Details

Human-Robot Interaction Control Using Reinforcement Learning


Human-Robot Interaction Control Using Reinforcement Learning


IEEE Press Series on Systems Science and Engineering 1. Aufl.

von: Wen Yu, Adolfo Perrusquia

118,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.09.2021
ISBN/EAN: 9781119782759
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A comprehensive exploration of the control schemes of human-robot interactions </b></p> <p>In <i>Human-Robot Interaction Control Using Reinforcement Learning</i>, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. </p> <p><i>Human-Robot Interaction Control Using Reinforcement Learning </i>offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. </p> <p>The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. </p> <p>Readers will also enjoy:  </p> <ul> <li>A thorough introduction to model-based human-robot interaction control </li> <li>Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles </li> <li>Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control </li> <li>In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning  </li> </ul> <p>Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, <i>Human-Robot Interaction Control Using Reinforcement Learning</i> is also an indispensable resource for students and professionals studying reinforcement learning. </p>
<p>Author Biographies xi</p> <p>List of Figures xiii</p> <p>List of Tables xvii</p> <p>Preface xix</p> <p><b>Part I Human-robot Interaction Control 1</b></p> <p><b>1 Introduction 3</b></p> <p>1.1 Human-Robot Interaction Control 3</p> <p>1.2 Reinforcement Learning for Control 6</p> <p>1.3 Structure of the Book 7</p> <p>References 10</p> <p><b>2 Environment Model of Human-Robot Interaction 17</b></p> <p>2.1 Impedance and Admittance 17</p> <p>2.2 Impedance Model for Human-Robot Interaction 21</p> <p>2.3 Identification of Human-Robot Interaction Model 24</p> <p>2.4 Conclusions 30</p> <p>References 30</p> <p><b>3 Model Based Human-Robot Interaction Control 33</b></p> <p>3.1 Task Space Impedance/Admittance Control 33</p> <p>3.2 Joint Space Impedance Control 36</p> <p>3.3 Accuracy and Robustness 37</p> <p>3.4 Simulations 39</p> <p>3.5 Conclusions 42</p> <p>References 44</p> <p><b>4 Model Free Human-Robot Interaction Control 45</b></p> <p>4.1 Task-Space Control Using Joint-Space Dynamics 45</p> <p>4.2 Task-Space Control Using Task-Space Dynamics 52</p> <p>4.3 Joint Space Control 53</p> <p>4.4 Simulations 54</p> <p>4.5 Experiments 55</p> <p>4.6 Conclusions 68</p> <p>References 71</p> <p><b>5 Human-in-the-loop Control Using Euler Angles 73</b></p> <p>5.1 Introduction 73</p> <p>5.2 Joint-Space Control 74</p> <p>5.3 Task-Space Control 79</p> <p>5.4 Experiments 83</p> <p>5.5 Conclusions 92</p> <p>References 94</p> <p><b>Part II Reinforcement Learning for Robot Interaction Control 97</b></p> <p><b>6 Reinforcement Learning for Robot Position/Force Control 99</b></p> <p>6.1 Introduction 99</p> <p>6.2 Position/Force Control Using an Impedance Model 100</p> <p>6.3 Reinforcement Learning Based Position/Force Control 103</p> <p>6.4 Simulations and Experiments 110</p> <p>6.5 Conclusions 117</p> <p>References 117</p> <p><b>7 Continuous-Time Reinforcement Learning for Force Control 119</b></p> <p>7.1 Introduction 119</p> <p>7.2 K-means Clustering for Reinforcement Learning 120</p> <p>7.3 Position/Force Control Using Reinforcement Learning 124</p> <p>7.4 Experiments 130</p> <p>7.5 Conclusions 136</p> <p>References 136</p> <p><b>8 Robot Control in Worst-Case Uncertainty Using Reinforcement Learning 139</b></p> <p>8.1 Introduction 139</p> <p>8.2 Robust Control Using Discrete-Time Reinforcement Learning 141</p> <p>8.3 Double Q-Learning with k-Nearest Neighbors 144</p> <p>8.4 Robust Control Using Continuous-Time Reinforcement Learning 150</p> <p>8.5 Simulations and Experiments: Discrete-Time Case 154</p> <p>8.6 Simulations and Experiments: Continuous-Time Case 161</p> <p>8.7 Conclusions 170</p> <p>References 170</p> <p><b>9 Redundant Robots Control Using Multi-Agent Reinforcement Learning 173</b></p> <p>9.1 Introduction 173</p> <p>9.2 Redundant Robot Control 175</p> <p>9.3 Multi-Agent Reinforcement Learning for Redundant Robot Control 179</p> <p>9.4 Simulations and experiments 183</p> <p>9.5 Conclusions 187</p> <p>References 189</p> <p><b>10 Robot <i>H</i><sub>2</sub> Neural Control Using Reinforcement Learning 193</b></p> <p>10.1 Introduction 193</p> <p>10.2 <i>H</i><sub>2</sub> Neural Control Using Discrete-Time Reinforcement Learning 194</p> <p>10.3 <i>H</i><sub>2</sub> Neural Control in Continuous Time 207</p> <p>10.4 Examples 219</p> <p>10.5 Conclusion 229</p> <p>References 229</p> <p><b>11 Conclusions 233</b></p> <p><b>A Robot Kinematics and Dynamics 235</b></p> <p>A.1 Kinematics 235</p> <p>A.2 Dynamics 237</p> <p>A.3 Examples 240</p> <p>References 246</p> <p><b>B Reinforcement Learning for Control 247</b></p> <p>B.1 Markov decision processes 247</p> <p>B.2 Value functions 248</p> <p>B.3 Iterations 250</p> <p>B.4 TD learning 251</p> <p>Reference 258</p> <p>Index 259</p>
<p><b>WEN YU, PhD,</b> is Professor and Head of the Departamento de Control Automático with the Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico. He is a co-author of <i>Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number.</i></p> <p><b>ADOLFO PERRUSQUÍA, PhD,</b> is a Research Fellow in the School of Aerospace, Transport, and Manufacturing at Cranfield University in Bedford, UK.
<p><b>A comprehensive exploration of the control schemes of human-robot interactions</b></p> <p>In <i>Human-Robot Interaction Control Using Reinforcement Learning</i>, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. <p><i>Human-Robot Interaction Control Using Reinforcement Learning</i> offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. <p>The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. <p>Readers will also enjoy: <ul><li>A thorough introduction to model-based human-robot interaction control</li> <li>Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles</li> <li>Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control</li> <li>In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning</li></ul> <p>Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, <i>Human-Robot Interaction Control Using Reinforcement Learning</i> is also an indispensable resource for students and professionals studying reinforcement learning.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €