Details

Renewable Energy for Sustainable Growth Assessment


Renewable Energy for Sustainable Growth Assessment


1. Aufl.

von: Nayan Kumar, Prabhansu Prabhansu

233,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 14.02.2022
ISBN/EAN: 9781119785453
Sprache: englisch
Anzahl Seiten: 656

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>RENEWABLE ENERGY FOR SUSTAINABLE GROWTH ASSESSMENT</b> <p><B>Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of renewable energy for sustainable growth assessment and provides practical solutions for engineers and scientists. </b> <p>Renewable energy resources (RERs) are gaining more attention in academia and industry as one of the preferred choices of sustainable energy conversion. Due to global energy demand, environmental impacts, economic needs and social issues, RERs are encouraged and even funded by many governments around the world. Today, researchers are facing numerous challenges as this field emerges and develops, but, at the same time, new opportunities are waiting for RERs utilization in sustainable development all over the globe. <p>Efficient energy conversion of solar, wind, biomass, fuel cells, and other techniques are gaining more popularity and are the future of energy. The present book cross-pollinates recent advances in the study of renewable energy for sustainable growth. Various applications of RERs, modeling and performance analysis, grid integration, soft computing, optimization, artificial intelligence (AI) as well as machine and deep learning aspects of RERs are extensively covered. Whether for the veteran engineer or scientist, the student, or a manager or other technician working in the field, this volume is a must-have for any library. <p><b>This outstanding new volume</b> <ul><li>Assesses the current and future need for energy on a global scale and reviews the role of renewable energy </li> <li>Includes multiple chapters on biomass and bioenergy</li> <li>Also includes multiple chapters on solar energy and PVs</li> <li>Also includes chapters on fuel cells, wind power, and many other topics </li> <li>Covers the design and implementation of power electronics for energy systems</li> <li>Outlines best practices and the state of the art for renewable energy with regard to sustainability </li></ul> <p><B>Audience:</b> Engineers, scientists, technicians, managers, students, and faculty working in the field of renewable energy, sustainability and power system
<p>Preface xix</p> <p><b>1 Biomass as Emerging Renewable: Challenges and Opportunities 1<br /></b><i>Prabhansu and Nayan Kumar</i></p> <p>1.1 Introduction 1</p> <p>1.2 Bioenergy Chemical Characterization 5</p> <p>1.2.1 Cellulose [C<sub>6</sub>(H<sub>2</sub>O)<sub>5</sub>]<sub>n</sub> 5</p> <p>1.2.2 Hemicellulose [C<sub>5</sub>(H<sub>2</sub>O)<sub>4</sub>]<sub>n</sub> 5</p> <p>1.2.3 Lignin [C1<sub>0</sub>H<sub>12</sub>O<sub>3</sub>]<sub>n</sub> 5</p> <p>1.2.4 Starch 5</p> <p>1.2.5 Other Minor Components of Organic Matter 5</p> <p>1.2.6 Inorganic Matter 6</p> <p>1.3 Technologies Available for Conversion of Bioenergy 6</p> <p>1.4 Progress in Scientific Study 7</p> <p>1.4.1 Combustion Technology 7</p> <p>1.4.2 Hybrid Systems 8</p> <p>1.4.3 Circular Bio-Economy 8</p> <p>1.4.4 Other Notable Developments 9</p> <p>1.5 Status of Biomass Utilization in India 9</p> <p>1.6 Major Issues in Biomass Energy Projects 11</p> <p>1.6.1 Large Task Costs 11</p> <p>1.6.2 Lower Proficiency of Advancements 11</p> <p>1.6.3 Immature Innovations 11</p> <p>1.6.4 Lack of Subsidizing Alternatives 11</p> <p>1.6.5 Non-Transparent Exchange Markets 11</p> <p>1.6.6 High Dangers/Low Compensations 12</p> <p>1.6.7 Resource Value Acceleration 12</p> <p>1.7 Challenges in Commercialization 12</p> <p>1.7.1 Financial Dangers 12</p> <p>1.7.2 Technological Dangers 12</p> <p>1.7.3 Principal Specialist Hazard 13</p> <p>1.7.4 Market Acknowledgement Chances 13</p> <p>1.7.5 Environmental Dangers 13</p> <p>1.7.6 COVID-19: The Impact on Bioenergy 13</p> <p>1.8 Concluding Remarks 14</p> <p>References 14</p> <p><b>2 Assessment of Renewable Energy Technologies Based on Sustainability Indicators for Indian Scenario 25<br /></b><i>Anuja Shaktawat and Shelly Vadhera</i></p> <p>Nomenclature 25</p> <p>2.1 Introduction 26</p> <p>2.2 RE Scenario in India 27</p> <p>2.2.1 Large Hydropower 28</p> <p>2.2.2 Small Hydropower 28</p> <p>2.2.3 Onshore Wind Power 29</p> <p>2.2.4 Solar Power 29</p> <p>2.2.5 Bioenergy 29</p> <p>2.3 Impact of COVID-19 on RE Sector in India 30</p> <p>2.4 Sustainability Assessment of RE Technologies 30</p> <p>2.4.1 RE Technologies Selection 31</p> <p>2.4.2 Sustainability Indicators Selection and Their Weightage 31</p> <p>2.4.3 Methodology 32</p> <p>2.4.3.1 The TOPSIS Method 32</p> <p>2.4.3.2 The Fuzzy-TOPSIS 34</p> <p>2.5 Ranking of RE Technologies 36</p> <p>2.5.1 The TOPSIS 36</p> <p>2.5.2 The Fuzzy-TOPSIS 36</p> <p>2.5.3 Monte Carlo Simulations–Based Probabilistic Ranking 38</p> <p>2.6 Results and Discussion 42</p> <p>2.7 Conclusion 43</p> <p>References 43</p> <p><b>3 A Review of Biomass Impact and Energy Conversion 49<br /></b><i>Dhanasekaran Subashri and Pambayan Ulagan Mahalingam</i></p> <p>3.1 Introduction 49</p> <p>3.2 Non-Renewable Energy Resources: Crisis and Demand 50</p> <p>3.3 Environmental Impacts and Control by Biomass Conversion 52</p> <p>3.3.1 Biomass and Its Various Sources for Energy Conversion 52</p> <p>3.3.1.1 Sugar and Starch-Based Biomass (First-Generation - 1G) 53</p> <p>3.3.1.2 Lignocellulosic Biomass (Second-Generation - 2G) 53</p> <p>3.3.1.3 Micro and Macroalgal Biomass (Third-Generation - 3G) 58</p> <p>3.3.1.4 Genetically Engineered Biomass (Fourth-Generation) 60</p> <p>3.3.1.5 Waste Biomass Resources 60</p> <p>3.3.2 Biomass Conversion Process 66</p> <p>3.3.2.1 Thermochemical Conversion 66</p> <p>3.3.2.2 Biological Conversion 67</p> <p>3.3.2.3 Advanced Technology for Biomass Conversion 68</p> <p>3.3.3 Biofuel as Renewable Energy for the Future 70</p> <p>3.3.3.1 Solid Fuel 70</p> <p>3.3.3.2 Gaseous Fuel 71</p> <p>3.3.3.3 Liquid Biofuel 71</p> <p>3.4 Future Trends 72</p> <p>3.5 Conclusion 72</p> <p>Acknowledgment 73</p> <p>References 73</p> <p><b>4 Power Electronics for Renewable Energy Systems 81<br /></b><i>Vishal Anand, Varsha Singh and Saad Mekhlief</i></p> <p>4.1 Introduction: Need of Renewable Energy System 81</p> <p>4.1.1 Financial Aspects 83</p> <p>4.1.2 Environmental Aspects 83</p> <p>4.1.3 Economic Feasibility 84</p> <p>4.1.4 Present Scenario of Renewable Energy Sources 86</p> <p>4.2 Power Electronics Technologies 87</p> <p>4.2.1 AC-DC Converters 87</p> <p>4.2.2 DC-AC Converters 88</p> <p>4.2.3 DC-DC Converters 90</p> <p>4.2.4 AC-AC Converter 91</p> <p>4.3 Energy Conversion Controller Design Using Power Electronics 92</p> <p>4.4 Carbon Emission Reduction Using Power Electronics 95</p> <p>4.4.1 Renewable Power Generation 97</p> <p>4.5 Efficient Transmission of Power 100</p> <p>4.6 Issues and Challenges of Power Electronics 100</p> <p>4.7 Energy Storage Utilized by Power Electronics for Power System 101</p> <p>4.8 Application of Power Electronics 101</p> <p>4.8.1 VSC-Based HVDC 101</p> <p>4.8.2 Power Electronics in Electric Drives 102</p> <p>4.8.3 Power Electronics in Electric Vehicles 103</p> <p>4.8.4 Power Electronics in More Electric Effect (MEE) 105</p> <p>4.8.4.1 More Electric Aircraft 105</p> <p>4.8.4.2 More Electric Ships 105</p> <p>4.8.5 Advanced Applications of Power Converters in Wireless Power Transfer (WPT) 106</p> <p>4.9 Case Study on PV Farm and Wind Farm Using Converter Modelling 106</p> <p>4.9.1 A 400KW 4 PV Farm 106</p> <p>4.9.2 Wind Generation Using DFIG 109</p> <p>4.10 Reliability of Renewable Energy System 110</p> <p>4.10.1 Reliability of Photovolatic-Based Power System 110</p> <p>4.10.2 Reliability of Wind-Turbine-Based Power System 110</p> <p>4.10.3 Reliability of Power Electronics Converters in Renewable Energy System 111</p> <p>4.11 Conclusion 111</p> <p>References 112</p> <p><b>5 Thermal Performance Studies of an Artificially Roughened Corrugated Aluminium Alloy (AlMn1Cu) Plate Solar Air Heater (SAH) at a Moderate Air Flow Rate 119<br /></b><i>Dutta P. P., Goswami P.., Das A., Chutia L., Borbara M., Das V., Bania K., Rai S. and Bardalai M.</i></p> <p>Nomenclature 119</p> <p>5.1 Introduction 120</p> <p>5.2 Methodology 124</p> <p>5.2.1 Experimental Setup 124</p> <p>5.2.2 Mathematical Modelling 125</p> <p>5.3 Results and Discussion 128</p> <p>5.4 Conclusions 131</p> <p>Acknowledgement 132</p> <p>References 132</p> <p><b>6 An Overview of Partial Shading on PV Systems 135<br /></b><i>Siddharth Mathur, Gautam Raina, Pulkit Jain and Sunanda Sinha</i></p> <p>Nomenclature 135</p> <p>6.1 Introduction 136</p> <p>6.2 Basics of Partial Shading 139</p> <p>6.2.1 Types & Occurrence of Partial Shading 142</p> <p>6.2.2 Problem Associated with Partial Shading 143</p> <p>6.2.3 Details About Partial Shading Mitigation Techniques 146</p> <p>6.2.3.1 Maximum Power Point Tracking Techniques 146</p> <p>6.2.3.2 PV System Architecture 147</p> <p>6.2.3.3 Converter Topologies 148</p> <p>6.3 Mitigation of Partial Shading Using Array Reconfiguration Techniques 149</p> <p>6.3.1 Conventional 151</p> <p>6.3.2 Hybrid 155</p> <p>6.3.3 Reconfigured/Modified Configurations 157</p> <p>6.3.4 Puzzle-Based Configuration 157</p> <p>6.3.5 Metaheuristic-Based PV Array Configurations 168</p> <p>6.4 Case Study on Different Techniques of Array Reconfiguration According to its Classification – (2015-2020) 172</p> <p>6.5 Future Directions 172</p> <p>6.6 Discussion & Conclusion 173</p> <p>References 174</p> <p><b>7 Optical Modeling Techniques for Bifacial PV 181<br /></b><i>Pulkit Jain, Gautam Raina, Siddharth Mathur and Sunanda Sinha</i></p> <p>Nomenclature 181</p> <p>7.1 Introduction 182</p> <p>7.2 Background 183</p> <p>7.2.1 Bifacial Cells and Modules 183</p> <p>7.2.2 Cell Technologies 185</p> <p>7.2.3 Geometric Parameters and Metrics 186</p> <p>7.2.3.1 Bifaciality Factor 187</p> <p>7.2.3.2 Bifacial Gain (BG) 187</p> <p>7.3 Bifacial PV System and Modelling 188</p> <p>7.3.1 Need for Optical Modeling of Bifacial PV 188</p> <p>7.3.2 Bifacial PV Modeling Challenges 189</p> <p>7.3.3 Bifacial Irradiance Models 192</p> <p>7.3.3.1 Ray-Tracing Model 192</p> <p>7.3.3.2 Empirical Models 195</p> <p>7.3.3.3 View Factor Model 196</p> <p>7.3.4 Optical Modelling of Bifacial PV 198</p> <p>7.3.4.1 Frontside Irradiance 198</p> <p>7.3.4.2 Rear-Side Irradiance 202</p> <p>7.3.5 Comparison of Different Models/Software 205</p> <p>7.4 Effect of Installation and Weather Parameters on Energy Yield 208</p> <p>7.4.1 Effect of Installation Parameters 208</p> <p>7.4.2 Effect of Albedo 208</p> <p>7.4.3 Effect of Tilt Angle 208</p> <p>7.4.4 Effect of Elevation 209</p> <p>7.4.5 Effect of Weather Parameters 210</p> <p>7.5 Conclusion 211</p> <p>References 212</p> <p><b>8 Intervention of Microorganisms for the Pretreatment of Lignocellulosic Biomass to Extract the Fermentable Sugars for Biofuel Production 217<br /></b><i>M. Naveen Kumar, A. Gangagni Rao, Sudharshan Juntupally, Vijayalakshmi Arelli and Sameena Begum</i></p> <p>8.1 Introduction 217</p> <p>8.2 Lignocellulosic Biomass 218</p> <p>8.2.1 Types of Lignocellulosic Biomass 219</p> <p>8.2.1.1 Virgin Biomass 219</p> <p>8.2.1.2 Agricultural and Energy Crops 220</p> <p>8.2.1.3 Waste Biomass 220</p> <p>8.3 Role of Pretreatment in Biofuel Generations 220</p> <p>8.3.1 Non-Biological Pretreatment 222</p> <p>8.3.1.1 Physical Pretreatment 223</p> <p>8.3.1.2 Chemical Pretreatment 223</p> <p>8.3.1.3 Physico-Chemical (Hybrid) Pretreatment 224</p> <p>8.4 Biological Pretreatment and its Significance 227</p> <p>8.4.1 Role of Fungi in Pretreatment 228</p> <p>8.4.1.1 Biological Mechanisms of Delignification in Fungi 228</p> <p>8.4.2 Role of Prokaryotic Pretreatment 232</p> <p>8.4.2.1 Bacterial Enzymes Involved in Lignin De-Polymerization 232</p> <p>8.4.2.2 Types of Bacteria and their Role in Delignification 233</p> <p>8.5 Combined Biological Pretreatment Case Studies and Opportunities 234</p> <p>8.6 Future Prospects 236</p> <p>8.6.1 Role of Biotechnology and Genetic Engineering 236</p> <p>8.7 Conclusion 236</p> <p>Acknowledgement 237</p> <p>Conflicts of Interest 237</p> <p>References 237</p> <p><b>9 Biomass and Bioenergy: Resources, Conversion and Application 243<br /></b><i>Dr. Sunita Barot</i></p> <p>9.1 Introduction to Biomass 243</p> <p>9.2 Classification of Biomass Resources 244</p> <p>9.3 Biomass to Bioenergy Conversion 247</p> <p>9.4 Environmental Impacts of Biomass & Bioenergy 253</p> <p>9.5 Solutions to the Environmental Impacts 254</p> <p>9.6 Case Study of US – Conversion of MSW to Energy 255</p> <p>9.7 Bioenergy Products 256</p> <p>9.8 Effects of Covid-19 on Bioenergy Sector 258</p> <p>References 258</p> <p><b>10 Renewable Energy Development in Africa: Lessons and Policy Recommendations from South Africa, Egypt, and Nigeria 263<br /></b><i>Adedoyin Adeleke, Fabio Inzoli and Emanuela Colombo</i></p> <p>10.1 Introduction 263</p> <p>10.2 Existing Knowledge and Contributions to Literature 265</p> <p>10.3 Renewable Energy Development in South Africa 269</p> <p>10.3.1 Policies and Strategies 269</p> <p>10.3.2 Policy Impact on Renewable Energy Development 272</p> <p>10.4 Renewable Energy Development in Egypt 275</p> <p>10.4.1 Policies and Strategies 275</p> <p>10.4.2 Policy Impact on Renewable Energy Development 277</p> <p>10.5 Renewable Energy Development in Nigeria 284</p> <p>10.5.1 Policies and Strategies 285</p> <p>10.5.2 Policy Impact on Renewable Energy Development 288</p> <p>10.6 Conclusion and Policy Implications 291</p> <p>10.6.1 Policy Implications from South Africa and Egypt 291</p> <p>10.6.2 Barriers to Renewable Energy Development in Africa: The Case of Nigeria 293</p> <p>10.7 Conclusion 297</p> <p>References 298</p> <p><b>11 Sustainable Development of Pine Biocarbon Derived Thermally Stable and Electrically Conducting Polymer Nanocomposite Films 305<br /></b><i>Rehnuma Saleheen, MGH Zaidi, Sameena Mehtab and Kavita Singhal</i></p> <p>11.1 Introduction 305</p> <p>11.1.1 Biomass Resources 307</p> <p>11.1.2 Biomass Utilization 308</p> <p>11.1.2.1 Production of BC from Biomass 308</p> <p>11.1.2.2 Production of CF 309</p> <p>11.1.3 Applications of BC 310</p> <p>11.1.3.1 BC as CI 310</p> <p>11.1.3.2 BC for ESDs 311</p> <p>11.1.3.3 BC as Filler for Polymer Composites 311</p> <p>11.1.3.4 BC-Derived Sustainable OP 313</p> <p>11.2 Experimental Procedures 314</p> <p>11.2.1 Starting Materials 314</p> <p>11.2.2 Development of Pine Cone–Derived BC and Nano Pine–Derived BC 314</p> <p>11.2.3 Development of OP 314</p> <p>11.2.4 Development of ECF 316</p> <p>11.3 Characterization 316</p> <p>11.4 Results and Discussion 316</p> <p>11.4.1 Spectra of ECF 316</p> <p>11.4.2 Microstructure of ECF 318</p> <p>11.4.3 Thermal Stability of ECF 318</p> <p>11.5 Electrical Behaviour of ECF 320</p> <p>11.6 Conclusion and Future Aspects 321</p> <p>Acknowledgement 322</p> <p>References 322</p> <p><b>12 Power Electronics for Renewable Energy Systems 327<br /></b><i>Nandhini Gayathri M. and Kannbhiran A.</i></p> <p>12.1 Introduction 327</p> <p>12.2 Power Electronics on Energy Systems and its Impact 328</p> <p>12.3 The Power Electronics Contribution and its Challenges in the Current Energy Scenario 330</p> <p>12.4 Recent Growth in Power Semiconductor Technology 335</p> <p>12.5 A New Class of Power Converters for Renewable Energy Systems: AC-Link Universal Power Converters 337</p> <p>12.6 Power Converters for Wind Turbines and Power Semiconductors for Wind Power Converter 340</p> <p>12.7 Recent Developments in Multilevel Inverter Based PV Systems 342</p> <p>12.8 AC-DC-AC Converters for Distributed Power Generation Systems 345</p> <p>12.9 Multilevel Converter/Inverter Topologies and Applications 345</p> <p>12.10 Multiphase Matrix Converter Topologies 349</p> <p>12.11 Boost Pre-Regulators for Power Factor Correction in Single-Phase Rectifiers 350</p> <p>12.12 Active Power Filter 350</p> <p>12.13 Common-Mode Voltage and Bearing Currents in PWM Inverters: Causes, Effects and Prevention 351</p> <p>12.14 Single-Phase Grid-Side Converters 352</p> <p>12.15 Impedance Source Inverters 353</p> <p>12.16 Conclusion 354</p> <p>References 354</p> <p><b>13 Fuel Cells for Alternative and Sustainable Energy Systems 363<br /></b><i>N. V. Raghavaiah and Dr. G. Naga Srinivasulu</i></p> <p>13.1 Introduction to Fuel Cell Systems 363</p> <p>13.1.1 Brief History 363</p> <p>13.2 Overview of Fuel Technology 364</p> <p>13.2.1 Introduction to Fuel Cell Working 365</p> <p>13.2.2 Classification of Fuel Cells 366</p> <p>13.2.3 Fuel Cell Performance 368</p> <p>13.2.4 Fuel Cell Power Density 371</p> <p>13.3 Energy Storage Applications of Fuel Cells 371</p> <p>13.4 Environmental Impact of Fuel Cell System 372</p> <p>13.5 Latest Developments in Fuel Cell Technology 372</p> <p>13.5.1 Electrode Design – as a Function of Catalyst 374</p> <p>13.5.2 Efficient Structure Design: Fuel Cell Mass Transportation 375</p> <p>13.5.3 Design of Flow Patterns 375</p> <p>13.5.4 Environmental Impact of Fuel Cells 376</p> <p>13.6 Future Perspective of Fuel Cell 376</p> <p>13.6.1 Research and Technological Factors 376</p> <p>13.6.2 Perspective View 377</p> <p>13.6.3 Environmental Crisis 377</p> <p>13.6.4 Fuel EVs Infrastructure 378</p> <p>13.6.5 Renewables: A Window of Opportunity for Fuel Cells 378</p> <p>13.6.6 Energy Storage: A Big, Challenging Issue 380</p> <p>13.6.7 Future Predictions: On Fuel Cell Systems 380</p> <p>13.6.8 Hydrogen Economy 383</p> <p>13.7 Case Studies 384</p> <p>13.7.1 Case Study-1 384</p> <p>13.7.2 Case Study-2 385</p> <p>13.7.3 Case Study-3 386</p> <p>13.8 Summary 387</p> <p>References 387</p> <p><b>14 Fuel Cell Utilization for Energy Storage 389<br /></b><i>Archit Rai and Sumit Pramanik</i></p> <p>14.1 Introduction to Fuel Cells 389</p> <p>14.2 Fuel Cell Mechanism 391</p> <p>14.3 Efficiency of Fuel Cell 391</p> <p>14.3.1 Efficiency Calculations 392</p> <p>14.3.2 Co-Generation of Heat and Power 393</p> <p>14.4 Types of Fuel Cells 393</p> <p>14.4.1 Polymer Electrolyte Membrane Fuel Cell (PEMFC) 394</p> <p>14.4.2 Phosphoric Acid Fuel Cell (PAFC) 394</p> <p>14.4.3 Alkaline Fuel Cell (AFC) 398</p> <p>14.4.4 Molten Carbonate Fuel Cell (MCFC) 398</p> <p>14.4.5 Solid Oxide Fuel Cell (SOFC) 398</p> <p>14.5 Hydrogen Production 399</p> <p>14.5.1 Steam Methane Reforming or SMR (Natural Gas Reforming) 400</p> <p>14.5.2 Coal Gasification Process 400</p> <p>14.5.3 Biomass Gasification 400</p> <p>14.5.4 Biomass Derived Fuel Reforming 401</p> <p>14.5.5 Thermochemical Water Splitting 401</p> <p>14.5.6 Electrolytic Process 401</p> <p>14.5.7 Direct Solar Water Splitting Process 402</p> <p>14.5.8 Biological Processes 402</p> <p>14.5.9 Microbial Biomass Conversion 402</p> <p>14.5.10 Microbial Electrolysis Cells (MECs) 403</p> <p>14.6 Fuel Cells Applications and Advancements 403</p> <p>14.6.1 Applications 403</p> <p>14.6.2 Advancements 404</p> <p>14.6.3 Applications and Advancements of Fuel Cells in Automobile Sector 405</p> <p>14.6 Conclusions 405</p> <p>References 406</p> <p><b>15 Miniature Hydel Energy Harvesting Unit to Power Auto Faucet and Lighting Systems for Domestic Applications 409<br /></b><i>Farid Ullah Khan, Adil Ahmad Taj, Umar Safi Ullah Jan and Gule Saman</i></p> <p>15.1 Introduction 409</p> <p>15.2 Literature Review 412</p> <p>15.3 Data Collection and Theoretical Hydraulic Power Calculations 414</p> <p>15.4 Architecture and Working of Prototypes 414</p> <p>15.5 Design and Simulation 416</p> <p>15.6 Fabrication of Prototypes 420</p> <p>15.6.1 Fabrication of Prototype-1 420</p> <p>15.6.2 Fabrication of Prototype-2 422</p> <p>15.6.3 Fabrication of Prototype-3 423</p> <p>15.7 Experimentation of Prototypes 424</p> <p>15.8 Experimentation for Auto Faucet System 428</p> <p>15.9 Conclusions 432</p> <p>References 432</p> <p><b>16 Modeling, Performance Analysis, Impact Study and Operational Paradigms of Solar Photovoltaic Power Plant 435<br /></b><i>B. Koti Reddy and Dr. Amit Kumar Singh</i></p> <p>16.1 Introduction 435</p> <p>16.2 Solar Energy 436</p> <p>16.2.1 Forms of Energy Resources 436</p> <p>16.2.2 Solar Spectrum 437</p> <p>16.2.3 Sun Tracking and Location 438</p> <p>16.2.4 Solar Energy Fundamentals 439</p> <p>16.2.5 Solar Photovoltaic Power Plants (SPP) 444</p> <p>16.3 Modeling of PV Modules 445</p> <p>16.3.1 Simulation Model 447</p> <p>16.3.2 Simulation Results 448</p> <p>16.4 Design of 12 MWp SPP 452</p> <p>16.4.1 Selection of Site 452</p> <p>16.4.2 Equipment Sizing 453</p> <p>16.4.3 Cost Estimates 454</p> <p>16.4.4 Shadow Analysis 454</p> <p>16.4.5 Power Output Estimates 457</p> <p>16.5 Field Equipment Details 457</p> <p>16.6 Performance Analysis 458</p> <p>16.6.1 Performance Indicators 458</p> <p>16.6.2 Field Data and Analysis 459</p> <p>16.6.3 Intangible Benefits Realised in Past Three Years 459</p> <p>16.7 Technical Issues and New Paradigms 459</p> <p>16.7.1 Technical Issues 461</p> <p>16.7.2 Paradigm Shift 467</p> <p>16.8 Opportunities and Future Scope 470</p> <p>16.8.1 Opportunities 471</p> <p>16.8.2 Latest Trends 471</p> <p>16.8.3 Future Scope 471</p> <p>16.9 Conclusions 473</p> <p>References 473</p> <p><b>17 A Review on Control Technologies and Islanding Issues in Microgrids 475<br /></b><i>Anup Kumar Nanda, Babita Panda and Chinmoy Kumar Panigrahi</i></p> <p>17.1 Introduction 475</p> <p>17.2 Importance of Microgrid 476</p> <p>17.3 Microgrid Types 477</p> <p>17.4 Problems in Islanded Mode of Operation 478</p> <p>17.5 Features of Microgrid Control System 479</p> <p>17.6 Microgrid Islanding 480</p> <p>17.7 Control Techniques 481</p> <p>17.7.1 Primary Level 481</p> <p>17.7.2 Secondary Level 482</p> <p>17.7.2.1 Centralized Control Strategy 483</p> <p>17.7.2.2 Decentralized Control Strategy 483</p> <p>17.7.3 Tertiary Level 484</p> <p>17.8 Autonomous Control Architecture 486</p> <p>17.9 Optimization of Control in Microgrids 487</p> <p>17.9.1 Linear Programming 487</p> <p>17.9.2 Non-Linear Programming 488</p> <p>17.10 Inverter Control in Microgrids 488</p> <p>17.10.1 PQ Control 488</p> <p>17.10.2 Voltage Source Inverter Control 489</p> <p>17.10.2.1 Power Control Mode (PCM) 489</p> <p>17.10.2.2 Voltage Control Mode (VCM) 489</p> <p>17.11 Droop Control 489</p> <p>17.11.1 V/f Control 491</p> <p>17.12 Modern Prospects of Microgrid Research 492</p> <p>17.12.1 Multi Microgrid Control 492</p> <p>17.12.2 Energy Storage Management 492</p> <p>17.12.3 Management of Loads 492</p> <p>17.12.4 Hybrid Energy Mangement System 492</p> <p>17.12.5 Implementation of Soft Switches 492</p> <p>17.12.6 Protection and Stability Analysis 493</p> <p>17.12.7 Metaheuristic Optimization Techniques 493</p> <p>17.12.7.1 Grey Wolf Optimization (GWO) 494</p> <p>17.12.7.2 Hybrid GWO and P&O Algorithm (Hyb.) 495</p> <p>17.12.7.3 Whale Optimization Algorithm (WOA) 495</p> <p>17.12.7.4 Communication Technologies 498</p> <p>17.13 Conclusion 498</p> <p>References 499</p> <p><b>18 A Review of Microgrid Protection Schemes Resilient to Weather Intermittency and DER Faults 503<br /></b><i>Goyal R. Awagan Ebha Koley and Subhojit Ghosh</i></p> <p>18.1 Introduction 503</p> <p>18.2 Islanding Detection 506</p> <p>18.2.1 Central Islanding Detection 506</p> <p>18.2.2 Local Islanding Detection 507</p> <p>18.2.3 Feature Extraction-Based Islanding Detection 507</p> <p>18.2.4 Machine Learning-Based Islanding Detection 508</p> <p>18.3 Protection Challenges Due to Weather Intermittency 508</p> <p>18.3.1 Solar Irradiance Intermittency 509</p> <p>18.3.2 Wind Speed Intermittency 510</p> <p>18.3.3 Solar-Wind Combined Intermittency 511</p> <p>18.4 Protection Challenges Due to Converter Faults 511</p> <p>18.5 Protection Challenges Due to PV Array Faults 513</p> <p>18.5.1 LG Fault 513</p> <p>18.5.2 LL Fault 513</p> <p>18.5.3 Arc Fault 513</p> <p>18.5.4 Faults Due to Partial Shading 514</p> <p>18.6 Conclusion 517</p> <p>References 517</p> <p><b>19 Theories of Finance for Generation Portfolio Optimization 523<br /></b><i>Arjun C. Unni, Weerakorn Ongsakul and Nimal Madhu M.</i></p> <p>Acronyms 523</p> <p>19.1 Introduction 524</p> <p>19.2 Introduction to Portfolio Optimization 526</p> <p>19.3 Using Fuzzy Logic to Create Risk and Reward Index 527</p> <p>19.4 Markovitz Mean-Variance Theory 530</p> <p>19.5 Black-Litterman Model 531</p> <p>19.6 Mean Absolute Deviation (MAD) 532</p> <p>19.7 Conditional Value at Risk (CVaR) 532</p> <p>19.8 Results and Discussion 534</p> <p>19.9 Conclusion 540</p> <p>References 540</p> <p><b>20 Variable Speed Permanent Magnet Synchronous Generator-Wind Energy Systems 543<br /></b><i>Vijaya Priya R., Raja Pichamuthu and M.P. Selvan</i></p> <p>20.1 PMSG-Based WECS 543</p> <p>20.1.1 Configurations of WECS 544</p> <p>20.1.2 General Control Requirements of WECS 544</p> <p>20.1.3 Insights from Literature Review 545</p> <p>20.1.4 Objectives and Scope of the Present Research Work 546</p> <p>20.1.5 Contributions of the Chapter 546</p> <p>20.2 System Modelling 547</p> <p>20.2.1 Wind Turbine Modelling 547</p> <p>20.2.2 PMSG Modelling 548</p> <p>20.2.3 Drive-Train Shaft Modelling 549</p> <p>20.2.4 DC-Link Modelling 549</p> <p>20.2.5 GSC Filter Design 550</p> <p>20.2.6 Grid Modelling 550</p> <p>20.2.7 Dynamic Operating Conditions 551</p> <p>20.2.7.1 Grid Disturbances 551</p> <p>20.2.7.2 Converter Non-Linearities 554</p> <p>20.2.8 SRF-PLL Modelling 554</p> <p>20.3 Rotor Speed and Position Estimation Based on Stator SRF-PLL 555</p> <p>20.3.1 PMSG Angular Speed Reference Signal Computation 556</p> <p>20.3.2 Rotor Speed and Position Estimation 556</p> <p>20.3.3 Vector Control 558</p> <p>20.3.4 Analytical Validations 559</p> <p>20.3.4.1 Starting Characteristics 559</p> <p>20.3.4.2 Wind Velocity Variation 559</p> <p>20.3.4.3 Converter Non-Linearities 560</p> <p>20.3.4.4 Utility Harmonics 561</p> <p>20.3.4.5 Sensitivity Study 562</p> <p>20.3.5 Summary 564</p> <p>20.4 Active Power and Current Reference Generation Scheme 564</p> <p>20.4.1 System Modeling 565</p> <p>20.4.1.1 MSC Controller Design 565</p> <p>20.4.1.2 GSC and Controller Design 567</p> <p>20.4.2 MSC Reference Power Generation Scheme 570</p> <p>20.4.3 GSC Current Oscillation Component Computation 573</p> <p>20.4.4 Analytical Validation 574</p> <p>20.4.4.1 Symmetrical Voltage Sag 574</p> <p>20.4.4.2 Distorted Utility 575</p> <p>20.4.5 Summary 577</p> <p>20.5 Torsional Oscillation Damping 577</p> <p>20.5.1 Dynamic Effects under MPPT and PLMs 578</p> <p>20.5.1.1 Fast DC Link Voltage Control 579</p> <p>20.5.1.2 Slow DC-Link Voltage Control 581</p> <p>20.5.2 Proposed Active Damping Scheme for Torsional Mode Operation 583</p> <p>20.5.3 Proposed Control for GSC Control 585</p> <p>20.5.3.1 DPC Scheme 586</p> <p>20.5.3.2 Power Oscillation Term Computation 586</p> <p>20.5.4 Simulation Validation 587</p> <p>20.5.4.1 Turbulent and Gust Wind Speed 587</p> <p>20.5.4.2 Unsymmetrical Voltage Sag 588</p> <p>20.5.5 Summary 590</p> <p>20.6 Conclusions 590</p> <p>Appendices and Nomenclature 591</p> <p>References 592</p> <p><b>21 Study of Radiant Cooling System with Parallel Desiccant Based Dedicated Outdoor Air System with Solar Regeneration 595<br /></b><i>Prateek Srivastava and Gaurav Singh</i></p> <p>21.1 Introduction 595</p> <p>21.2 Dedicated Outdoor Air System 598</p> <p>21.3 Desiccant 599</p> <p>21.4 Radiant Cooling System with DOAS 602</p> <p>21.5 Methodology 604</p> <p>21.6 Building Description 605</p> <p>21.7 System and Model Description 606</p> <p>21.8 Result and Discussion 609</p> <p>21.9 Primary Energy Consumption and Coefficient of Performance (COP) Analysis 610</p> <p>21.10 Solar Energy Performance 613</p> <p>21.11 Conclusions 614</p> <p>References 614</p> <p>Index 619</p>
<p><b>Nayan Kumar, PhD,</b> is an assistant professor in the Department of Electrical Engineering, Muzaffarpur Institute of Technology, Muzaffarpur, Bihar, India. He received his PhD in electrical engineering from the National Institute of Technology Durgapur, India, in 2018. His current research interests include power electronics and its applications such as in PV systems, wind turbines, electric vehicles, reliability, harmonics and adjustable speed??drives.</p> <p><B>Prabhansu, PhD,</b> is an assistant professor in the Department of Mechanical Engineering at Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, India. He has been associated with the Renewable Energy Lab at the Institute since early 2020 and has over 11 years of experience in the field of solar energy extraction and gasification.
<p><B>Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of renewable energy for sustainable growth assessment and provides practical solutions for engineers and scientists. </b></p> <p>Renewable energy resources (RERs) are gaining more attention in academia and industry as one of the preferred choices of sustainable energy conversion. Due to global energy demand, environmental impacts, economic needs and social issues, RERs are encouraged and even funded by many governments around the world. Today, researchers are facing numerous challenges as this field emerges and develops, but, at the same time, new opportunities are waiting for RERs utilization in sustainable development all over the globe. <p>Efficient energy conversion of solar, wind, biomass, fuel cells, and other techniques are gaining more popularity and are the future of energy. The present book cross-pollinates recent advances in the study of renewable energy for sustainable growth. Various applications of RERs, modeling and performance analysis, grid integration, soft computing, optimization, artificial intelligence (AI) as well as machine and deep learning aspects of RERs are extensively covered. Whether for the veteran engineer or scientist, the student, or a manager or other technician working in the field, this volume is a must-have for any library. <p><b>This outstanding new volume</b> <ul><li>Assesses the current and future need for energy on a global scale and reviews the role of renewable energy </li> <li>Includes multiple chapters on biomass and bioenergy</li> <li>Also includes multiple chapters on solar energy and PVs</li> <li>Also includes chapters on fuel cells, wind power, and many other topics </li> <li>Covers the design and implementation of power electronics for energy systems</li> <li>Outlines best practices and the state of the art for renewable energy with regard to sustainability </li></ul> <p><B>Audience:</b> Engineers, scientists, technicians, managers, students, and faculty working in the field of renewable energy, sustainability and power system

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €