Details

Handbook of Intelligent Computing and Optimization for Sustainable Development


Handbook of Intelligent Computing and Optimization for Sustainable Development


1. Aufl.

von: Mukhdeep Singh Manshahia, Valeriy Kharchenko, Elias Munapo, J. Joshua Thomas, Pandian Vasant

275,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 11.02.2022
ISBN/EAN: 9781119792628
Sprache: englisch
Anzahl Seiten: 944

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT</b> <p><b>This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries.</b> <p>Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. <p>The 41 chapters comprising the <i>Handbook of Intelligent Computing and Optimization for Sustainable Development</i> by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. <p><b>Audience</b> <p>It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
<p>Foreword xxxi</p> <p>Preface xxxv</p> <p>Acknowledgment xlv</p> <p><b>Part I: Intelligent Computing and Applications 1</b></p> <p><b>1 Assessing Mental Workload Using Eye Tracking Technology and Deep Learning Models 3<br /></b><i>Souvik Das, Kintada Prudhvi and J. Maiti</i></p> <p>1.1 Introduction 3</p> <p>1.2 Data Acquisition Method 4</p> <p>1.3 Feature Extraction 4</p> <p>1.4 Deep Learning Models 5</p> <p>1.5 Results 8</p> <p>1.6 Discussion 10</p> <p>1.7 Advantages and Disadvantages of the Study 11</p> <p>1.8 Limitations of the Study 11</p> <p>1.9 Conclusion 11</p> <p>References 12</p> <p><b>2 Artificial Neural Networks in DNA Computing and Implementation of DNA Logic Gates 13<br /></b><i>Mandrita Mondal and Kumar S. Ray</i></p> <p>2.1 Introduction 13</p> <p>2.2 Biological Neurons 15</p> <p>2.3 Artificial Neural Networks 17</p> <p>2.4 DNA Neural Networks 22</p> <p>2.5 DNA Logic Gates 28</p> <p>2.6 Advantages and Limitations 45</p> <p>2.7 Conclusion 47</p> <p>Acknowledgment 47</p> <p>References 47</p> <p><b>3 Intelligent Garment Detection Using Deep Learning 49<br /></b><i>Aniruddha Srinivas Joshi, Savyasachi Gupta, Goutham Kanahasabai and Earnest Paul Ijjina</i></p> <p>3.1 Introduction 49</p> <p>3.2 Literature 50</p> <p>3.3 Methodology 52</p> <p>3.4 Experimental Results 59</p> <p>3.5 Highlights 64</p> <p>3.6 Conclusion and Future Works 65</p> <p>Acknowledgements 65</p> <p>References 66</p> <p><b>4 Intelligent Computing on Complex Numbers for Cryptographic Applications 69<br /></b><i>Ni Ni Hla and Tun Myat Aung</i></p> <p>4.1 Introduction 69</p> <p>4.2 Modular Arithmetic 70</p> <p>4.3 Complex Plane 71</p> <p>4.4 Matrix Algebra 71</p> <p>4.5 Elliptic Curve Arithmetic 73</p> <p>4.6 Cryptographic Applications 74</p> <p>4.7 Conclusion 78</p> <p>References 79</p> <p><b>5 Application of Machine Learning Framework for Next-Generation Wireless Networks: Challenges and Case Studies 81<br /></b><i>Satyendra Singh Yadav, Shrishail Hiremath, Pravallika Surisetti, Vijay Kumar and Sarat Kumar Patra</i></p> <p>5.1 Introduction 82</p> <p>5.2 Machine/Deep Learning for Future Wireless Communication 83</p> <p>5.3 Case Studies 87</p> <p>5.4 Major Findings 95</p> <p>5.5 Future Research Directions 95</p> <p>5.6 Conclusion 96</p> <p>References 96</p> <p><b>6 Designing of Routing Protocol for Crowd Associated Networks (CrANs) 101<br /></b><i>Rabia Bilal and Bilal Muhammad Khan</i></p> <p>6.1 Introduction 101</p> <p>6.2 Background Study 103</p> <p>6.3 CrANs 117</p> <p>6.4 Simulation of MANET Network 123</p> <p>6.5 Simulation of VANET Network 126</p> <p>6.6 CrANs 130</p> <p>6.7 Conclusion 132</p> <p>References 132</p> <p><b>7 Application of Group Method of Data Handling–Based Neural Network (GMDH-NN) for Forecasting Permeate Flux (%) of Disc-Shaped Membrane 135<br /></b><i>Anirban Banik, Mrinmoy Majumder, Sushant Kumar Biswal and Tarun Kanti Bandyopadhyay</i></p> <p>7.1 Introduction 135</p> <p>7.2 Experimental Procedure 138</p> <p>7.3 Methodology 139</p> <p>7.4 Results and Discussions 142</p> <p>7.5 Conclusions 146</p> <p>Acknowledgements 147</p> <p>References 147</p> <p><b>8 Automated Extraction of Non-Functional Requirements From Text Files: A Supervised Learning Approach 149<br /></b><i>M. Sunil Kumar, A. Harika, C. Sushama and P. Neelima</i></p> <p>8.1 Introduction 149</p> <p>8.2 Literature Survey 153</p> <p>8.3 Methodology 156</p> <p>8.4 Dataset 165</p> <p>8.5 Evaluation 166</p> <p>8.6 Conclusion 169</p> <p>References 170</p> <p><b>9 Image Classification by Reinforcement Learning With Two-State Q-Learning 171<br /></b><i>Abdul Mueed Hafiz</i></p> <p>9.1 Introduction 171</p> <p>9.2 Proposed Approach 173</p> <p>9.3 Datasets Used 174</p> <p>9.4 Experimentation 176</p> <p>9.5 Conclusion 178</p> <p>References 178</p> <p><b>10 Design and Development of Neural-Fuzzy Control Model for Computer-Based Control Systems in a Multivariable Chemical Process 183<br /></b><i>Pankaj Mohindru, Pooja and Vishwesh Akre</i></p> <p>10.1 Introduction 184</p> <p>10.2 Distributed Control System 187</p> <p>10.3 Fuzzy Logic 192</p> <p>10.4 Artificial Neural Network 193</p> <p>10.5 Neuro-Fuzzy 194</p> <p>10.6 Case Study 197</p> <p>10.7 Software Implementation on Graphical User Interface 203</p> <p>10.8 Results and Discussion 212</p> <p>10.9 Discussion 214</p> <p>10.10 Conclusion 214</p> <p>10.11 Scope for Future Work 215</p> <p>References 215</p> <p>Appendix 10.1 MATLAB Simulation Configuration Using Sugeno 217</p> <p>Appendix 10.2 MATLAB Window Displaying Desired Training-Data Fed to Neuro-Fuzzy Model 218</p> <p>Appendix 10.3 MATLAB Window Displaying Checking-Data Fed to Neuro-Fuzzy Model 218</p> <p><b>11 Artificial Neural Network in the Manufacturing Sector 219<br /></b><i>Navriti Gupta</i></p> <p>11.1 Introduction 219</p> <p>11.2 Optimization 221</p> <p>11.3 Artificial Neural Network: Optimization of Mechanical Systems 223</p> <p>11.4 ANN vs. Human Brain 228</p> <p>11.5 Architecture of Artificial Neural Networks 229</p> <p>11.6 Learning Algorithm(s) 235</p> <p>11.7 Different Type of Data 237</p> <p>11.8 Case Study: Hard Machining of EN 31 Steel 238</p> <p>11.9 Advantages of Using ANN in Manufacturing Sectors 242</p> <p>11.10 Disadvantages of Using ANN in Manufacturing Sectors 242</p> <p>11.11 Applications 242</p> <p>11.12 Conclusions 243</p> <p>11.13 Future Scope of ANN in Manufacturing Sectors 244</p> <p>References 245</p> <p><b>12 Speech-Based Multilingual Translation Framework 249<br /></b><i>Saloni and Williamjeet Singh</i></p> <p>12.1 Introduction 249</p> <p>12.2 Literature Survey 250</p> <p>12.3 Phases of ASR 252</p> <p>12.4 Modules of ASR 253</p> <p>12.5 Speech Database for ASR 253</p> <p>12.6 Developing ASR 255</p> <p>12.7 Performance of ASR 256</p> <p>12.8 Application Areas 257</p> <p>12.9 Conclusion and Future Work 258</p> <p>References 258</p> <p><b>13 Text Summarization: A Technical Overview and Research Perspectives 261<br /></b><i>Korrapati Sindhu and Karthick Seshadri</i></p> <p>13.1 Introduction 262</p> <p>13.2 Summarization Techniques 263</p> <p>13.3 Evaluating Summaries 279</p> <p>13.4 Datasets and Results 281</p> <p>13.5 Future Research Directions 281</p> <p>13.6 Conclusion 282</p> <p>References 282</p> <p><b>14 Democratizing Sentiment Analysis of Twitter Data Using Google Cloud Platform and BigQuery 287<br /></b><i>Sitendra Tamrakar, B. K. Madhavi and V. Mohan</i></p> <p>14.1 Introduction 287</p> <p>14.2 Literature Review 289</p> <p>14.3 Understanding the Google Cloud Platform 291</p> <p>14.4 Using BigQuery in the Google Cloud Console 294</p> <p>14.5 Sentiment Analysis 294</p> <p>14.6 Turning to Google BigQuery Analysis 295</p> <p>14.7 Proposed Method 297</p> <p>Streaming API 298</p> <p>14.8 Experimental Setup and Results 300</p> <p>14.9 Conclusion 302</p> <p>References 303</p> <p><b>15 A Review of Topic Modeling and Its Application 305<br /></b><i>R. Sandhiya, A. M. Boopika, M. Akshatha, S. V. Swetha and N. M. Hariharan</i></p> <p>15.1 Introduction 305</p> <p>15.2 Objective of Topic Modeling 306</p> <p>15.3 Motivations and Contributions 307</p> <p>15.4 Detailed Survey of Research Articles 308</p> <p>Information Extraction Systems by Gibbs Sampling 316</p> <p>Monte Carlo Algorithm 316</p> <p>15.5 Comparison Table of Previous Research 319</p> <p>15.6 Expected Future Work 320</p> <p>15.7 Conclusion 320</p> <p>References 321</p> <p><b>Part II: Optimization 323</b></p> <p><b>16 ROC Method for Identifying the Optimal Threshold With an Application to Email Classification 325<br /></b><i>Fasanya, Oluwafunmibi O., Adediran, Adetola A., Ewemooje, Olusegun S. and Adebola, Femi B.</i></p> <p>16.1 Introduction 325</p> <p>16.2 Related Works 326</p> <p>16.3 Methodology 328</p> <p>16.4 Results and Discussion 334</p> <p>16.5 Conclusion 337</p> <p>References 338</p> <p><b>17 Optimal Inventory System in a Urea Bagging Industry 339<br /></b><i>C. Vijayalakshmi, R. Subramani and N. Anitha</i></p> <p>17.1 Introduction 339</p> <p>17.2 Continuous Review Policy 345</p> <p>17.3 Inventory Optimization Techniques 345</p> <p>17.5 Numerical Calculations 353</p> <p>17.6 Conclusion 354</p> <p>References 354</p> <p><b>18 Design of a Mixed Integer Linear Programming Model for Optimization of Supply Chain of a Single Product With Disruption Scenario 357<br /></b><i>C. Vijayalakshmi</i></p> <p>18.1 Introduction 357</p> <p>18.2 Mixed Integer Programming Methods 359</p> <p>18.3 Introduction to Supply Chain Management System 359</p> <p>18.4 Mathematical Model Formulation 362</p> <p>18.5 Conclusion 368</p> <p>References 368</p> <p><b>19 Development of Base Tax Liability Insurance Premium Calculator for the South African Construction Industry—A Machine Learning Approach 371<br /></b><i>Blanche Mabusela-Motsosi, Senzosenkosi Myeni and Elias Munapo</i></p> <p>19.1 Introduction 372</p> <p>19.2 Literature Review 373</p> <p>19.3 The Aim and Objectives of the Study 374</p> <p>19.4 Research Methodology 374</p> <p>19.5 Study Results and Discussions 376</p> <p>19.6 Conclusions 381</p> <p>References 382</p> <p><b>20 A 90-Degree Schiffman Phase Shifter and Study of Tunability Using Varactor Diode 385<br /></b><i>Partha Kumar Deb, Tamasi Moyra and Bidyut Kumar Bhattacharyya</i></p> <p>20.1 Introduction 385</p> <p>20.2 Designing of 90° SPS 386</p> <p>20.3 Designing of Tunable Schiffman Phase Shifter 391</p> <p>20.4 Major Finding and Limitation 398</p> <p>20.5 Conclusion 398</p> <p>References 399</p> <p><b>21 Optimizing Manufacturing Performance Through Fuzzy Techniques 401<br /></b><i>Chandan Deep Singh, Harleen Kaur and Rajdeep Singh</i></p> <p>21.1 Introduction 401</p> <p>21.2 Literature Review 403</p> <p>21.3 Performance Optimization through Fuzzy Techniques 408</p> <p>21.4 Conclusions 441</p> <p>References 443</p> <p><b>22 Implementation of Non-Linear Inventory Optimization Model for Multiple Products 447<br /></b><i>Thiripura Sundari P.R. and Vijayalakshmi C.</i></p> <p>22.1 Introduction 447</p> <p>22.2 Literature Review 448</p> <p>22.3 Symbols and Assumptions 449</p> <p>22.4 Model Formulation 451</p> <p>22.5 Conclusion 459</p> <p>References 459</p> <p><b>Part III: Meta-Heuristics: Applications and Innovations 461</b></p> <p><b>23 Pufferfish Optimization Algorithm: A Bioinspired Optimizer 463<br /></b><i>Mehmet Cem Catalbas and Arif Gulten</i></p> <p>23.1 An Introduction to Optimization 463</p> <p>23.2 Optimization and Engineering 465</p> <p>23.3 Meta-Heuristic Optimization 469</p> <p>23.4 Torquigener Albomaculosus 471</p> <p>23.5 Pufferfish and Circular Structures 471</p> <p>23.6 Results 475</p> <p>23.7 Conclusion 483</p> <p>References 483</p> <p><b>24 A Hybrid Grey Wolf Optimizer and Sperm Swarm Optimization for Global Optimization 487<br /></b><i>Hisham A. Shehadeh and Nura Modi Shagari</i></p> <p>24.1 Introduction 487</p> <p>24.2 Background on Sperm Swarm Optimization (SSO) and Grey</p> <p>Wolf Optimizer (GWO) 489</p> <p>24.3 Hybrid Grey Wolf Optimizer and Sperm Swarm Optimization</p> <p>(HGWOSSO) 493</p> <p>24.4 Experimental and Results 494</p> <p>24.5 Discussion 504</p> <p>24.6 Conclusion 505</p> <p>References 505</p> <p><b>25 State-of-the-Art Optimization and Metaheuristic Algorithms 509<br /></b><i>Vineet Kumar, R. Naresh, Veena Sharma and Vineet Kumar</i></p> <p>25.1 Introduction 509</p> <p>25.2 An Overview of Traditional Optimization Approaches 511</p> <p>25.3 Properties of Metaheuristics 512</p> <p>25.4 Classification of Single Objective Metaheuristic Algorithms 514</p> <p>25.5 Applications of Single Objective Metaheuristic Approaches 519</p> <p>25.6 Classification of Multi-Objective Optimization Algorithms 519</p> <p>25.7 Hybridization of MOPs Algorithms 521</p> <p>25.8 Parallel Multi-Objective Optimization 521</p> <p>25.9 Applications of Multi-Objective Optimization 525</p> <p>25.10 Significant Contributions of Researchers in Various</p> <p>Metaheuristic Approaches 526</p> <p>25.11 Conclusion 528</p> <p>25.12 Major Findings, Future Scope of Metaheuristics and Its Applications 529</p> <p>25.13 Limitations and Motivation of Metaheuristics 529</p> <p>Acknowledgements 530</p> <p>References 530</p> <p><b>26 Model Reduction and Controller Scheme Development of Permanent Magnet Synchronous Motor Drives in the Delta Domain Using a Hybrid Firefly Technique 537<br /></b><i>Souvik Ganguli, Tanya Srivastava, Gagandeep Kaur and Prasanta Sarkar</i></p> <p>26.1 Introduction 538</p> <p>26.2 Proposed Methodology 541</p> <p>26.3 Simulation Results 542</p> <p>26.4 Conclusions 545</p> <p>References 546</p> <p><b>27 A New Parameter Estimation Technique of Three-Diode PV Cells 549<br /></b><i>Shilpy Goyal, Parag Nijhawan, Yashonidhi Srivastava and Souvik Ganguli</i></p> <p>27.1 Introduction 549</p> <p>27.2 Problem Statement 551</p> <p>27.3 Proposed Method 553</p> <p>27.4 Simulation Results and Discussions 555</p> <p>27.5 Conclusions 603</p> <p>References 603</p> <p><b>Part IV: Sustainable Computing 605</b></p> <p><b>28 Optimal Quantizer and Machine Learning–Based Decision Fusion for Cooperative Spectrum Sensing in IoT Cognitive Radio Network 607<br /></b><i>Saikat Majumder and Mukhdeep Singh Manshahia</i></p> <p>28.1 Introduction 607</p> <p>28.2 System Model and Preliminaries 610</p> <p>28.3 Machine Learning Techniques of Decision Fusion 613</p> <p>28.4 Optimum Quantization of Decision Statistic and Fusion 618</p> <p>28.5 Measurement Setup 621</p> <p>28.6 Performance Evaluation 623</p> <p>28.7 Conclusion 633</p> <p>28.8 Limitations and Scope for Future Work 633</p> <p>References 634</p> <p><b>29 Green IoT for Smart Agricultural Monitoring: Prediction Intelligence With Machine Learning Algorithms, Analysis of Prototype, and Review of Emerging Technologies 637<br /></b><i>Parijata Majumdar, Sanjoy Mitra and Diptendu Bhattacharya</i></p> <p>29.1 Introduction 638</p> <p>29.2 Green Approaches: Significance and Motivation 638</p> <p>29.3 Machine Learning Algorithms for Prediction Intelligence in Smart Irrigation Control 639</p> <p>29.4 Green IoT–Based Smart Irrigation Monitoring 639</p> <p>29.5 Technology Enablers for GIoT–Based Irrigation Monitoring 642</p> <p>29.6 Prototype of the Layered GIoT Framework for Intelligent Irrigation 642</p> <p>29.7 Other Recent Developments on GIoT–Based Smart Agriculture 643</p> <p>29.8 Literature Review of Edge Computing–Based Irrigation Monitoring 645</p> <p>29.9 LPWAN for GIoT–Based Smart Agriculture 646</p> <p>29.10 Analysis and Discussion 647</p> <p>29.11 Research Gap in GIoT–Based Precision Agriculture 649</p> <p>29.12 Analysis of Merits and Shortcomings 650</p> <p>29.13 Future Research Scope 651</p> <p>29.14 Conclusion 651</p> <p>References 652</p> <p><b>30 Prominence of Sentiment Analysis in Web-Based Data Using Semi-Supervised Classification 655<br /></b><i>B. Bazeer Ahamed and Z. A. Feroze Ahamed</i></p> <p>30.1 Introduction 655</p> <p>30.2 Related Works 656</p> <p>30.3 Proposed Approach 657</p> <p>30.4 Experimental Details and Results 660</p> <p>30.5 Conclusion 662</p> <p>References 662</p> <p><b>31 A Three-Phase Fuzzy and A* Approach to Sensor Deployment and Transmission 665<br /></b><i>R. Deepa, Revathi Venkataraman and Soumya Snigdha Kundu</i></p> <p>31.1 Introduction 665</p> <p>31.2 Related Work 666</p> <p>31.3 Proposed Model 667</p> <p>31.4 Complexity Analysis of Algorithms for Data Transmission 671</p> <p>31.5 Experimental Analysis 672</p> <p>31.6 Motivation and Limitations of Research 675</p> <p>31.7 Conclusion 675</p> <p>31.8 Future Work 675</p> <p>References 675</p> <p><b>32 Intelligent Computing for Precision Agriculture 677<br /></b><i>Priyanka Gupta, Kavita Jhajharia and Pratistha Mathur</i></p> <p>32.1 Introduction 677</p> <p>32.2 Technology in Agriculture 684</p> <p>References 691</p> <p><b>33 Intelligent Computing for Green Sustainability 693<br /></b><i>Chandan Deep Singh and Harleen Kaur</i></p> <p>33.1 Introduction 693</p> <p>33.2 Modified DEMATEL 697</p> <p>33.3 Weighted Sum Model 706</p> <p>33.4 Weighted Product Model 708</p> <p>33.5 Weighted Aggregated Sum Product Assessment 709</p> <p>33.6 Grey Relational Analysis 712</p> <p>33.7 Simple Multi-Attribute Rating Technique 717</p> <p>33.8 Criteria Importance Through Inter-Criteria Correlation 721</p> <p>33.9 Entropy 726</p> <p>33.10 Evaluation Based on Distance From Average Solution 731</p> <p>33.11 MOORA 739</p> <p>33.12 Interpretive Structural Modeling 739</p> <p>33.13 Conclusions 748</p> <p>33.14 Limitations of the Study 749</p> <p>33.15 Suggestions for Future Research 749</p> <p>References 750</p> <p><b>Part V: AI in Healthcare 753</b></p> <p><b>34 Bayesian Estimation of Gender Differences in Lipid Profile, Among Patients With Coronary Artery Disease 755<br /></b><i>Vivek Verma, Anita Verma, Ashwani Kumar Mishra, Hafiz T.A. Khan, Dilip C. Nath and Rajiv Narang</i></p> <p>34.1 Introduction 756</p> <p>34.2 Methods 757</p> <p>34.3 Statistical Analysis 757</p> <p>34.4 Results 759</p> <p>34.5 Discussion 761</p> <p>34.6 Conclusion 767</p> <p>Acknowledgements 767</p> <p>References 767</p> <p><b>35 Reconstruction of Dynamic MRI Using Convolutional LSTM Technique 771<br /></b><i>Shashidhar V. Yakkundi and Subha D. Puthankattil</i></p> <p>35.1 Introduction 771</p> <p>35.2 Methodologies 773</p> <p>35.3 Problem Formulation 774</p> <p>35.4 Network Architecture 776</p> <p>35.5 Results 778</p> <p>35.6 Discussion 780</p> <p>35.7 Conclusion 782</p> <p>References 784</p> <p><b>36 Gender Classification Using Multispectral Imaging: A Comparative Performance Analysis Between Affine Hull and Wavelet Fusion 785<br /></b><i>Narayan Vetrekar, Aparajita Naik and R. S. Gad</i></p> <p>36.1 Introduction 785</p> <p>36.2 Literature Review 787</p> <p>36.3 Multispectral Face Database 791</p> <p>36.4 Methodology 792</p> <p>36.5 Experiments 794</p> <p>36.6 Results and Discussion 794</p> <p>36.7 Conclusions 796</p> <p>Acknowledgments 797</p> <p>References 797</p> <p><b>37 Polyp Detection Using Deep Neural Networks 801<br /></b><i>Nancy Rani, Rupali Verma and Alka Jindal</i></p> <p>37.1 Introduction 801</p> <p>37.2 Literature Survey 803</p> <p>37.3 Proposed Methodology 806</p> <p>37.4 Implementation and Results 810</p> <p>37.5 Conclusion and Future Work 812</p> <p>References 813</p> <p><b>38 Boundary Exon Prediction in Humans Sequences Using External Information Sources 815<br /></b><i>Neelam Goel, Shailendra Singh and Trilok Chand Aseri</i></p> <p>38.1 Introduction 815</p> <p>38.2 Proposed Exon Prediction Model 817</p> <p>38.3 Homology-Based Exon Prediction 819</p> <p>38.4 Results and Discussion 827</p> <p>38.5 Conclusion 830</p> <p>38.6 Motivation and Limitations of the Research 831</p> <p>38.7 Major Findings of the Research 831</p> <p>References 832</p> <p><b>39 Blood Glucose Prediction Using Machine Learning on Jetson Nanoplatform 835<br /></b><i>Jivan Parab, M. Sequeira, M. Lanjewar, C. Pinto and G.M. Naik</i></p> <p>39.1 Introduction 835</p> <p>39.2 Sample Preparation 837</p> <p>39.3 Methodology 839</p> <p>39.4 Results and Discussion 842</p> <p>39.5 Discussion 845</p> <p>39.6 Conclusion 846</p> <p>39.7 Future Scope 846</p> <p>Acknowledgement 847</p> <p>References 847</p> <p><b>40 GIS-Based Geospatial Assessment of Novel Corona Virus (COVID-19) in One of the Promising Industrial States of India—A Case of Gujarat 849<br /></b><i>Azazkhan I. Pathan, Pankaj J. Gandhi , P.G. Agnihotri and Dhruvesh Patel</i></p> <p>40.1 Introduction 849</p> <p>40.2 The Rationale of the Study 852</p> <p>40.3 Materials and Methodology 854</p> <p>40.4 GIS and COVID-19 (Corona) Mapping 859</p> <p>40.5 Results and Discussion 860</p> <p>40.6 Conclusion 865</p> <p>References 866</p> <p><b>41 Mobile-Based Medical Alert System for COVID-19 Based on ZigBee and WiFi 869<br /></b><i>Munish Manas and Shivam Kumar</i></p> <p>41.1 Introduction 869</p> <p>41.2 Hardware Design of Monitoring System 870</p> <p>41.3 Software Design of Monitoring System 873</p> <p>41.4 Working of ZigBee Module 874</p> <p>41.5 Developed App for the Monitoring of Health 874</p> <p>41.6 Google Fusion Table—Online Database 875</p> <p>41.7 Application Developed for Health Monitoring System 876</p> <p>41.8 Conclusion and Future Work 877</p> <p>References 877</p> <p>Index 879 </p>
<p><b>Mukhdeep Singh Manshahia, PhD,</b> is an assistant professor at Punjabi University Patiala, India. He has published more than 40 international and national research papers and edited 1 book.</p> <p><b>Valeriy Kharchenko, PhD, </b>is the Chief Scientific Officer at the Federal Scientific Agro Engineering Center VIM, Moscow, Russia. <p><b>Elias Munapo, PhD,</b> is a full professor in the Department of Statistics & Operations Research, North West University, South Africa. He has published more than 100 research articles and book chapters and has edited several volumes. <p><b>J. Joshua Thomas, PhD,</B> is a senior lecturer at UOW Malaysia KDU Penang University College, Malaysia. Currently, he is working with machine learning, big data, data analytics, deep learning, specifically targeting convolutional neural networks (CNN) and bi-directional recurrent neural networks (RNN) for image tagging with embedded natural language processing, end-to-end steering learning systems, and GAN. He has published more than 40 papers in leading international conference proceedings and peer-reviewed journals. <p><b>Pandian Vasant, PhD, </b>is a professor at Universiti Teknologi PETRONAS, Malaysia. He has co-authored more than 250 research articles in journals, conference proceedings, presentations, special issues guest editor, book chapters, and is the Editor-in-Chief of<i> International Journal of Energy Optimization & Engineering.</i>
<p><b>This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries.</b></p> <p>Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. <p>The 41 chapters comprising the <i>Handbook of Intelligent Computing and Optimization for Sustainable Development</i> by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. <p><b>Audience</b> <p>It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €