 236</p> <p>8.2.2.4 Liquefaction 236</p> <p>8.2.2.5 Carbonization and Co-Firing 240</p> <p>8.2.3 Comparison of Thermochemical Conversion Techniques 240</p> <p>8.3 Advantages of Pyrolysis 241</p> <p>8.4 Effect of Processing Parameters on Liquid Oil Yield 242</p> <p>8.4.1 Temperature 242</p> <p>8.4.2 Effect of Catalysts on Pyrolytic End Products 243</p> <p>8.4.3 Vapour Residence Times 249</p> <p>8.4.4 Size of Feed Particles 255</p> <p>8.4.5 Effect of Heating Rates 256</p> <p>8.4.6 Effect of Atmospheric Gas 257</p> <p>8.4.7 Effect of Biomass Type 262</p> <p>8.4.8 Effect of Mineral 262</p> <p>8.4.9 Effect of Moisture Contents 264</p> <p>8.4.10 Effect of Bed Height and Bed Thickness 264</p> <p>8.5 Types of Reactors 266</p> <p>8.5.1 Fixed Bed Reactor 266</p> <p>8.5.2 Fluidized Bed Reactor 266</p> <p>8.5.3 Bubbling Fluidized Bed (BFB) Reactor 267</p> <p>8.5.4 Circulating Fluidized Bed (CFB) Reactors 267</p> <p>8.5.5 Ablative Reactor 268</p> <p>8.5.6 Vacuum Pyrolysis Reactor 268</p> <p>8.5.7 Rotating Cone Reactor 269</p> <p>8.5.8 PyRos Reactor 270</p> <p>8.5.9 Auger Reactor 270</p> <p>8.5.10 Plasma Reactor 271</p> <p>8.5.11 Microwave Reactor 272</p> <p>8.5.12 Solar Reactor 272</p> <p>8.6 Advantages and Disadvantages of Different Types of Reactors 272</p> <p>8.7 Conclusion 274</p> <p>Acknowledgements 275</p> <p>References 275</p> <p><b>9 Thermo-Catalytic Conversion of Non-Edible Seeds (Extractive-Rich Biomass) to Fuel Oil 285<br /></b><i>Nilutpal Bhuyan, Neelam Bora, Rumi Narzari, Kabita Boruah and Rupam Kataki</i></p> <p>9.1 Introduction 286</p> <p>9.2 Thermochemical Technologies for Liquid Biofuel Production 289</p> <p>9.2.1 Hydrothermal Liquefaction 289</p> <p>9.2.2 Pyrolysis and Its Classification 292</p> <p>9.3 Feedstock Classification for Biofuel Production 293</p> <p>9.3.1 Agricultural Crops and Residues 294</p> <p>9.3.2 Municipal and Industrial Wastes 294</p> <p>9.3.3 Animal Wastes 295</p> <p>9.3.4 Undesirable Plants or Weeds 295</p> <p>9.3.5 Forest Wood and Residues 296</p> <p>9.3.5.1 Non-Edible Oil Seeds: A Potential Feedstock for Liquid Fuel Production 296</p> <p>9.3.5.2 Non-Edible Oil Seeds and Worldwide Availability 297</p> <p>9.4 Characterization of Non-Edible Oil Seeds 310</p> <p>9.5 Thermal Degradation Profile of Different Non-Edible Seeds 320</p> <p>9.6 Preparation of Raw Materials for Pyrolysis 322</p> <p>9.7 Catalytic and Non-Catalytic Thermal Conversion for Liquid Fuel Production 323</p> <p>9.7.1 Non-Catalytic Pyrolysis 323</p> <p>9.7.1.1 CHNSO Analysis of Seed Pyrolytic Oil 326</p> <p>9.7.1.2 FTIR Analysis of Seed Pyrolytic Oil 326</p> <p>9.8 Need for Up-Gradation of Pyrolytic Oil 329</p> <p>9.8.1 Catalytic Pyrolysis 329</p> <p>9.9 Application of Catalyst in Pyrolysis of Non-Edible Biomass 330</p> <p>9.10 Effect of Parameters on Liquid Fuel Production 330</p> <p>9.10.1 Effect of Operating Parameters on Yield 330</p> <p>9.10.2 Effect of Temperature 339</p> <p>9.10.3 Heating Rates 340</p> <p>9.10.4 Effect of Flow of Sweeping Gas 340</p> <p>9.10.5 Effect of Particle Size 341</p> <p>9.10.6 Effect of Catalyst on Yield 341</p> <p>9.10.7 Influence of Catalysts on Oil Composition 342</p> <p>9.10.8 Effect of Catalyst Bed on Yield 343</p> <p>9.10.9 Effect of Catalyst on Fuel Properties of Pyrolytic Oil 343</p> <p>9.11 Fuel Properties of Thermal and Catalytic Pyrolytic Oil 343</p> <p>9.12 Challenges in Utilization of Nonedible Oil Seed in Themocatalytic Conversion Process 345</p> <p>9.13 Advantages and Drawbacks of Seed Pyrolytic Oils 346</p> <p>9.14 Precautions Associated with the Application of Biofuel 347</p> <p>9.15 Conclusion and Future Perspectives 348</p> <p>References 350</p> <p><b>10 Suitability of Oil Seed Residues as a Potential Source of Bio-Fuels and Bioenergy 361<br /></b><i>Vikranth Volli, Randeep Singh, Krushna Prasad Shadangi and Chi-Min Shu</i></p> <p>10.1 Introduction 362</p> <p>10.2 Biomass Conversion Processes 363</p> <p>10.3 Biomass to Bioenergy via Thermal Pyrolysis 367</p> <p>10.3.1 Thermogravimetric Analysis 367</p> <p>10.3.2 Thermal Pyrolysis 368</p> <p>10.4 Physicochemical Characterization of Bio-Oil 370</p> <p>10.4.1 Physical Properties 370</p> <p>10.4.2 FTIR Analysis 371</p> <p>10.4.3 GC-MS Analysis 372</p> <p>10.5 Engine Performance Analysis 384</p> <p>10.5.1 Break Thermal Efficiency (BTE) 384</p> <p>10.5.2 Brake Specific Fuel Consumption (BSFC) 384</p> <p>10.5.3 Exhaust Gas Temperature (EGT) 385</p> <p>10.6 Future Prospects and Recommendations 386</p> <p>10.7 Conclusion 387</p> <p>Acknowledgments 387</p> <p>References 387</p> <p><b>11 Co-Conversion of Algal Biomass to Biofuel 391<br /></b><i>Abhishek Walia, Chayanika Putatunda, Preeti Solanki, Shruti Pathania and Ravi Kant Bhatia</i></p> <p>11.1 Introduction 392</p> <p>11.2 Mechanism of Co-Pyrolysis Process 394</p> <p>11.2.1 Major Types of Pyrolysis and Co-Pyrolysis 396</p> <p>11.3 Factors Impacting Co-Pyrolysis 398</p> <p>11.3.1 Composition of Co-Pyrolysis Substrates and the Products Obtained in Co-Pyrolysis 398</p> <p>11.3.2 Main Reactor Types Used During Biomass Co-Pyrolysis and the Process Conditions/Parameters 399</p> <p>11.3.2.1 Classification of Biomass (Co) Pyrolysis Bioreactors 401</p> <p>11.3.3 The Role of Catalysts in Biomass Co-Pyrolysis 405</p> <p>11.3.3.1 Catalytic Hydrotreating 405</p> <p>11.3.3.2 Types of Catalysts Available 407</p> <p>11.3.3.3 Factors Affecting the Performance of Catalysts 409</p> <p>11.3.3.4 Mechanisms of Deactivation of Catalysts 410</p> <p>11.3.3.5 Catalytic Upgradation of Bio-Oil with Hydrodeoxygenation (HDO) 410</p> <p>11.4 Recent Advances and Studies on Co-Pyrolysis of Biomass and Different Substrates 411</p> <p>11.5 Effect between Biomass and Different Substrates in Co-Pyrolysis 412</p> <p>11.5.1 Increased Bio-Oil Yield 413</p> <p>11.5.1.1 Type of Substrate 413</p> <p>11.5.1.2 Particle Size 414</p> <p>11.5.1.3 Temperature 415</p> <p>11.5.1.4 Substrate to Biomass Ratio 416</p> <p>11.5.1.5 Residence Time 417</p> <p>11.5.2 Improved Oil Quality 417</p> <p>11.5.2.1 Influence of Bioreactor 417</p> <p>11.5.2.2 Influence of Catalyst 418</p> <p>11.5.3 Effect of Biomass-Different Substrates Co-Pyrolysis on By-Products 420</p> <p>11.5.3.1 Microalgae and Plastic Waste 420</p> <p>11.5.3.2 Microalgae and Coal 423</p> <p>11.5.3.3 Microalgae and Tires 424</p> <p>11.6 Future Perspectives 425</p> <p>11.7 Conclusion 427</p> <p>References 428</p> <p><b>12 Pyrolysis of Caryota Urens Seeds: Fuel Properties and Compositional Analysis 441<br /></b><i>Midhun Prasad Kothandaraman and Murugavelh Somasundaram</i></p> <p>12.1 Introduction 442</p> <p>12.2 Types of Pyrolysis Reactor 443</p> <p>12.2.1 Fluidized Bed Reactor 443</p> <p>12.2.2 Fixed Bed Reactor 444</p> <p>12.2.3 Auger Reactor 445</p> <p>12.2.4 Rotating Cone Pyrolysis Reactor 446</p> <p>12.3 Materials and Methods 447</p> <p>12.3.1 Feedstock Preparation and Collection 447</p> <p>12.3.2 Tubular Reactor for Conversion of Caryota Ures Seeds to Bio Oil 447</p> <p>12.4 Product Analysis 448</p> <p>12.4.1 Characterization of Feedstock and Oil Yield 448</p> <p>12.5 Kinetic Modelling 449</p> <p>12.5.1 Kissinger Method for Activation Energy Calculation 450</p> <p>12.5.2 Kissinger-Akahira-Sunose (KAS) Method for Activation Energy Calculation 450</p> <p>12.5.3 Ozawa-Flynn-Wall (OFW) Method for Activation Energy Calculation 450</p> <p>12.6 Result and Discussion 451</p> <p>12.6.1 Characterization of Feedstock 451</p> <p>12.6.2 Product Yield 452</p> <p>12.6.3 FTIR of Bio Oil 452</p> <p>12.6.4 GCMS of Bio Oil 453</p> <p>12.6.5 Thermogravimetric Analysis of Caryota Urens 456</p> <p>12.6.6 Activation Energy Calculation Using Isoconversional Models 459</p> <p>12.6.6.1 Kissinger Method for Estimation of Activation Energy 459</p> <p>12.6.6.2 KAS Method for Estimation of Activation Energy 460</p> <p>12.6.6.3 The OFW Method 460</p> <p>12.7 Conclusion 462</p> <p>Acknowledgements 463</p> <p>Nomenclature 463</p> <p>References 463</p> <p><b>13 Bio-Butanol as Biofuels: The Present and Future Scope 467<br /></b><i>Seim Timung, Harsimranpreet Singh and Anshika Annu</i></p> <p>13.1 Introduction 467</p> <p>13.2 Butanol Global Market 469</p> <p>13.3 History of ABE Fermentation 469</p> <p>13.4 Feedstocks 470</p> <p>13.4.1 Non-Lignocellulosic Feedstock 470</p> <p>13.4.2 Lignocellulosic Biomass 471</p> <p>13.4.3 Algae 472</p> <p>13.4.4 Waste Sources 474</p> <p>13.4.5 Glycerol 475</p> <p>13.5 Pretreatment Techniques 476</p> <p>13.5.1 Acid Pretreatment 476</p> <p>13.5.2 Alkali Pretreatment 477</p> <p>13.5.3 Organosolvent Pretreatment 477</p> <p>13.5.4 Other Pretreatment 478</p> <p>13.6 Fermentation Techniques 478</p> <p>13.7 Conclusion 479</p> <p>References 480</p> <p><b>14 Application of Nanotechnology in the Production of Biofuel 487<br /></b><i>Trinath Biswal and Krushna Prasad Shadangi</i></p> <p>14.1 Introduction 488</p> <p>14.2 Various Nanoparticles Used for Production of Biofuel 489</p> <p>14.2.1 Magnetic Nanoparticles 489</p> <p>14.2.2 Carbon Nanotubes (CNTs) 491</p> <p>14.2.3 Graphene and Graphene Derived Nanomaterial for Biofuel 493</p> <p>14.2.4 Other Nanoparticles Applied in Heterogeneous Catalysis for Biofuel Production 495</p> <p>14.3 Factors Affecting the Performance of Nanoparticles in the Manufacturing Process of Biofuel 495</p> <p>14.3.1 Nanoparticle Synthesis Temperature 496</p> <p>14.3.2 Pressure During Synthesis of Nanoparticle 496</p> <p>14.3.3 pH Influencing Synthesis of Nanoparticles 496</p> <p>14.3.4 Size of Nanoparticles 496</p> <p>14.4 Role of Nanomaterials in the Synthesis of Biofuels 496</p> <p>14.5 Utilization of Nanomaterials for the Production of Biofuel 497</p> <p>14.5.1 Production of Biodiesel Using Nanocatalysts 497</p> <p>14.5.2 Application of Nanomaterials for the Pretreatment of Lignocellulosic Biomass 500</p> <p>14.5.3 Application of Nanomaterials in Synthesis of Cellulase and Stability 501</p> <p>14.5.4 Application of Nano-Materials in the Hydrolysis of Lignocellulosic Biomass 501</p> <p>14.5.5 Bio-Ethanol Production by Using Nanotechnology 502</p> <p>14.5.6 Application of Nanotechnology in the Production of Bio-Ethanol or Cellulosic Ethanol 506</p> <p>14.5.7 Up-Gradation of Biofuel by Using Nanotechnology 508</p> <p>14.5.8 Use of Nanoparticles in Biorefinery 509</p> <p>14.6 Conclusion 510</p> <p>References 511</p> <p><b>15 Experimental Investigation of Long Run Viability of Engine Oil Properties in DI Diesel Engine Fuelled with Diesel, Bioethanol and Biodiesel Blend 517<br /></b><i>Dulari Hansdah and S. Murugan</i></p> <p>15.1 Introduction 518</p> <p>15.2 Materials and Method 519</p> <p>15.2.1 Fuel Properties 520</p> <p>15.3 Test Procedure 522</p> <p>15.3.1 Engine Experimental Set Up 522</p> <p>15.3.2 Methodology 525</p> <p>15.4 Result Analysis 528</p> <p>15.4.1 Wear Measurements of Different Components 528</p> <p>15.4.2 Deposits of Carbon on the Various Engine Components 532</p> <p>15.4.2.1 Cylinder Head and Piston Crown 532</p> <p>15.4.2.2 Analysis Deposits on Fuel Injector 533</p> <p>15.4.3 Analysis of Lubricating Oil 533</p> <p>15.4.3.1 Effect of Crankcase Dilution 533</p> <p>15.4.3.2 Analysis of Wear of Metals from Different Components 537</p> <p>15.5 Conclusion 541</p> <p>References 541</p> <p><b>16 Studies on the Diesel Blends Oxidative Stability in Mixture with TBHQ Antioxidant and Soft Computation Approach Using ANN and RSM at Varying Blend Ratio 543<br /></b><i>Ramesh Kasimani</i></p> <p>16.1 Introduction 544</p> <p>16.2 Materials and Methodology 545</p> <p>16.2.1 Bio-Diesel Preparation and its Properties 545</p> <p>16.2.2 Antioxidant Reagent 547</p> <p>16.2.3 GC-MS Analysis 547</p> <p>16.2.4 Oxidation Stability Determination 547</p> <p>16.2.5 Uncertainty Analysis 548</p> <p>16.2.6 Experimental Setup and Test Procedure 552</p> <p>16.2.7 Response Surface Methodology 552</p> <p>16.2.8 Artificial Neural Network 554</p> <p>16.3 Results and Discussion 555</p> <p>16.3.1 Oxidation Stability Analysis 555</p> <p>16.3.2 Performance and Emission Characteristics of CIB Diesel Blends 556</p> <p>16.3.3 Brake-Specific Fuel Consumption 556</p> <p>16.3.4 Brake Thermal Efficiency 559</p> <p>16.3.5 Carbon Monoxide 560</p> <p>16.3.6 Hydrocarbon 561</p> <p>16.3.7 Nitrogen Oxides 561</p> <p>16.3.8 Carbon Dioxide 562</p> <p>16.3.9 Performance and Emission Characteristics of CIB Diesel Blends + TBHQ 563</p> <p>16.3.10 Brake Specific Fuel Consumption 563</p> <p>16.3.11 Brake Thermal Efficiency 567</p> <p>16.3.12 Carbon Monoxide 567</p> <p>16.3.13 Hydrocarbon 568</p> <p>16.3.14 Nitrogen Oxides 568</p> <p>16.3.15 Carbon Dioxide 569</p> <p>16.4 Response Surface Methodology for Performance Parameter 570</p> <p>16.4.1 Non-Linear Regression Model for Performance Parameter 570</p> <p>16.4.2 Fit Summary for BSFC 571</p> <p>16.4.3 ANOVA for Performance Parameters 571</p> <p>16.4.4 Response Surface Plot and Contour Plot for BSFC 571</p> <p>16.4.5 Response Surface Plot and Contour Plot for BTE 576</p> <p>16.4.6 Non-Linear Regression Model for Emission Parameter 578</p> <p>16.4.7 Fit Summary for Emission Parameters 578</p> <p>16.4.8 ANOVA for Emission Parameters 580</p> <p>16.4.9 Response Surface Plot and Contour Plot for CO 586</p> <p>16.4.10 Response Surface Plot and Contour Plot for HC 591</p> <p>16.4.11 Response Surface Plot and Contour Plot for NO<sub>x</sub> 591</p> <p>16.4.12 Response Surface Plot and Contour Plot for CO<sub>2</sub> 592</p> <p>16.5 Modelling of ANN 593</p> <p>16.5.1 Prediction of Performance Characteristics 596</p> <p>16.5.2 Prediction of Emission Characteristics 597</p> <p>16.6 Validation of RSM and ANN 599</p> <p>16.7 Conclusion 606</p> <p>References 608</p> <p><b>17 Effect of Nanoparticles in Bio-Oil on the Performance, Combustion and Emission Characteristics of a Diesel Engine 613<br /></b><i>V.Dhana Raju, S.Rami Reddy, Harish Venu, Lingesan Subramani and Manzoore Elahi M. Soudagar</i></p> <p>17.1 Introduction 614</p> <p>17.2 Materials and Methods 618</p> <p>17.2.1 Waste Mango Seed Oil Extraction 618</p> <p>17.2.2 Transesterification Process 619</p> <p>17.2.3 Preparation of Alumina Nanoparticles 621</p> <p>17.3 Experimental Setup 621</p> <p>17.3.1 Error and Uncertainty Analysis 622</p> <p>17.4 Results and Discussion 623</p> <p>17.4.1 Mango Seed Biodiesel Yield 623</p> <p>17.4.2 Characterization of Alumina Nanoparticles 624</p> <p>17.4.3 Diverse Characteristics of Diesel Engine 625</p> <p>17.4.3.1 Brake Thermal Efficiency (BTE) 626</p> <p>17.4.3.2 Brake Specific Fuel Consumption (BSFC) 627</p> <p>17.4.3.3 Cylinder Pressure (CP) 628</p> <p>17.4.3.4 Heat Release Rate (HRR) 629</p> <p>17.4.3.5 Carbon Monoxide Emissions (CO) 629</p> <p>17.4.3.6 Carbon Dioxide Emissions (CO<sub>2</sub>) 630</p> <p>17.4.3.7 Hydrocarbons Emissions (HC) 630</p> <p>17.4.3.8 Nitrogen Oxides Emissions (NO<sub>X</sub>) 632</p> <p>17.4.3.9 Smoke Opacity (SO) 632</p> <p>17.5 Conclusions 633</p> <p>Abbreviations 634</p> <p>Nomenclature 634</p> <p>References 635</p> <p><b>18 Use of Optimization Techniques to Study the Engine Performance and Emission Analysis of Diesel Engine 639<br /></b><i>Sakthivel R, Mohanraj T, Abbhijith H and Ganesh Kumar P</i></p> <p>18.1 Introduction 640</p> <p>18.1.1 Engine Performance Optimization 644</p> <p>18.2 Engine Parameter Optimization Using Taguchi’s S/N 645</p> <p>18.3 Engine Parameter Optimization Using Response Surface Methodology 649</p> <p>18.3.1 Analysis of Variance 652</p> <p>18.4 Artificial Neural Networks 653</p> <p>18.5 Genetic Algorithm 659</p> <p>18.6 TOPSIS Algorithm 662</p> <p>18.6.1 TOPSIS Method for Optimizing Engine Parameters 666</p> <p>18.7 Grey Relational Analysis 669</p> <p>18.8 Fuzzy Optimization 674</p> <p>18.9 Conclusion 675</p> <p>Abbreviations 676</p> <p>References 676</p> <p><b>19 Engine Performance and Emission Analysis of Biodiesel-Diesel and Biomass Pyrolytic Oil-Diesel Blended Oil: A Comparative Study 681<br /></b><i>K. Adithya, C.M Jagadesh Kumar, C.G. Mohan, R. Prakash and N. Gunasekar</i></p> <p>19.1 Introduction 682</p> <p>19.2 Experimental Analysis 683</p> <p>19.2.1 Production of Coconut Shell Pyrolysis Oil 683</p> <p>19.2.2 Production of JME 685</p> <p>19.3 Experimental Set-Up 685</p> <p>19.3.1 Engine Specifications 686</p> <p>19.3.2 Error Analysis 686</p> <p>19.4 Results and Discussion 687</p> <p>19.4.1 Performance Parameters 687</p> <p>19.4.1.1 Brake Thermal Efficiency 687</p> <p>19.4.1.2 BSFC 688</p> <p>19.4.1.3 Exhaust Gas Temperature 688</p> <p>19.4.2 Emission Parameters 689</p> <p>19.4.2.1 Carbon Monoxide 689</p> <p>19.4.2.2 Hydrocarbons 689</p> <p>19.4.2.3 NOx Emissions 691</p> <p>19.4.2.4 Smoke Opacity 691</p> <p>19.5 Conclusion 692</p> <p>References 693</p> <p><b>20 Agro-Waste for Second-Generation Biofuels 697<br /></b><i>Prakash Kumar Sarangi and Mousumi Meghamala Nayak</i></p> <p>20.1 Introduction 697</p> <p>20.2 Agro-Wastes 699</p> <p>20.3 Value-Addition of Agro-Wastes 700</p> <p>20.4 Production of Second-Generation Biofuels 702</p> <p>20.4.1 Biogas 702</p> <p>20.4.2 Biohydrogen 702</p> <p>20.4.3 Bioethanol 703</p> <p>20.4.4 Biobutanol 703</p> <p>20.4.5 Biomethanol 704</p> <p>20.4.6 Conclusion 705</p> <p>References 706</p> <p>Index 711</p>
<p><b>Krushna Prasad Shadangi,</b> PhD, is an assistant professor in the Department of Chemical Engineering at Veer Surendra Sai University of Technology, Burla, Odisha, India. He earned his doctorate in chemical engineering from the Indian Institute of Technology Guwahati, Guwahati, India. He has ten years of research experience in the field of biofuel technologies and has contributed eight book chapters in edited books. He has published 22 papers in peer reviewed SCI journals and is an editorial board member on five international journals.</p>
<p><b>From the selection and pretreatment of raw materials to design of reactors, methods of conversion, selection of process parameters, optimization, and production of various types of biofuels to the industrial applications for the technology, this is the most up-to-date and comprehensive coverage of liquid biofuels for engineers and students.</b></p><p>Compiled by a well-known expert in the field, <i>Liquid Biofuels</i> provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, and preparation of bio-catalyst. Also included are its application in biofuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area.</p><p>Written with the objective of offering both theoretical concepts and practical applications of those concepts, <i>Liquid Biofuels</i> can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pretreatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization.</p><p>This exciting new volume offers a comparative study between the various liquid biofuels obtained from different methods of production and their engine performance and emission analysis so that one can find the better biofuel as an alternative fuel. Since the book covers almost all liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector.</p><p>A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.</p><p><b>This outstanding new volume:</b></p><ul><li>Provides a thorough, comprehensive reference for anyone working in liquid biofuels, for engineers, scientists, chemists, and students</li><li>Covers liquid biofuels, aviation biofuels, algae biofuels, ultrasound assisted biofuels, catalysis in biofuel, nanotechnology in biofuel, optimization in biofuels, applications of biofuels, and many other related topics</li><li>Is a key tool for researchers and designers in scoping parameters for future processes and equipment relating to liquid biofuels</li><li>Outlines the practical applications of liquid biofuel technologies, concepts, and processes</li></ul>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €