Details

Poly(lactic acid)


Poly(lactic acid)

Synthesis, Structures, Properties, Processing, Applications, and End of Life
Wiley Series on Polymer Engineering and Technology 2. Aufl.

von: Rafael A. Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji

192,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 01.06.2022
ISBN/EAN: 9781119767466
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>POLY(LACTIC ACID)</b> <p><b>The second edition of a key reference, fully updated to reflect new research and applications </b> <p>Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. <p><i>Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life </i>provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. <ul><li>Highlights the biodegradability, recycling, and sustainability benefits of PLA</li> <li>Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming</li> <li>Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production</li> <li>Examines different condensation reactions and modification strategies for enhanced polymerization of PLA</li> <li>Discusses the thermal, rheological, and mechanical properties of PLA</li> <li>Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment</li></ul> <p><i>Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition</i> remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.
<p>List of Contributors xix</p> <p>Preface xxiii</p> <p>Author Biographies xxvii</p> <p><b>Part I Chemistry and Production of Lactic Acid, Lactide, and Poly(Lactic Acid) 1</b></p> <p><b>1 Production and Purification of Lactic Acid and Lactide 3<br /></b><i>Wim Groot, Jan van Krieken, Olav Sliekersl, and Sicco de Vos</i></p> <p>1.1 Introduction 3</p> <p>1.2 Lactic Acid 4</p> <p>1.2.1 History of Lactic Acid 4</p> <p>1.2.2 Physical Properties of Lactic Acid 4</p> <p>1.2.3 Chemistry of Lactic Acid 4</p> <p>1.2.4 Production of Lactic Acid by Fermentation 5</p> <p>1.2.5 Downstream Processing/Purification of Lactic Acid 8</p> <p>1.2.6 Quality/Specifications of Lactic Acid 10</p> <p>1.3 Lactide 10</p> <p>1.3.1 Physical Properties of Lactide 10</p> <p>1.3.2 Production of Lactide 11</p> <p>1.3.3 Purification of Lactide 13</p> <p>1.3.4 Quality and Specifications of Polymer-Grade Lactide 14</p> <p>1.3.5 Concluding Remarks on Polymer-Grade Lactide 16</p> <p>References 16</p> <p><b>2 Aqueous Solutions of Lactic Acid 19<br /></b><i>Carl T. Lira and Lars Peereboom</i></p> <p>2.1 Introduction 19</p> <p>2.2 Structure of Lactic Acid 19</p> <p>2.3 Vapor Pressure of Anhydrous Lactic Acid and Lactide 19</p> <p>2.4 Oligomerization in Aqueous Solutions 20</p> <p>2.5 Equilibrium Distribution of Oligomers 21</p> <p>2.6 Vapor–Liquid Equilibrium 23</p> <p>2.7 Density of Aqueous Solutions 25</p> <p>2.8 Viscosity of Aqueous Solutions 25</p> <p>2.9 Summary 26</p> <p>References 26</p> <p><b>3 Industrial Production of High-Molecular-Weight Poly(Lactic Acid) 29<br /></b><i>Anders Södergård, Mikael Stolt, and Saara Inkinen</i></p> <p>3.1 Introduction 29</p> <p>3.2 Lactic-Acid-Based Polymers by Polycondensation 30</p> <p>3.2.1 Direct Condensation 31</p> <p>3.2.2 Solid-State Polycondensation 32</p> <p>3.2.3 Azeotropic Dehydration 33</p> <p>3.3 Lactic Acid-Based Polymers by Chain Extension 34</p> <p>3.3.1 Chain Extension with Diisocyanates 34</p> <p>3.3.2 Chain Extension with Bis-2-Oxazoline 36</p> <p>3.3.3 Dual Linking Processes 36</p> <p>3.3.4 Chain Extension with Bis-Epoxies 36</p> <p>3.4 Lactic-Acid-Based Polymers by Ring-Opening Polymerization 37</p> <p>3.4.1 Polycondensation Processes 37</p> <p>3.4.2 Lactide Manufacturing 37</p> <p>3.4.3 Ring-Opening Polymerization 39</p> <p>References 40</p> <p><b>4 Design and Synthesis of Different Types of Poly(Lactic Acid)/Polylactide Copolymers 45<br /></b><i>Ann-Christine</i></p> <p><i>Albertsson, Indra Kumari Varma, Bimlesh Lochab, Anna Finne-Wistrand, Sangeeta Sahu, and Kamlesh Kumar</i></p> <p>4.1 Introduction 45</p> <p>4.2 Comonomers with Lactic Acid/Lactide 47</p> <p>4.2.1 Glycolic Acid/Glycolide 47</p> <p>4.2.2 Poly(Alkylene Glycol) 48</p> <p>4.2.3 δ-Valerolactone and β-Butyrolactone 51</p> <p>4.2.4 <b>ε</b>-Caprolactone 51</p> <p>4.2.5 1,5-Dioxepan-2-One 52</p> <p>4.2.6 Trimethylene Carbonate 52</p> <p>4.2.7 Poly(<i>N</i>-Isopropylacrylamide) 52</p> <p>4.2.8 Alkylthiophene (P3AT) 53</p> <p>4.2.9 Polypeptide 53</p> <p>4.3 Functionalized PLA 54</p> <p>4.4 Macromolecular Design of Lactide-Based Copolymers 55</p> <p>4.4.1 Graft Copolymers 57</p> <p>4.4.2 Star-Shaped Copolymers 59</p> <p>4.4.3 Periodic Copolymers 60</p> <p>4.5 Properties of Lactide-Based Copolymers 62</p> <p>4.6 Degradation of Lactide Homo-and Copolymers 63</p> <p>4.6.1 Drug Delivery from Lactide-Based Copolymers 64</p> <p>4.6.2 Radiation Effects 65</p> <p>References 65</p> <p><b>5 Preparation, Structure, and Properties of Stereocomplex-Type Poly(Lactic Acid) 73<br /></b><i>Neha Mulchandani, Yoshiharu Kimura, and Vimal Katiyar</i></p> <p>5.1 Introduction 73</p> <p>5.2 Stereocomplexation in Poly(Lactic Acid) 73</p> <p>5.3 Crystal Structure of sc-PLA 74</p> <p>5.4 Formation of Stereoblock PLA 75</p> <p>5.4.1 Single-Step Process 75</p> <p>5.4.2 Stepwise ROP 76</p> <p>5.4.3 Chain Coupling Method 77</p> <p>5.5 Stereocomplexation in Copolymers 79</p> <p>5.5.1 Stereocomplexation in Random and Alternating Lactic Acid or Lactide-Based Polymers 79</p> <p>5.5.2 sc-PLA–PCL Copolymers 80</p> <p>5.5.3 sc-PLA–PEG Copolymers 80</p> <p>5.6 Stereocomplex PLA-Based Composites 81</p> <p>5.7 Advances in Stereocomplex-PLA 82</p> <p>5.8 Conclusions 83</p> <p>References 83</p> <p><b>Part II Properties 87</b></p> <p><b>6 Structures and Phase Transitions of PLA and Its Related Polymers 89<br /></b><i>Hai Wang and Kohji Tashiro</i></p> <p>6.1 Introduction 89</p> <p>6.2 Structural Study of PLA 89</p> <p>6.2.1 Preparation of Crystal Modifications of PLA 89</p> <p>6.2.2 Crystal Structure of the α Form 91</p> <p>6.2.3 Crystal Structure of the δ Form 92</p> <p>6.2.4 Crystal Structure of the β Form 93</p> <p>6.2.5 Structure of the Mesophase 94</p> <p>6.3 Thermally Induced Phase Transitions 95</p> <p>6.3.1 Phase Transition in Cold Crystallization 95</p> <p>6.3.2 Phase Transition in the Melt Crystallization 95</p> <p>6.3.3 Mechanically Induced Phase Transition 96</p> <p>6.4 Microscopically-viewed Structure-Mechanical Properties of PLA 98</p> <p>6.5 Structure and Formation of PLLA/PDLA Stereocomplex 100</p> <p>6.5.1 Reconsideration of the Crystal Structure 100</p> <p>6.5.2 Experimental Support of <i>P</i>3 Structure Model 103</p> <p>6.5.3 Formation Mechanism of Stereocomplex 104</p> <p>6.6 PHB and Other Biodegradable Polyesters 106</p> <p>6.6.1 Poly(3-Hydroxybutyrate) (PHB) 106</p> <p>6.6.2 Polyethylene Adipate (PEA) 109</p> <p>6.7 Future Perspectives 110</p> <p>Acknowledgements 110</p> <p>References 110</p> <p><b>7 Optical and Spectroscopic Properties 115<br /></b><i>Isabel M. Marrucho</i></p> <p>7.1 Introduction 115</p> <p>7.2 Absorption and Transmission of UV–Vis Radiation 115</p> <p>7.3 Refractive Index 118</p> <p>7.4 Specific Optical Rotation 119</p> <p>7.5 Infrared and Raman Spectroscopy 119</p> <p>7.5.1 Infrared Spectroscopy 120</p> <p>7.5.2 Raman Spectroscopy 125</p> <p>7.6 1H and 13C NMR Spectroscopy 127</p> <p>References 131</p> <p><b>8 Crystallization and Thermal Properties 135<br /></b><i>Luca Fambri and Claudio Migliaresi</i></p> <p>8.1 Introduction 135</p> <p>8.2 Crystallinity and Crystallization 136</p> <p>8.3 Crystallization Regime 140</p> <p>8.4 Fibers 142</p> <p>8.5 Commercial Polymers and Products 144</p> <p>8.6 Degradation and Crystallinity 146</p> <p>Acknowledgments 148</p> <p>References 148</p> <p><b>9 Rheology of Poly(Lactic Acid) 153<br /></b><i>John R. Dorgan</i></p> <p>9.1 Introduction 153</p> <p>9.2 Fundamental Chain Properties from Dilute Solution Viscometry 154</p> <p>9.2.1 Unperturbed Chain Dimensions 154</p> <p>9.2.2 Real Chains 154</p> <p>9.2.3 Solution Viscometry 155</p> <p>9.2.4 Viscometry of PLA 156</p> <p>9.3 Processing of PLA: General Considerations 158</p> <p>9.4 Melt Rheology: An Overview 159</p> <p>9.5 Processing of PLA: Rheological Properties 160</p> <p>9.6 Conclusions 165</p> <p>Appendix 9.A Description of the Software 166</p> <p>References 166</p> <p><b>10 Mechanical Properties 169<br /></b><i>Mohammadreza Nofar, Gabriele Perego, and Gian Domenico Cella</i></p> <p>10.1 Introduction 169</p> <p>10.2 General Mechanical Properties and Molecular Weight Effect 170</p> <p>10.2.1 Tensile and Flexural Properties 170</p> <p>10.2.2 Impact Resistance 171</p> <p>10.2.3 Hardness 172</p> <p>10.3 Temperature Effect 172</p> <p>10.4 Relaxation and Aging 173</p> <p>10.5 Annealing 174</p> <p>10.6 Orientation 176</p> <p>10.7 Stereoregularity 179</p> <p>10.8 Self-Reinforced</p> <p>PLA Composites 180</p> <p>10.9 PLA Nanocomposites 180</p> <p>10.10 Copolymerization 181</p> <p>10.11 Plasticization 181</p> <p>10.12 PLA Blends 182</p> <p>10.13 Conclusions 186</p> <p>References 186</p> <p><b>11 Mass Transfer 191<br /></b><i>Uruchaya Sonchaeng and Rafael Auras</i></p> <p>11.1 Introduction 191</p> <p>11.2 Background on Mass Transfer in Polymers 193</p> <p>11.3 Mass Transfer Properties of Neat PLA Films 194</p> <p>11.3.1 Mass Transfer of Gases 194</p> <p>11.3.2 Mass Transfer of Oxygen 199</p> <p>11.3.3 Mass Transfer of Water Vapor 201</p> <p>11.3.4 Mass Transfer of Organic Vapors 203</p> <p>11.4 Mass Transfer Properties of Modified PLA 205</p> <p>11.4.1 PLA Stereocomplex and PLA Blends 206</p> <p>11.4.2 PLA Nanocomposites 207</p> <p>11.4.3 Other PLA Modifications 207</p> <p>11.4.4 PLA in Other Forms 207</p> <p>11.5 Final Remarks 208</p> <p>Acknowledgments 208</p> <p>References 208</p> <p><b>12 Migration and Interaction with Contact Materials 217<br /></b><i>Herlinda Soto-Valdez and Elizabeth Peralta</i></p> <p>12.1 Introduction 217</p> <p>12.2 Migration Principles 217</p> <p>12.3 Legislation 218</p> <p>12.4 Migration and Toxicological Data of Lactic Acid, Lactide, Dimers, and Oligomers 219</p> <p>12.4.1 Lactic Acid 219</p> <p>12.4.2 Lactide 224</p> <p>12.4.3 Oligomers 225</p> <p>12.5 EDI of Lactic Acid 226</p> <p>12.6 Other Potential Migrants from PLA 227</p> <p>12.7 Conclusions 227</p> <p>References 228</p> <p><b>Part III Processing and Conversion 231</b></p> <p><b>13 Processing of Poly(Lactic Acid) 233<br /></b><i>Loong-Tak Lim, Tim Vanyo, Jed Randall, Kevin Cink, and Ashwini K. Agrawal</i></p> <p>13.1 Introduction 233</p> <p>13.2 Properties of PLA Relevant to Processing 233</p> <p>13.3 Modification of PLA Properties by Process Aids and Other Additives 235</p> <p>13.4 Drying and Crystallizing 237</p> <p>13.5 Extrusion 239</p> <p>13.6 Injection Molding 241</p> <p>13.7 Film and Sheet Casting 245</p> <p>13.8 Stretch Blow Molding 249</p> <p>13.9 Extrusion Blown Film 251</p> <p>13.10 Thermoforming 252</p> <p>13.11 Melt Spinning 254</p> <p>13.12 Solution Spinning 258</p> <p>13.13 Electrospinning 261</p> <p>13.14 Filament Extrusion and 3D-Printing 265</p> <p>13.15 Conclusion: Prospects of PLA Polymers 266</p> <p>References 267</p> <p><b>14 Blends 271<br /></b><i>Ajay Kathuria, Sukeewan Detyothin, Waree Jaruwattanayon, Susan E. M. Selke, and Rafael Auras</i></p> <p>14.1 Introduction 271</p> <p>14.2 PLA Nonbiodegradable Polymer Blends 272</p> <p>14.2.1 Polyolefins 272</p> <p>14.2.2 Vinyl and Vinylidene Polymers and Copolymers 279</p> <p>14.2.3 Rubbers and Elastomers 285</p> <p>14.2.4 PLA/PMMA Blends 287</p> <p>14.3 PLA/Biodegradable Polymer Blends 289</p> <p>14.3.1 Polyanhydrides 289</p> <p>14.3.2 Vinyl and Vinylidene Polymers and Copolymers 289</p> <p>14.3.3 Aliphatic Polyesters and Copolyesters 297</p> <p>14.3.4 Aliphatic–Aromatic Copolyesters 303</p> <p>14.3.5 Elastomers and Rubbers 305</p> <p>14.3.6 Poly(Ester Amide)/PLA Blends 307</p> <p>14.3.7 Polyethers and Copolymers 307</p> <p>14.3.8 Annually Renewable Biodegradable Materials 309</p> <p>14.4 Plasticization of PLA 322</p> <p>14.5 Conclusions 326</p> <p>References 327</p> <p><b>15 Foaming 341<br /></b><i>Laurent M. Matuana</i></p> <p>15.1 Introduction 341</p> <p>15.2 Plastic Foams 341</p> <p>15.3 Foaming Agents 342</p> <p>15.3.1 Physical Foaming Agents 342</p> <p>15.3.2 Chemical Foaming Agents 342</p> <p>15.4 Formation of Cellular Plastics 343</p> <p>15.4.1 Dissolution of Blowing Agent in Polymer 343</p> <p>15.4.2 Bubble Formation 343</p> <p>15.4.3 Bubble Growth and Stabilization 344</p> <p>15.5 Plastic Foams Expanded with Physical Foaming Agents 344</p> <p>15.5.1 Microcellular Foamed Polymers 344</p> <p>15.5.2 Solid-State Batch Microcellular Foaming Process 345</p> <p>15.5.3 Microcellular Foaming in a Continuous Process 353</p> <p>15.6 PLA Foamed with Chemical Foaming Agents 358</p> <p>15.6.1 Effects of CFA Content and Type 358</p> <p>15.6.2 Effect of Processing Conditions 359</p> <p>15.7 Mechanical Properties of PLA Foams 360</p> <p>15.7.1 Batch Microcellular Foamed PLA 360</p> <p>15.7.2 Extrusion of PLA 361</p> <p>15.7.3 Microcellular Injection Molding of PLA 362</p> <p>15.8 Foaming of PLA/Starch and Other Blends 362</p> <p>References 363</p> <p><b>16 Composites 367<br /></b><i>Tanmay Gupta, Vijay Shankar Kumawat, Subrata Bandhu Ghosh, Sanchita Bandyopadhyay-Ghosh, </i><i>and Mohini Sain</i></p> <p>16.1 Introduction 367</p> <p>16.2 PLA Matrix 367</p> <p>16.3 Reinforcements 368</p> <p>16.3.1 Natural Fiber Reinforcement 368</p> <p>16.3.2 Synthetic Fiber Reinforcement 370</p> <p>16.3.3 Organic Filler Reinforcement 370</p> <p>16.3.4 Inorganic Filler Reinforcement 371</p> <p>16.3.5 Laminated/Structural Composites 372</p> <p>16.4 Nanocomposites 374</p> <p>16.5 Surface Modification 375</p> <p>16.5.1 Filler Surface Modification 375</p> <p>16.5.2 Compatibilizing Agent 376</p> <p>16.5.3 Composite Surface Modification 377</p> <p>16.6 Processing 377</p> <p>16.6.1 Conventional Processing 377</p> <p>16.6.2 3D Printing 378</p> <p>16.7 Properties 379</p> <p>16.7.1 Mechanical Properties 379</p> <p>16.7.2 Thermal Properties 382</p> <p>16.7.3 Flame Retardancy 382</p> <p>16.7.4 Degradation 383</p> <p>16.7.5 Shape Memory Properties 383</p> <p>16.8 Applications 384</p> <p>16.8.1 Biomedical Applications 385</p> <p>16.8.2 Packaging Applications 387</p> <p>16.8.3 Automotive Applications 387</p> <p>16.8.4 Sensing and Other Electronic Applications 388</p> <p>16.9 Future Developments and Concluding Remarks 390</p> <p>References 390</p> <p><b>17 Nanocomposites: Processing and Mechanical Properties 411<br /></b><i>Suprakas Sinha Ray</i></p> <p>17.1 Introduction 411</p> <p>17.2 Nanoclay-Containing PLA Nanocomposites 412</p> <p>17.3 Carbon-Nanotubes-Containing PLA Nanocomposites 414</p> <p>17.4 Graphene-Containing PLA Nanocomposites 416</p> <p>17.5 Nanocellulose-Containing PLA Nanocomposites 417</p> <p>17.6 Other Nanoparticle-Containing PLA Nanocomposites 418</p> <p>17.7 Mechanical Properties of PLA-Based Nanocomposites 419</p> <p>17.8 Possible Applications and Future Prospects 421</p> <p>Acknowledgment 422</p> <p>References 422</p> <p><b>18 Mechanism of Fiber Structure Development in Melt Spinning of PLA 425<br /></b><i>Nanjaporn Roungpaisan, Midori Takasaki, Wataru Takarada, and Takeshi Kikutani</i></p> <p>18.1 Introduction-Fundamentals of Structure Development in Polymer Processing 425</p> <p>18.2 High-speed Melt Spinning of PLLAs with Different d-Lactic Acid Content 426</p> <p>18.2.1 Wide-angle X-ray Diffraction 426</p> <p>18.2.2 Birefringence 427</p> <p>18.2.3 Differential Scanning Calorimetry 428</p> <p>18.2.4 Modulated-DSC and Lattice Spacing 429</p> <p>18.3 High-speed Melt-Spinning of Racemic Mixture of PLLA and PDLA 430</p> <p>18.3.1 Stereocomplex Crystal 430</p> <p>18.3.2 Melt Spinning of PLLA/PDLA Blend 430</p> <p>18.3.3 WAXD 431</p> <p>18.3.4 Differential Scanning Calorimetry 432</p> <p>18.3.5 In Situ WAXD upon Heating 432</p> <p>18.4 Bicomponent Melt Spinning of PLLA and PDLA 433</p> <p>18.4.1 Sheath-Core and Islands-in-the-Sea Configurations 433</p> <p>18.4.2 Birefringence 434</p> <p>18.4.3 DSC 434</p> <p>18.4.4 Post Annealing 435</p> <p>18.5 Concluding Remarks 436</p> <p>References 437</p> <p><b>Part IV Degradation, Environmental Impact, and End of Life 439</b></p> <p><b>19 Photodegradation and Radiation Degradation 441<br /></b><i>Wataru Sakai and Naoto Tsutsumi</i></p> <p>19.1 Introduction 441</p> <p>19.2 Mechanisms of Photodegradation 441</p> <p>19.2.1 Photon 441</p> <p>19.2.2 Photon Absorption 442</p> <p>19.2.3 Photochemical Reactions of Carbonyl Groups 443</p> <p>19.3 Mechanism of Radiation Degradation 443</p> <p>19.3.1 High-Energy Radiation 443</p> <p>19.3.2 Basic Mechanism of Radiation Degradation 444</p> <p>19.4 Photodegradation of PLA 444</p> <p>19.4.1 Fundamental Mechanism 444</p> <p>19.4.2 Photooxidation Degradation 446</p> <p>19.4.3 High-Energy Photo-Irradiation 447</p> <p>19.4.4 Photosensitized Degradation of PLA 447</p> <p>19.4.5 Photodegradation of PLA Blends 449</p> <p>19.5 Radiation Degradation of PLA 449</p> <p>19.6 Irradiation Effects on Biodegradability 451</p> <p>19.7 Modification and Composites of PLA 452</p> <p>References 452</p> <p><b>20 Thermal Degradation 455<br /></b><i>Haruo Nishida</i></p> <p>20.1 Introduction 455</p> <p>20.2 Thermal Degradation Behavior of PLLA Based on Weight Loss 455</p> <p>20.2.1 Diverse Mechanisms 455</p> <p>20.2.2 Factors Affecting the Thermal Degradation Mechanism 456</p> <p>20.2.3 Thermal Stabilization 457</p> <p>20.3 Kinetic Analysis of Thermal Degradation 458</p> <p>20.3.1 Single-Step Thermal Degradation Process 458</p> <p>20.3.2 Complex Thermal Degradation Process 459</p> <p>20.4 Kinetic Analysis of Complex Thermal Degradation Behavior 460</p> <p>20.4.1 Two-Step Complex Reaction Analysis of PLLA in Blends 460</p> <p>20.4.2 Multistep Complex Reaction Analysis of Commercially Available PLLA 461</p> <p>20.5 Thermal Degradation Behavior of PLA Stereocomplex: scPLA 463</p> <p>20.6 Control of Racemization 464</p> <p>20.7 Conclusions 465</p> <p>References 465</p> <p><b>21 Hydrolytic Degradation 467<br /></b><i>Hideto Tsuji</i></p> <p>21.1 Introduction 467</p> <p>21.2 Degradation Mechanism 467</p> <p>21.2.1 Molecular Degradation Mechanism 468</p> <p>21.2.2 Material Degradation Mechanism 479</p> <p>21.2.3 Degradation of Crystalline Residues 485</p> <p>21.3 Parameters for Hydrolytic Degradation 488</p> <p>21.3.1 Effects of Surrounding Media 488</p> <p>21.3.2 Effects of Material Parameters 490</p> <p>21.4 Structural and Property Changes During Hydrolytic Degradation 498</p> <p>21.4.1 Fractions of Components 498</p> <p>21.4.2 Crystallization 498</p> <p>21.4.3 Mechanical Properties 499</p> <p>21.4.4 Thermal Properties 499</p> <p>21.4.5 Surface Properties 500</p> <p>21.4.6 Morphology 500</p> <p>21.5 Applications of Hydrolytic Degradation 500</p> <p>21.5.1 Material Preparation 500</p> <p>21.5.2 Recycling of PLA to Its Monomer 502</p> <p>21.6 Conclusions 503</p> <p>References 503</p> <p><b>22 Enzymatic Degradation 517<br /></b><i>Ken’ichiro Matsumoto, Hideki Abe, Yoshihiro Kikkawa, and Tadahisa Iwata</i></p> <p>22.1 Introduction 517</p> <p>22.1.1 Definition of Biodegradable Plastics 517</p> <p>22.1.2 Enzymatic Degradation 517</p> <p>22.2 Enzymatic Degradation of PLA Films 519</p> <p>22.2.1 Structure and Substrate Specificity of Proteinase K 519</p> <p>22.2.2 Enzymatic Degradability of PLLA Films 519</p> <p>22.2.3 Enzymatic Degradability of PLA Stereoisomers and Their Blends 520</p> <p>22.2.4 Effects of Surface Properties on Enzymatic Degradability of PLLA Films 521</p> <p>22.3 Enzymatic Degradation of Thin Films 525</p> <p>22.3.1 Thin Films and Analytical Techniques 525</p> <p>22.3.2 Crystalline Morphologies of Thin Films 525</p> <p>22.3.3 Enzymatic Adsorption and Degradation Rate of Thin Films 526</p> <p>22.3.4 Enzymatic Degradation of LB Film 526</p> <p>22.3.5 Application of Selective Enzymatic Degradation 529</p> <p>22.4 Enzymatic Degradation of Lamellar Crystals 530</p> <p>22.4.1 Enzymatic Degradation of PLLA Single Crystals 530</p> <p>22.4.2 Thermal Treatment and Enzymatic Degradation of PLLA Single Crystals 532</p> <p>22.4.3 Single Crystals of PLA Stereocomplex 533</p> <p>22.5 Recent Advances in Characterization of Enzymes that Degrade PLAs Including PDLA and Related Copolymers 534</p> <p>22.5.1 αβ-Hydrolase 535</p> <p>22.5.2 Lipases and Cutinase-Like Enzymes 535</p> <p>22.5.3 Polyhydroxyalkanoate Depolymerases 536</p> <p>22.5.4 Enhancement of Biodegradability of PLAs 536</p> <p>22.5.5 Control of Enzymatic Degradation of PLAs 537</p> <p>22.6 Future Perspectives 537</p> <p>References 537</p> <p><b>23 Environmental Footprint and Life Cycle Assessment of Poly (Lactic Acid) 541<br /></b><i>Amy E. Landis, Shakira R. Hobbs, Dennis Newby, Ja’Maya Wilson, and Talia Pincus</i></p> <p>23.1 Introduction to LCA and Environmental Footprints 541</p> <p>23.1.1 Life Cycle Assessment 541</p> <p>23.1.2 Uncertainty in LCA 542</p> <p>23.2 Life Cycle Considerations for PLA 542</p> <p>23.2.1 The Life Cycle of PLA 542</p> <p>23.2.2 Energy Use and Global Warming 544</p> <p>23.2.3 Environmental Trade-Offs 544</p> <p>23.2.4 Waste Management 545</p> <p>23.2.5 End of Life 546</p> <p>23.3 Review of Biopolymer LCA Studies 546</p> <p>23.3.1 Cradle-to-Gate and Cradle-to-Grave LCAs 546</p> <p>23.3.2 End-of-Life LCAs 547</p> <p>23.4 Improving PLA’s Environmental Footprint 553</p> <p>23.4.1 Agricultural Management 553</p> <p>23.4.2 Feedstock Choice 554</p> <p>23.4.3 Energy 554</p> <p>23.4.4 Design for End of Life 555</p> <p>References 555</p> <p><b>24 End-of-Life Scenarios for Poly(Lactic Acid) 559<br /></b><i>Anibal Bher, Edgar Castro-Aguirre, and Rafael Auras</i></p> <p>24.1 Introduction 559</p> <p>24.2 Transition from a Linear to a Circular Economy for Plastics 559</p> <p>24.3 Waste Management System 561</p> <p>24.4 End-of-Life Scenarios for PLA 564</p> <p>24.4.1 Prevention and Source Reduction 565</p> <p>24.4.2 Reuse 566</p> <p>24.4.3 Recycling 566</p> <p>24.4.4 Biodegradation 569</p> <p>24.4.5 Incineration with Energy Recovery 572</p> <p>24.4.6 Landfill 573</p> <p>24.5 LCA of End-of-Life Scenario for PLA 574</p> <p>24.6 Final Remarks 575</p> <p>References 575</p> <p><b>Part V Applications 581</b></p> <p><b>25 Medical Applications 583<br /></b><i>Shuko Suzuki and Yoshito Ikada</i></p> <p>25.1 Introduction 583</p> <p>25.2 Minimal Requirements for Medical Devices 583</p> <p>25.2.1 General 583</p> <p>25.2.2 PLA as Medical Implants 584</p> <p>25.3 Preclinical and Clinical Applications of PLA Devices 585</p> <p>25.3.1 Fibers 585</p> <p>25.3.2 Meshes 588</p> <p>25.3.3 Bone Fixation Devices 589</p> <p>25.3.4 Micro-and Nanoparticles, and Thin Coatings 595</p> <p>25.3.5 Scaffolds 597</p> <p>25.4 Conclusions 598</p> <p>References 598</p> <p><b>26 Packaging and Consumer Goods 605<br /></b><i>Hayati Samsudin and Fabiola Iñiguez-Franco</i></p> <p>26.1 Introduction: Polylactic Acid (PLA) in Packaging and Consumer Goods 605</p> <p>26.2 Food and Beverage 606</p> <p>26.2.1 Evolution of PLA in the Food and Beverage Market 606</p> <p>26.2.2 Growing Interest in PLA Serviceware 607</p> <p>26.3 Distribution Packaging 612</p> <p>26.4 Other Consumer Goods : Automotive 613</p> <p>26.5 Other Consumer Goods 613</p> <p>26.6 Challenges and Final Remarks 614</p> <p>References 615</p> <p><b>27 Textile Applications 619<br /></b><i>Masatsugu Mochizuki</i></p> <p>27.1 Introduction 619</p> <p>27.2 Manufacturing, Properties, and Structure of PLA Fibers 619</p> <p>27.2.1 PLA Fiber Manufacture 619</p> <p>27.2.2 Properties of PLA Fibers and Textile 619</p> <p>27.2.3 Effects of Structure on Properties 620</p> <p>27.2.4 PLA Stereocomplex Fibers 621</p> <p>27.3 Key Performance Features of PLA Fibers 621</p> <p>27.3.1 Biodegradability and the Biodegradation Mechanism 621</p> <p>27.3.2 Moisture Management 623</p> <p>27.3.3 Antibacterial/Antifungal Properties 623</p> <p>27.3.4 Low Flammability 624</p> <p>27.3.5 Weathering Stability 624</p> <p>27.4 Potential Applications 625</p> <p>27.4.1 Geotextiles 625</p> <p>27.4.2 Industrial Fabrics 625</p> <p>27.4.3 Filters 626</p> <p>27.4.4 Towels and Wipes 626</p> <p>27.4.5 Home Furnishings 627</p> <p>27.4.6 Clothing and Personal Belongings 627</p> <p>27.4.7 3D-Printing Filament 628</p> <p>27.5 Conclusions 628</p> <p>References 628</p> <p><b>28 Environmental Applications 631<br /></b><i>Akira Hiraishi and Takeshi Yamada</i></p> <p>28.1 Introduction 631</p> <p>28.2 Application to Water and Wastewater Treatment 631</p> <p>28.2.1 Application as Sorbents 631</p> <p>28.2.2 Application to Nitrogen Removal 633</p> <p>28.3 Application to Methanogenesis 637</p> <p>28.3.1 Anaerobic Digestion 637</p> <p>28.3.2 Methanogenic Microbial Community 637</p> <p>28.4 Application to Bioremediation 638</p> <p>28.4.1 Significance of PLA Use 638</p> <p>28.4.2 Bioremediation of Organohalogen Pollution 638</p> <p>28.4.3 Other Applications 639</p> <p>28.5 Concluding Remarks and Prospects 640</p> <p>Acknowledgments 641</p> <p>References 641</p> <p>Index 645</p>
<p><b>RAFAEL A. AURAS, </b>Professor, School of Packaging, College of Agriculture & Natural Resources, Michigan State University, USA.</p> <p><b>LOONG-TAK LIM, </b>Professor, Department of Food Science, University of Guelph, Canada.</p> <p><b>SUSAN E. M. SELKE,</b> Professor Emeritus, School of Packaging, College of Agriculture & Natural Resources, Michigan State University, USA.</p> <p><b>HIDETO TSUJI,</b> Professor, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Japan.</p>
<p><b>The second edition of a key reference, fully updated to reflect new research and applications </b></p> <p>Poly(lactic acid)s – PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. <p><i>Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life </i>provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. <ul><li>Highlights the biodegradability, recycling, and sustainability benefits of PLA</li> <li>Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming</li> <li>Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production</li> <li>Examines different condensation reactions and modification strategies for enhanced polymerization of PLA</li> <li>Discusses the thermal, rheological, and mechanical properties of PLA</li> <li>Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment</li></ul> <p><i>Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition</i> remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €