Details

Advances in Remote Sensing Technology and the Three Poles


Advances in Remote Sensing Technology and the Three Poles


1. Aufl.

von: Manish Pandey, Prem C. Pandey, Yogesh Ray, Aman Arora, Shridhar D. Jawak, Uma K. Shukla

160,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 09.12.2022
ISBN/EAN: 9781119787730
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

ADVANCES IN <b>REMOTE SENSING TECHNOLOGY AND THE THREE POLES</b> <p><b>Covers recent advances in remote sensing technology applied to the “Three Poles”, a concept encompassing the Arctic, Antarctica, and the Himalayas</b> <p><i>Advances in Remote Sensing Technology and the Three Poles</i> is a multidisciplinary approach studying the lithosphere, hydrosphere (encompassing both limnosphere, and oceanosphere), atmosphere, biosphere, and anthroposphere, of the Arctic, the Antarctic and the Himalayas. The drastic effects of climate change on polar environments bring to the fore the often subtle links between climate change and processes in the hydrosphere, biosphere, and lithosphere, while unanswered questions of the polar regions will help plan and formulate future research projects. <p>Sample topics covered in the work include: <ul><li>Terrestrial net primary production of the Arctic and modeling of Arctic landform evolution</li> <li>Glaciers and glacial environments, including a geological, geophysical, and geospatial survey of Himalayan glaciers</li> <li>Sea ice dynamics in the Antarctic region under a changing climate, the Quaternary geology and geomorphology of Antarctica</li> <li>Continuous satellite missions, data availability, and the nature of future satellite missions, including scientific data sharing policies in different countries</li> <li>Software, tools, models, and remote sensing technology for investigating polar and other environments</li></ul> <p>For postgraduates and researchers working in remote sensing, photogrammetry, and landscape evolution modeling, <i>Advances in Remote Sensing Technology and the Three Poles</i> is a crucial resource for understanding current technological capabilities in the field along with the latest scientific research that has been conducted in polar areas.
<p>About the Editors xvii</p> <p>Notes on Contributors xx</p> <p>Foreword xxv</p> <p>Preface xxvi</p> <p>List of Acronyms xxviii</p> <p><b>Section I Earth Observation (EO) and Remote Sensing (RS) Applications in Polar Studies 1</b></p> <p><b>1 The Three Poles: Advances in Remote Sensing in Relation to Spheres of the Planet Earth 3<br /> </b><i>Manish Pandey, Prem C. Pandey, Yogesh Ray, Aman Arora, Shridhar Digmabar Jawak, and Uma Kant Shukla</i></p> <p>1.1 Introduction 3</p> <p>1.1.1 Earth as a System and Components of the Earth System 4</p> <p>1.1.2 Role of the “Three Poles” and the Three Poles Regions in the Earth System 4</p> <p>1.1.2.1 Defining the Three Poles, Three Poles Regions, and Their Geographical Extent 4</p> <p>1.1.2.2 Interaction Among Components of the Earth System and Role of the Three Poles 5</p> <p>1.1.3 Advancement of RS Technologies in Relation to Their Application in the Three Poles Regions 6</p> <p>1.1.3.1 Remote Sensing Technology Advancements 6</p> <p>1.1.3.2 Role of Remote Sensing (RS) in Mapping/Monitoring/Quantitative Analysis of Sub-Systems of Our Planet in the Three Poles Regions 7</p> <p>1.2 Aim of the Book and Its Five Sections 11</p> <p>1.3 Overview of the Contributing Chapters Covering Research About Different Aspects of the Sub-Systems of Our Planet in the Three Poles Regions 11</p> <p>1.4 Summary and Recommendations 14</p> <p>References 15</p> <p><b>2 Continuous Satellite Missions, Data Availability, and Nature of Future Satellite Missions with Implications to Polar Regions 24<br /> </b><i>Jagriti Mishra, Takuya Inoue, and Avinash Kumar Pandey</i></p> <p>2.1 Introduction 24</p> <p>2.1.1 Types of Orbit 24</p> <p>2.1.1.1 High Earth Orbit (HEO) 25</p> <p>2.1.1.2 Medium Earth Orbit (MEO) 25</p> <p>2.1.1.3 Semi-Synchronous Orbit 25</p> <p>2.1.1.4 Molniya Orbit 25</p> <p>2.1.1.5 Low Earth Orbit (LEO) 25</p> <p>2.1.1.6 Polar Orbit and Sun-Synchronous Orbit 25</p> <p>2.1.1.7 Lagrange’s Point 26</p> <p>2.2 Satellite Missions and Data Availability 26</p> <p>2.3 Future Satellite Missions 26</p> <p>2.4 Applicability of Satellite Products in Three Poles Regions 32</p> <p>2.5 Challenges and Limitations 33</p> <p>2.6 Summary 34</p> <p>Acknowledgments 34</p> <p>References 34</p> <p><b>3 Assessing the Accuracy of Digital Elevation Models for Darjeeling-Sikkim Himalayas 36<br /> </b><i>Prodip Mandal and Shraban Sarkar</i></p> <p>3.1 Introduction 36</p> <p>3.2 Study Area 37</p> <p>3.3 Materials and Methods 38</p> <p>3.3.1 Generation of Cartosat-1 DEM and Orthoimage 38</p> <p>3.3.2 TanDEM-X 40</p> <p>3.3.3 Alos Palsar 40</p> <p>3.3.4 DGPS Survey for Obtaining Ground Control Points (GCPs) 40</p> <p>3.3.5 Datum Transformation 40</p> <p>3.3.6 Accuracy Assessment Methods 40</p> <p>3.3.6.1 Vertical Accuracy 41</p> <p>3.3.6.2 Spatial Accuracy 41</p> <p>3.4 Results and Discussion 41</p> <p>3.4.1 Vertical Accuracy Assessment: Comparison of DEMs With Reference to GCPs 41</p> <p>3.4.2 Vertical Accuracy of DEMs for Different Land Use Classes 41</p> <p>3.4.2.1 Dense Forest 41</p> <p>3.4.2.2 Open Forest 43</p> <p>3.4.2.3 Tea Garden 43</p> <p>3.4.2.4 Built-up Area 43</p> <p>3.4.3 Spatial Accuracy Assessment: Comparison of DEMs With Reference to Stream Networks 43</p> <p>3.5 Conclusions 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>4 An Overview of Morphometry Software Packages, Tools, and Add-ons 49<br /> </b><i>Satarupa Mitra, Shailendra Pundir, Rahul Devrani, Aman Arora, Manish Pandey, Romulus Costache, and Saeid Janizadeh</i></p> <p>4.1 Introduction 49</p> <p>4.2 Overview of Morphometry Tools and Toolboxes 50</p> <p>4.3 Stand-Alone Tools 52</p> <p>4.4 Tools that Run within Coding Bases 54</p> <p>4.5 Conclusion 55</p> <p>References 55</p> <p><b>5 Landscape Modeling, Glacier and Ice Sheet Dynamics, and the Three Poles: A Review of Models, Softwares, and Tools 58<br /> </b><i>Satarupa Mitra, Rahul Devrani, Manish Pandey, Aman Arora, Romulus Costache, and Saeid Janizadeh</i></p> <p>5.1 Introduction 58</p> <p>5.2 Taxonomy 59</p> <p>5.2.1 Geomorphic Process-Based Models 60</p> <p>5.2.2 Classification Based on Process of Modeling 60</p> <p>5.2.2.1 Based on Geomorphic Processes 60</p> <p>5.2.2.2 Based on Modeling Process 60</p> <p>5.3 Working Principles for Geomorphological Models 61</p> <p>5.3.1 Soil Production 61</p> <p>5.3.2 Hillslope Transport 62</p> <p>5.3.3 Land Sliding 62</p> <p>5.3.4 Fluvial Incision and Transport 62</p> <p>5.3.5 Glacial Erosion 62</p> <p>5.4 Landscape Evolution Models 63</p> <p>5.4.1 DEM-Based Models 63</p> <p>5.4.2 Siberia 63</p> <p>5.4.3 Golem 64</p> <p>5.4.4 Cascade 64</p> <p>5.4.5 ZScape 64</p> <p>5.4.6 Child 64</p> <p>5.4.7 Caesar 65</p> <p>5.4.8 Apero 65</p> <p>5.4.9 SIGNUM (Simple Integrated Geomorphological Numerical Model) 65</p> <p>5.4.10 TTLEM (TopoToolbox Landscape Evolution Model) 1.0 65</p> <p>5.5 Other Models 65</p> <p>5.5.1 Delim 65</p> <p>5.5.2 Eros 66</p> <p>5.5.3 Landscape Evolution Model Using Global Search 66</p> <p>5.5.4 eSCAPE 66</p> <p>5.5.5 r.sim.terrain 1.0 66</p> <p>5.6 Combined/Application-Specific Models 66</p> <p>5.7 Machine Learning Models 66</p> <p>5.8 LEMs Developed for Glaciated Landscapes 66</p> <p>5.9 Some Significant Glacier Evolution Models 68</p> <p>5.10 Models Developed for Alpine Regions 71</p> <p>5.11 Models Developed for the Arctic Regio 72</p> <p>5.12 Models Developed for the Antarctic Region 72</p> <p>5.13 Conclusion and Future Prospects 75</p> <p>Acknowledgment 75</p> <p>Declaration of Competing Interest 75</p> <p>References 76</p> <p><b>6 Spectral Indices Across Remote Sensing Platforms and Sensors Relating to the Three Poles: An Overview of Applications, Challenges, and Future Prospects 83<br /> </b><i>Mallikarjun Mishra, Kiran Kumari Singh, Prem C. Pandey, Rahul Devrani, Avinash Kumar Pandey, KN Prudhvi Raju, Prabhat Ranjan, Aman Arora, Romulus Costache, Saeid Janizadeh, Nguyen Thuy Linh, and Manish Pandey</i></p> <p>6.1 Introduction 83</p> <p>6.2 Database and Methodology 84</p> <p>6.3 Rationale of Different Spectral Indices Across RS Sensors and Platforms 85</p> <p>6.4 RS Sensors and Platforms: Characteristics (Spatial, Temporal, Spectral, and Radiometric Resolutions) 87</p> <p>6.5 Most Widely and Popularly Used Spectral Indices 87</p> <p>6.5.1 Spectral Indices and Lithosphere 87</p> <p>6.5.2 Spectral Indices and Hydrosphere 88</p> <p>6.5.3 Spectral Indices and Atmosphere 90</p> <p>6.5.4 Spectral Indices and Biosphere 91</p> <p>6.5.5 Spectral Indices and Anthroposphere 103</p> <p>6.6 Thematic Evolution and Trends 105</p> <p>6.6.1 Thematic and Network Maps 105</p> <p>6.7 Summary and Recommendations 110</p> <p>Acknowledgments 111</p> <p>References 111</p> <p><b>Section II Antarctica: the Southernmost Continent Having the South Pole Environment and Remote Sensing 117</b></p> <p><b>7 Glacier Dynamics in East Antarctica: A Remote Sensing Perspective 119<br /> </b><i>Kiledar Singh Tomar, Sangita Singh Tomar, Ashutosh Venkatesh Prasad, and Alvarinho J. Luis</i></p> <p>7.1 Introduction 119</p> <p>7.2 Satellite Remote Sensing of Glacier Dynamics in East Antarctica 120</p> <p>7.3 Glacier Velocity Estimation Using Remote Sensing 121</p> <p>7.3.1 Glacier Velocity Estimation Using SAR Interferometry 121</p> <p>7.3.2 Glacier Velocity Estimation Using Offset Tracking 121</p> <p>7.4 Remote Sensing Based Dynamics of PRG: A Case Study 122</p> <p>7.4.1 Data and Methods 123</p> <p>7.4.2 Results and Discussion 123</p> <p>7.4.2.1 Ice Front Location 123</p> <p>7.4.2.2 Glacier Velocity Over the Period of 2016–2019 124</p> <p>7.4.3 Summary and Conclusion 124</p> <p>References 125</p> <p><b>8 Terrestrial Deglaciation Signatures in East Antarctica 128<br /> </b><i>Uday Sharma, Yogesh Ray, and Manish Pandey</i></p> <p>8.1 Introduction 128</p> <p>8.2 Geomorphology 128</p> <p>8.2.1 East Antarctica 129</p> <p>8.3 Landform Variation Concerning Various Sectors and Elevation 132</p> <p>8.3.1 Dronning Maud Land 132</p> <p>8.3.2 Enderby Land 133</p> <p>8.3.3 Mac. Robertson Land, Amery Ice Shelf, and Prince Elizabeth Land 133</p> <p>8.3.4 Wilkes Land 135</p> <p>8.4 Chronology 135</p> <p>8.4.1 Dronning Maud Land 136</p> <p>8.4.2 Enderby Land 137</p> <p>8.4.3 Mac. Robertson Land, Amery Ice Shelf ’s and Princess Elizabeth Land 137</p> <p>8.4.4 Wilkes Land 138</p> <p>8.5 Discussion 138</p> <p>8.6 Conclusion 139</p> <p>Acknowledgments 140</p> <p>References 140</p> <p><b>9 Geospatial Tools for Monitoring Vertebrate Populations in Antarctica With a Note on the Ecological Component of the Indian Antarctic Program 144<br /> </b><i>Anant Pande, Ankita Anand, Shailendra Saini, and Kuppusamy Sivakumar</i></p> <p>9.1 Introduction 144</p> <p>9.2 Novel Geospatial Tools for Biodiversity Monitoring in Antarctica 145</p> <p>9.2.1 Unmanned Aerial Vehicles 145</p> <p>9.2.2 Satellite Imagery 147</p> <p>9.3 Spatial Mapping of Seabirds Under the Indian Antarctic Program 149</p> <p>9.4 Recommendations to Incorporate New Tools for Antarctic Wildlife Monitoring Program 151</p> <p>9.5 Conclusion 152</p> <p>Acknowledgments 152</p> <p>References 152</p> <p><b>10 Bryophytes of Larsemann Hills, East Antarctica and Future Prospects 155<br /> </b><i>Devendra Singh</i></p> <p>10.1 Introduction 155</p> <p>10.2 Study Area 156</p> <p>10.3 Materials and Methods 156</p> <p>10.4 Taxonomic Treatment 156</p> <p>10.5 Phytosociological Studies 174</p> <p>10.6 Results and Discussion 175</p> <p>10.7 Future Prospects 175</p> <p>Acknowledgments 177</p> <p>References 177</p> <p><b>11 Antarctic Sea Ice Variability and Trends Over the Last Four Decades 179<br /> </b><i>Swathi M., Juhi Yadav, Avinash Kumar, and Rahul Mohan</i></p> <p>11.1 Introduction 179</p> <p>11.2 Datasets and Methods 180</p> <p>11.2.1 Sea Ice Extent Analysis 180</p> <p>11.2.2 Analysis of Physical Parameters 181</p> <p>11.3 Results and Discussion 182</p> <p>11.3.1 Sea Ice Variability in the Southern Ocean 182</p> <p>11.3.2 Sea Ice Distribution With Respect to Ocean-Atmospheric Temperature 182</p> <p>11.4 Summary and Conclusions 187</p> <p>Acknowledgments 188</p> <p>References 189</p> <p><b>Section III Himalayas: The Third Pole Environment and Remote Sensing 191</b></p> <p><b>12 Some Unresolved Problems in the Himalaya: A Synoptic View 193<br /> </b><i>Om N. Bhargava</i></p> <p>12.1 Introduction 193</p> <p>12.2 Stratigraphic Ages, Basin Configuration, and Palaeontology 193</p> <p>12.3 Sedimentology 195</p> <p>12.4 Tectonics and Structure 195</p> <p>12.5 Magmatism and Geochronology 196</p> <p>12.6 Metamorphism 196</p> <p>12.7 Mineral Deposits 196</p> <p>12.8 Palaeomagnetic Studies 197</p> <p>12.9 Glaciological Studies 197</p> <p>12.10 Geomorphological Studies 197</p> <p>12.11 Conclusion 198</p> <p>Acknowledgments 198</p> <p>References 198</p> <p><b>13 Fluctuations of Kolahoi Glacier, Kashmir Valley, Its Assessment With Tree-Rings of Pinus wallichiana and Comparable Satellite Imageries and Field Survey Records 203<br /> </b><i>Uttam Pandey, Santosh K. Shah, and Nivedita Mehrotra</i></p> <p>13.1 Introduction 203</p> <p>13.2 Tree-Ring Sampling Site and Data Acquisition 204</p> <p>13.3 Tree-Ring Chronology and Its Assessments 206</p> <p>13.4 Fluctuations of Kolahoi Glacier: Existing Records and Its Assessment With Tree-Rings 207</p> <p>13.5 Conclusions 210</p> <p>Acknowledgements 210</p> <p>References 210</p> <p><b>14 Applications of ICESat-2 Photon Data in the Third Pole Environment 213<br /> </b><i>Giribabu Dandabathula</i></p> <p>14.1 Introduction 213</p> <p>14.2 Brief Background About NASA’s ICESat-2 Mission 214</p> <p>14.3 Terrain Profiling From ICESat-2 Photon Elevations Over a Mountainous Region 216</p> <p>14.4 Longitudinal Profiling of Rivers in a Mountainous Region 216</p> <p>14.5 Inland Water Level Detection in Mountainous Regions Using ICESat-2 Photon Data 216</p> <p>14.6 Inferring Annual Variations of Water Levels in Mountain Lakes Using ICESat-2’s ATL13 Data Product 218</p> <p>14.7 Inferring Lake Ice Phenology in Mountainous Regions Using ICESat-2 Photon Data 221</p> <p>14.8 Estimating Tree Heights in Mountain Regions Using ICESat-2 Photon Data 223</p> <p>14.9 Utilization of ICESat-2 Photon Data to Generate Digital Elevation Models 223</p> <p>14.10 Conclusion 225</p> <p>Acknowledgments 226</p> <p>References 226</p> <p><b>15 Extreme Hydrological Event-Induced Temporal Variation in Soil Erosion of the Assiganga River Basin, NW Himalaya 230<br /> </b><i>Rohit Kumar, Rahul Devrani, Astha Dangwal, Benidhar Deshmukh, and Som Dutt</i></p> <p>15.1 Introduction 230</p> <p>15.2 Study Area 231</p> <p>15.3 Methodology and Dataset 233</p> <p>15.3.1 Soil Erodibility (K Factor) 234</p> <p>15.3.2 Rainfall Erosivity (R Factor) 234</p> <p>15.3.3 Slope Length and Steepness Factor (LS Factor) 235</p> <p>15.3.4 Crop Management (C Factor) and Support Practices (P Factor) 237</p> <p>15.4 Results and Discussion 239</p> <p>15.4.1 Pre-Post R, C, and P Variation 239</p> <p>15.4.2 Soil Loss Spatial Pattern and Extent 240</p> <p>15.5 Conclusion 243</p> <p>Acknowledgments 243</p> <p>References 243</p> <p><b>16 Understanding the Present and Past Climate-Human-Vegetation Dynamics in the Indian Himalaya: A Comprehensive Review 247<br /> </b><i>Mehta Bulbul, Yadav Ankit, Aljasil Chirakkal, Ambili Anoop, and Praveen K. Mishra</i></p> <p>16.1 Introduction 247</p> <p>16.2 Study Site 248</p> <p>16.3 Climate Vegetation Interaction in the Indian Himalaya 248</p> <p>16.3.1 Present-Day Conditions 248</p> <p>16.3.2 The Holocene Epoch 249</p> <p>16.3.2.1 Western Himalaya 249</p> <p>16.3.2.2 Eastern Himalaya 252</p> <p>16.3.2.3 Central Himalaya 253</p> <p>16.4 Conclusions 253</p> <p>References 254</p> <p><b>17 Flash Flood Susceptibility Mapping of a Himalayan River Basin Using Multi-Criteria Decision-Analysis and GIS 257<br /> </b><i>Pratik Dash, Kasturi Mukherjee, and Surajit Ghosh</i></p> <p>17.1 Introduction 257</p> <p>17.2 Study Area 258</p> <p>17.3 Data and Methodology 259</p> <p>17.3.1 Data 259</p> <p>17.3.2 Multicriteria Analysis 259</p> <p>17.3.3 Selection and Classification of Flood Predictors 259</p> <p>17.3.4 Flood Hazard Index 260</p> <p>17.3.5 Validation 260</p> <p>17.4 Results and Discussion 260</p> <p>17.4.1 Flood Controlling Factors 260</p> <p>17.4.2 Multicriteria Analysis 264</p> <p>17.4.3 Flood Susceptibility Mapping 264</p> <p>17.4.4 Validation 265</p> <p>17.5 Conclusion 266</p> <p>References 266</p> <p><b>18 The Role of Himalayan Frontal Thrust in the Upliftment of Kimin Formation and the Migration of Sedimentary Basin in Arunachal Himalaya, Around Bandardewa, Papumpare District, Arunachal Pradesh 268<br /> </b><i>Mondip Sarma, Sajeed Zaman Borah, Devojit Bezbaruah, Tapos Kumar Goswami, and Upendra Baral</i></p> <p>18.1 Introduction 268</p> <p>18.2 Geology 269</p> <p>18.2.1 Siwaliks of Arunachal Himalaya 269</p> <p>18.2.2 Geology of the Study Area 269</p> <p>18.3 Materials and Method 272</p> <p>18.4 Study of Alluvial Fan 273</p> <p>18.4.1 Description of Lithosections 273</p> <p>18.4.1.1 Kimin Formation 273</p> <p>18.4.1.2 Terrace Deposits 274</p> <p>18.4.2 Grain Size Analysis 275</p> <p>18.4.3 Cumulative Curve 275</p> <p>18.4.4 Calculation of Size Parameters 275</p> <p>18.4.4.1 Graphic Mean 275</p> <p>18.4.4.2 Graphic Standard Deviations 275</p> <p>18.4.4.3 Graphic Skewness 275</p> <p>18.4.4.4 Graphic Kurtosis 275</p> <p>18.4.5 Inter-Relationship of Size Parameters 275</p> <p>18.4.6 cm Plot 278</p> <p>18.5 Discussion and Conclusions 279</p> <p>Acknowledgments 280</p> <p>References 280</p> <p><b>19 Himalayan River Profile Sensitivity Assessment by Validating of DEMs and Comparison of Hydrological Tools 283<br /> </b><i>Rahul Devrani, Rohit Kumar, Maneesh Kuruvath, Parv Kasana, Shailendra Pundir, Manish Pandey, and Sukumar Parida</i></p> <p>19.1 Introduction 283</p> <p>19.2 Study Area 284</p> <p>19.3 Methodology (LSDTopoTools) 284</p> <p>19.4 Details of DEM Datasets Used 286</p> <p>19.4.1 Alos-palsar 286</p> <p>19.4.2 Aster 286</p> <p>19.4.3 CartoDEM 287</p> <p>19.4.4 Copernicus DEM 287</p> <p>19.4.5 Nasa Dem 287</p> <p>19.4.6 Srtm 289</p> <p>19.5 Result and Discussion 289</p> <p>19.5.1 Assessment of DEMs Generated Watershed Boundary and Slope 289</p> <p>19.5.2 Sensivity of Longitudinal River Profiles Using Different DEMs 289</p> <p>19.6 Conclusion 295</p> <p>Acknowledgments 295</p> <p>References 295</p> <p><b>20 Glacier Ice Thickness Estimation in Indian Himalaya Using Geophysical Methods: A Brief Review 299<br /> </b><i>Aditya Mishra, Harish Chandra Nainwal, and R. Shankar</i></p> <p>20.1 Introduction 299</p> <p>20.2 Geophysical Methods for Estimation of Glacier Ice Thickness 300</p> <p>20.2.1 Gravity 300</p> <p>20.2.2 Magnetic 300</p> <p>20.2.3 Resistivity 300</p> <p>20.2.4 Seismic 300</p> <p>20.2.5 Ground Penetrating Radar 300</p> <p>20.3 Geophysical Methods in the Indian Himalaya Region 300</p> <p>20.4 GPR Surveys in the Debris Covered Glaciers 302</p> <p>20.5 A Case Study on Debris-Covered Satopanth Glacier 303</p> <p>20.6 Conclusions and Future Prospects 304</p> <p>Acknowledgments 304</p> <p>References 305</p> <p><b>21 Landscapes and Paleoclimate of the Ladakh Himalaya 308<br /> </b><i>Anil Kumar, Rahul Devrani, and Pradeep Srivastava</i></p> <p>21.1 Introduction 308</p> <p>21.2 Geology of the Ladakh Himalaya 308</p> <p>21.2.1 Karakoram Region 310</p> <p>21.3 Past Climate Variability 310</p> <p>21.3.1 Early Holocene (~11.7 to 8.2 ka) 310</p> <p>21.3.2 Mid-Holocene (~8.2–4.2 ka) 310</p> <p>21.3.3 Late-Holocene (~4.2 ka–Present) 311</p> <p>21.4 Modern Climatic and Vegetation 311</p> <p>21.5 Landscapes in the Ladakh Region 312</p> <p>21.6 Glaciation and Associated Landforms 315</p> <p>21.7 Flood History and Disaster 315</p> <p>21.8 Conclusion 316</p> <p>Acknowledgment 316</p> <p>References 316</p> <p><b>22 A Review of Remote Sensing and GIS-Based Soil Loss Models With a Comparative Study From the Upper and Marginal Ganga River Basin 321<br /> </b><i>Rohit Kumar, Rahul Devrani, and Benidhar Deshmukh</i></p> <p>22.1 Introduction 321</p> <p>22.2 Geospatial Models 323</p> <p>22.2.1 USLE (Universal Soil Loss Equation) 324</p> <p>22.2.2 RUSLE (Revised Universal Soil Loss Equation) 324</p> <p>22.2.2.1 Rainfall Erosivity Factor “R” 325</p> <p>22.2.2.2 Soil Erodibility “K” 325</p> <p>22.2.2.3 Slope Length and Steepness “LS” 325</p> <p>22.2.2.4 Crop Management (C) 326</p> <p>22.2.2.5 Support Practices “P” 326</p> <p>22.2.3 MUSLE (Modified Universal Soil Loss Equation) 326</p> <p>22.3 A Case Study in Upper and Marginal Ganga River Basins Using RUSLE Model 326</p> <p>22.3.1 Study Area (Upper and Marginal Ganga River Basins) 326</p> <p>22.3.2 Dataset and Methodology 327</p> <p>22.3.3 Rate of Soil Loss in Rishiganga Basin (RG) 328</p> <p>22.3.4 Rate of Soil Loss in Lower Chambal Basin (LC) 329</p> <p>22.4 Discussion 331</p> <p>22.5 Conclusion 333</p> <p>Acknowledgments 334</p> <p>References 334</p> <p><b>23 Wetlands as Potential Zones to Understand Spatiotemporal Plant-Human-Climate Interactions: A Review on Palynological Perspective from Western and Eastern Himalaya 340<br /> </b><i>Sandhya Misra, Anupam Sharma, Ravi Shankar Maurya, and Krishna G. Misra</i></p> <p>23.1 Introduction 340</p> <p>23.2 Importance of Wetlands 340</p> <p>23.3 Climate of Himalaya 341</p> <p>23.4 Vegetation Types in the Himalayan Region 341</p> <p>23.5 Wetlands as Sites for Floristic Analysis 341</p> <p>23.6 Wetlands as Sites for Past Vegetation-Climate-Human Interaction 342</p> <p>23.7 Conclusions 347</p> <p>Acknowledgments 348</p> <p>References 348</p> <p><b>24 Investigation of Land Use/Land Cover Changes in Alaknanda River Basin, Himalaya During 1976–2020 351<br /> </b><i>Varun Narayan Mishra</i></p> <p>24.1 Introduction 351</p> <p>24.2 Materials and Methods 352</p> <p>24.2.1 Study Area 352</p> <p>24.2.2 Data Used 352</p> <p>24.2.3 Methods 353</p> <p>24.2.3.1 LULC Classification Scheme 353</p> <p>24.2.3.2 LULC Change Investigation 353</p> <p>24.3 Results and Discussion 353</p> <p>24.3.1 LULC Status 354</p> <p>24.3.2 LULC Change 354</p> <p>24.4 Conclusions 355</p> <p>References 355</p> <p><b>Section IV the Arctic: the Northernmost Ocean Having the North Pole Environment and Remote Sensing 357</b></p> <p><b>25 Hydrological Changes in the Arctic, the Antarctic, and the Himalaya: A Synoptic View from the Cryosphere Change Perspective 359<br /> </b><i>Shyam Ranjan, Manish Pandey, and Rahul Raj</i></p> <p>25.1 Introduction 359</p> <p>25.2 Cryosphere and Its Influence on Socio-Ecological-Economical (GLASOECO) System 360</p> <p>25.2.1 Cryospheric Change and Its Influence on Agriculture and Livestock 360</p> <p>25.2.2 Cryospheric Change and Its Influence on Ecosystem and Environment 361</p> <p>25.2.3 Cryospheric Change and Its Influence on the Economy 362</p> <p>25.2.4 Cryospheric Change as a Risk to Energy Security 362</p> <p>25.3 Hydrological Changes in the Arctic and the Antarctic Regions 363</p> <p>25.3.1 Hydrological Changes in the Arctic 363</p> <p>25.3.2 Hydrological Changes in the Antarctic 363</p> <p>25.4 Hydrological Changes in the Third Pole (Himalaya) 363</p> <p>25.4.1 Runoff Flooding 364</p> <p>25.4.2 Future Hydrological Change in the Third Pole 364</p> <p>25.5 Conclusion 365</p> <p>Acknowledgments 365</p> <p>References 365</p> <p><b>26 High-Resolution Remote Sensing for Mapping Glacier Facies in the Arctic 371<br /> </b><i>Shridhar Digambar Jawak, Sagar Filipe Wankhede, Alvarinho J. Luis, and Keshava Balakrishna</i></p> <p>26.1 Introduction 371</p> <p>26.1.1 Glacier Facies Mapping Using Multispectral Data 372</p> <p>26.1.2 Image Classification 372</p> <p>26.1.3 Training Samples and Operator Skill 373</p> <p>26.1.4 The Test of Operator Influence 373</p> <p>26.2 The Geographical Area and Geospatial Data 374</p> <p>26.3 Methodology 374</p> <p>26.3.1 Radiometric Calibration and Digitization 375</p> <p>26.3.2 Operator Selections 376</p> <p>26.3.3 Classification and Reference Point Selection 376</p> <p>26.4 Results and Discussion 376</p> <p>26.5 Inferences and Recommendations 378</p> <p>26.6 Conclusion 378</p> <p>References 378</p> <p><b>27 Supraglacial Lake Filling Models: Examples From Greenland 381<br /> </b><i>Prateek Gantayat</i></p> <p>27.1 Introduction 381</p> <p>27.2 Methods 381</p> <p>27.2.1 Supraglacial Lake FillING (SLING) 381</p> <p>27.2.2 Surface Routing and Lake Filling Model (SRLF) 383</p> <p>27.2.3 Surface Routing and Lake Filling With Channel Incision (SRLFCI) 384</p> <p>27.3 Study Area 384</p> <p>27.4 Data Used 384</p> <p>27.5 Results 386</p> <p>27.5.1 Results For SLING Model 386</p> <p>27.5.2 Results For SRLF Model 387</p> <p>27.5.3 Results For SRLFCI Model 387</p> <p>27.6 Discussion 387</p> <p>27.7 Conclusions 388</p> <p>Acknowledgments 388</p> <p>References 388</p> <p><b>28 Arctic Sea Level Change in Remote Sensing and New Generation Climate Models 390<br /> </b><i>S. Chatterjee, R.P. Raj, A. Bonaduce, and R. Davy</i></p> <p>28.1 Introduction 390</p> <p>28.2 Remote Sensing of Arctic Ocean Sea-Level Changes 390</p> <p>28.3 Results and Discussion 392</p> <p>28.3.1 Observed Trend and Variability 392</p> <p>28.3.2 Arctic Ocean Sea Level and Large-Scale Atmospheric and Ocean Circulation 392</p> <p>28.3.3 Arctic Ocean Sea Level in CMIP6 395</p> <p>28.4 Conclusions 396</p> <p>Acknowledgments 398</p> <p>References 398</p> <p><b>29 Spatio-Temporal Variations of Aerosols Over the Polar Regions Based on Satellite Remote Sensing 401<br /> </b><i>Rohit Srivastava</i></p> <p>29.1 Introduction 401</p> <p>29.2 Data and Methodology 402</p> <p>29.3 Results and Discussion 403</p> <p>29.3.1 Seasonal Variations of Relative Humidity (RH) Over Northern and Southern Polar Regions 403</p> <p>29.3.1.1 Arctic 403</p> <p>29.3.1.2 Antarctic 403</p> <p>29.3.2 Seasonal Variations of Winds over Northern and Southern Polar Regions 404</p> <p>29.3.2.1 Arctic 404</p> <p>29.3.2.2 Antarctic 405</p> <p>29.3.3 Seasonal Variations of Global Fire Activities 405</p> <p>29.3.4 Aerosol Variations Over the Northern and Southern Polar Region 407</p> <p>29.3.5 Seasonal Aerosol Variations Over the Northern and Southern Polar Regions 407</p> <p>29.3.5.1 Arctic 407</p> <p>29.3.5.2 Antarctic 408</p> <p>29.4 Conclusions 409</p> <p>Acknowledgments 410</p> <p>References 410</p> <p><b>Section V the Research Institutions on the “three Poles,” Data Pools, Data Sharing Policies, Career in Polar Science Research and Challenges 413</b></p> <p><b>30 Multi-Disciplinary Research in the Indian Antarctic Programme and Its International Relevance 415<br /> </b><i>Anand K. Singh, Yogesh Ray, Shailendra Saini, Rahul Mohan, and M. Javed Beg</i></p> <p>30.1 Introduction 415</p> <p>30.2 India in the International Bodies for Antarctica 415</p> <p>30.3 Multi-Disciplinary Antarctic Research in the Last Decade 416</p> <p>30.4 International Relevance 417</p> <p>30.5 Concluding Remarks 418</p> <p>References 418</p> <p><b>31 Indian and International Research Coordination in the Arctic 420<br /> </b><i>Archana Singh, David T. Divya, and K.P. Krishnan</i></p> <p>31.1 The Changing Arctic and Inherited Interest 420</p> <p>31.2 International Research Coordination 421</p> <p>31.3 Arctic Research Coordination at the National Level 422</p> <p>31.4 Coordination Among Students, Young Researchers, and Educators 424</p> <p>Acknowledgments 425</p> <p>Declaration of Competing Interest 425</p> <p>References 425</p> <p>Index 427</p>
<p><b>Manish Pandey</b> is a Research (Assistant) Professor at the University Center for Research & Development (UCRD), Chandigarh University located in Mohali, Punjab, India. <p><b>Prem C. Pandey</b> is Assistant Professor in the School of Natural Sciences, Shiv Nadar Institute of Eminence, Uttar Pradesh, India. <p><b>Yogesh Ray</b> is Scientist E at the National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences (Govt. of India), Goa, India. <p><b>Aman Arora</b> is a Scientific Officer/Scientist at Bihar Mausam Sewa Kendra (Govt. of Bihar), Patna, Bihar, India. <p><b>Shridhar D. Jawak</b> is currently working as a Senior Adviser in Remote Sensing at the Svalbard Integrated Arctic Earth Observing System (SIOS), Longyearbyen, Norway. <p><b>Uma K. Shukla</b> is a Professor of sedimentology at the Center for Advanced Study in Geology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
<p><b>Covers recent advances in remote sensing technology applied to the “Three Poles”, a concept encompassing the Arctic, Antarctica, and the Himalayas</b> <p><i>Advances in Remote Sensing Technology and the Three Poles</i> is a multidisciplinary approach studying the lithosphere, hydrosphere (encompassing both limnosphere, and oceanosphere), atmosphere, biosphere, and anthroposphere, of the Arctic, the Antarctic and the Himalayas. The drastic effects of climate change on polar environments bring to the fore the often subtle links between climate change and processes in the hydrosphere, biosphere, and lithosphere, while unanswered questions of the polar regions will help plan and formulate future research projects. <p>Sample topics covered in the work include: <ul><li>Terrestrial net primary production of the Arctic and modeling of Arctic landform evolution</li> <li>Glaciers and glacial environments, including a geological, geophysical, and geospatial survey of Himalayan glaciers</li> <li>Sea ice dynamics in the Antarctic region under a changing climate, the Quaternary geology and geomorphology of Antarctica</li> <li>Continuous satellite missions, data availability, and the nature of future satellite missions, including scientific data sharing policies in different countries</li> <li>Software, tools, models, and remote sensing technology for investigating polar and other environments</li></ul> <p>For postgraduates and researchers working in remote sensing, photogrammetry, and landscape evolution modeling, <i>Advances in Remote Sensing Technology and the Three Poles</i> is a crucial resource for understanding current technological capabilities in the field along with the latest scientific research that has been conducted in polar areas.

Diese Produkte könnten Sie auch interessieren:

Handbuch der Fließgewässer Norddeutschlands
Handbuch der Fließgewässer Norddeutschlands
von: Mario Sommerhäuser, Helmut Schuhmacher
PDF ebook
88,99 €
Hydroecology and Ecohydrology
Hydroecology and Ecohydrology
von: Paul J. Wood, David M. Hannah, Jon P. Sadler
PDF ebook
154,99 €
Analyzing Environmental Data
Analyzing Environmental Data
von: Walter W. Piegorsch, A. John Bailer
PDF ebook
76,99 €