Details

Shaping Future 6G Networks


Shaping Future 6G Networks

Needs, Impacts, and Technologies
IEEE Press 1. Aufl.

von: Emmanuel Bertin, Noël Crespi, Thomas Magedanz

117,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.11.2021
ISBN/EAN: 9781119765530
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Shaping Future 6G Networks</b> <p><b>Discover the societal and technology drivers contributing to build the next generation of wireless telecommunication networks</b> <p><i>Shaping Future 6G Networks: Needs, Impacts, and Technologies</i> is a holistic snapshot on the evolution of 5G technologies towards 6G. With contributions from international key players in industry and academia, the book presents the hype versus the realistic capabilities of 6G technologies, and delivers cutting-edge business and technological insights into the future wireless telecommunications landscape. <p>You’ll learn about: <ul><li>Forthcoming demand for post 5G networks, including new requirements coming from small and large businesses, manufacturing, logistics, and automotive industry</li> <li>Societal implications of 6G, including digital sustainability, strategies for increasing energy efficiency, as well as future open networking ecosystems</li> <li>Impacts of integrating non-terrestrial networks to build the 6G architecture</li> <li>Opportunities for emerging THz radio access technologies in future integrated communications, positioning, and sensing capabilities in 6G</li> <li>Design of highly modular and distributed 6G core networks driven by the ongoing RAN-Core integration and the benefits of AI/ML-based control and management</li> <li>Disruptive architectural considerations influenced by the Post-Shannon Theory</li></ul> <p>The insights in <i>Shaping Future 6G Networks</i> will greatly benefit IT engineers and managers focused on the future of networking, as well as undergraduate and graduate engineering students focusing on the design, implementation, and management of mobile networks and applications.
<p>Editor Biographies xiii</p> <p>List of Contributors xv</p> <p>Foreword Henning Schulzrinne xix</p> <p>Foreword Peter Stuckmann xxi</p> <p>Foreword Akihiro Nakao xxiii</p> <p>Acronyms xxv</p> <p><b>1 Toward 6G – Collecting the Research Visions </b><b>1<br /> </b><i>Emmanuel Bertin, Thomas Magedanz, and Noel Crespi</i></p> <p>1.1 Time to Start Shaping 6G 1</p> <p>1.2 Early Directions for Shaping 6G 2</p> <p>1.2.1 Future Services 2</p> <p>1.2.2 Moving from 5G to 6G 2</p> <p>1.2.3 Renewed Value Chain and Collaborations 3</p> <p>1.3 Book Outline and Main Topics 4</p> <p>1.3.1 Use Cases and Requirements for 6G 4</p> <p>1.3.2 Standardization Processes for 6G 4</p> <p>1.3.3 Energy Consumption and Social Acceptance 4</p> <p>1.3.4 New Technologies for Radio Access 5</p> <p>1.3.5 New Technologies for Network Infrastructure 5</p> <p>1.3.6 New Perspectives for Network Architectures 6</p> <p>1.3.7 New Technologies for Network Management and Operation 7</p> <p>1.3.8 Post-Shannon Perspectives 8</p> <p><b>2 6G Drivers for B2B Market: E2E Services and Use Cases </b><b>9<br /> </b><i>Marco Giordani, Michele Polese, Andres Laya, Emmanuel Bertin, and Michele Zorzi</i></p> <p>2.1 Introduction 9</p> <p>2.2 Relevance of the B2B market for 6G 10</p> <p>2.3 Use Cases for the B2B Market 11</p> <p>2.3.1 Industry and Manufacturing 11</p> <p>2.3.2 Teleportation 13</p> <p>2.3.3 Digital Twin 15</p> <p>2.3.4 Smart Transportation 15</p> <p>2.3.5 Public Safety 16</p> <p>2.3.6 Health and Well-being 17</p> <p>2.3.7 Smart-X IoT 19</p> <p>2.3.8 Financial World 20</p> <p>2.4 Conclusions 22</p> <p><b>3 6G: The Path Toward Standardization </b><b>23<br /> </b><i>Guy Redmill and Emmanuel Bertin</i></p> <p>3.1 Introduction 23</p> <p>3.2 Standardization: A Long-Term View 24</p> <p>3.3 IMTs Have Driven Multiple Approaches to Previous Mobile Generations 25</p> <p>3.4 Stakeholder Ecosystem Fragmentation and Explosion 26</p> <p>3.5 Shifting Sands: Will Politics Influence Future Standardization Activities? 28</p> <p>3.6 Standards, the Supply Chain, and the Emergence of Open Models 30</p> <p>3.7 New Operating Models 32</p> <p>3.8 Research – What Is the Industry Saying? 33</p> <p>3.9 Can We Define and Deliver a New Generation of Standards by 2030? 34</p> <p>3.10 Conclusion 34</p> <p><b>4 Greening 6G: New Horizons </b><b>39<br /> </b><i>Zhisheng Niu, Sheng Zhou, and Noel Crespi</i></p> <p>4.1 Introduction 39</p> <p>4.2 Energy Spreadsheet of 6G Network and Its Energy Model 40</p> <p>4.2.1 Radio Access Network Energy Consumption Model 40</p> <p>4.2.2 Edge Computing and Learning: Energy Consumption Models and Their Impacts 41</p> <p>4.2.2.1 Energy Consumption Models in Edge Computing 41</p> <p>4.2.2.2 Energy Consumption Models in Edge Learning 41</p> <p>4.3 Greening 6G Radio Access Networks 42</p> <p>4.3.1 Energy-Efficient Network Planning 42</p> <p>4.3.1.1 BS Deployment Densification with Directional Transmissions 42</p> <p>4.3.1.2 Network with Reconfigurable Intelligent Surfaces (RISs) 43</p> <p>4.3.2 Energy-Efficient Radio Resource Management 44</p> <p>4.3.2.1 Model-free 44</p> <p>4.3.2.2 Less Computation Complexity 44</p> <p>4.3.3 Energy-Efficient Service Provisioning with NFV and SFC 46</p> <p>4.3.3.1 VNF Consolidation 47</p> <p>4.3.3.2 Exploiting Renewable Energy 47</p> <p>4.4 Greening Artificial Intelligence (AI) in 6G Network 47</p> <p>4.4.1 Energy-Efficient Edge Training 48</p> <p>4.4.2 Distributed Edge Co-inference and the Energy Trade-off 49</p> <p>4.5 Conclusions 50</p> <p><b>5 “Your 6G or Your Life”: How Can Another G Be Sustainable? </b><b>55<br /> </b><i>Isabelle Dabadie, Marc Vautier, and Emmanuel Bertin</i></p> <p>5.1 Introduction 55</p> <p>5.2 A World in Crisis 56</p> <p>5.2.1 Ecological Crisis 56</p> <p>5.2.2 Energy Crises 57</p> <p>5.2.3 Technological Innovation and Rebound Effect: A Dead End? 57</p> <p>5.3 A Dilemma for Service Operators 59</p> <p>5.3.1 Incentives to Reduce Consumption: Shooting Ourselves in the Foot? 59</p> <p>5.3.2 Incentives to Reduce Overconsumption: Practical Solutions 60</p> <p>5.3.3 Opportunities. . . and Risks 61</p> <p>5.4 A Necessary Paradigm Shift 62</p> <p>5.4.1 The Status Quo Is Risky, Too 62</p> <p>5.4.2 Creating Value with 6G in the New Paradigm 63</p> <p>5.4.3 Empowering Consumers to Achieve the “2T CO<sub>2</sub>/Year/Person” Objective 64</p> <p>5.5 Summary and Prospects 64</p> <p>5.5.1 Two Drivers, Three Levels of Action 64</p> <p>5.5.2 Which Regulation for Future Use of Technologies? 65</p> <p>5.5.3 Hopes and Prospects for a Sustainable 6G 65</p> <p><b>6 Catching the 6G Wave by Using Metamaterials: A Reconfigurable Intelligent Surface Paradigm </b><b>69<br /> </b><i>Marco Di Renzo and Alexis I. Aravanis</i></p> <p>6.1 Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces 69</p> <p>6.1.1 Reconfigurable Intelligent Surfaces 70</p> <p>6.2 Types of RISs, Advantages, and Limitations 72</p> <p>6.2.1 Advantages and Limitations 74</p> <p>6.3 Experimental Activities 78</p> <p>6.3.1 Large Arrays of Inexpensive Antennas 78</p> <p>6.3.1.1 RFocus 78</p> <p>6.3.1.2 The ScatterMIMO Prototype 79</p> <p>6.3.2 Metasurface Approaches 80</p> <p>6.4 RIS Research Areas and Challenges in the 6G Ecosystem 82</p> <p><b>7 Potential of THz Broadband Systems for Joint Communication, Radar, and Sensing Applications in 6G </b><b>89<br /> </b><i>Robert Müller and Markus Landmann</i></p> <p><b>8 Non-Terrestrial Networks in 6G </b><b>101<br /> </b><i>Thomas Heyn, Alexander Hofmann, Sahana Raghunandan, and Leszek Raschkowski</i></p> <p>8.1 Introduction 101</p> <p>8.2 Non-Terrestrial Networks in 5G 101</p> <p>8.3 Innovations in Telecom Satellites 103</p> <p>8.4 Extended Non-Terrestrial Networks in 6G 105</p> <p>8.4.1 Motivation 105</p> <p>8.4.2 Heterogeneous and Dynamic Networks in 6G 107</p> <p>8.5 Research Challenges Toward 6G-NTN 107</p> <p>8.5.1 Heterogeneous Non-Terrestrial 6G Networks 109</p> <p>8.5.2 Required RAN Architecture in 6G to Support NTN 109</p> <p>8.5.3 Coexistence and Spectrum Sharing 110</p> <p>8.5.3.1 Regulatory Aspects 111</p> <p>8.5.3.2 Techniques for Coexistence 111</p> <p>8.5.4 Energy-Efficient Waveforms 112</p> <p>8.5.5 Scalable RF Carrier Bandwidth 113</p> <p>8.6 Conclusion 114</p> <p><b>9 Rethinking the IP Framework </b><b>117<br /> </b><i>David Zhe Luo and Noel Crespi</i></p> <p>9.1 Introduction 117</p> <p>9.2 Emerging Applications and Network Requirements 118</p> <p>9.3 State of the Art 120</p> <p>9.4 Next-Generation Internet Protocol Framework: Features and Capabilities 122</p> <p>9.4.1 High-Precision and Deterministic Services 122</p> <p>9.4.2 Semantic and Flexible Addressing 124</p> <p>9.4.3 ManyNets Support 125</p> <p>9.4.4 Intrinsic Security and Privacy 126</p> <p>9.4.5 High Throughput 126</p> <p>9.4.6 User-Defined Network Operations 127</p> <p>9.5 Flexible Addressing System Example 127</p> <p>9.6 Conclusion 129</p> <p><b>10 Computing in the Network: The Core-Edge Continuum in 6G Network </b><b>133<br /> </b><i>Marie-José Montpetit and Noel Crespi</i></p> <p>10.1 Introduction 133</p> <p>10.2 A Few Stops on the Road to Programmable Networks 134</p> <p>10.2.1 Active Networks 134</p> <p>10.2.2 Information-centric Networking 135</p> <p>10.2.3 Compute-first Networking 135</p> <p>10.2.4 Software-defined Networking 136</p> <p>10.3 Beyond Softwarization and Clouderization: The Computerization of Networks 137</p> <p>10.3.1 A New End-to-End Paradigm 137</p> <p>10.3.2 Computing in the Network Basic Concepts 138</p> <p>10.3.3 Related Impacts 140</p> <p>10.3.3.1 The Need for Resource Discovery 140</p> <p>10.3.3.2 Power Savings for Eco-conscious Networking 141</p> <p>10.3.3.3 Transport is Still Needed! 141</p> <p>10.3.3.4 How About Security? 141</p> <p>10.4 Computing Everywhere: The Core-Edge Continuum 143</p> <p>10.4.1 A Common Data Layer 143</p> <p>10.4.2 The New Programmable Data Plane 145</p> <p>10.4.3 Novel Architectures Using Computing in the Network 147</p> <p>10.4.3.1 The Newest and Boldest: Quantum Networking 148</p> <p>10.4.3.2 Creating the Tactile and the Automated Internet: FlexNGIA 148</p> <p>10.5 Making it Real: Use Cases 149</p> <p>10.5.1 Computing in the Data Center 150</p> <p>10.5.1.1 Data and Flow Aggregation 150</p> <p>10.5.1.2 Key-value Storage and In-network Caching 151</p> <p>10.5.1.3 Consensus 151</p> <p>10.5.2 Next-generation IoT and Intelligence Everywhere 152</p> <p>10.5.2.1 The Internet of Intelligent Things 152</p> <p>10.5.2.2 Industrial Automation: From Factories to Farms 153</p> <p>10.5.3 Computing Support for Networked Multimedia 154</p> <p>10.5.3.1 Video Analytics 154</p> <p>10.5.3.2 Extended Reality and Multimedia 154</p> <p>10.5.4 Melding AI and Computing for Measuring and Managing the Network 155</p> <p>10.5.4.1 Telemetry 155</p> <p>10.5.4.2 AI/ML for Network Management 156</p> <p>10.5.5 Network Coding 157</p> <p>10.6 Conclusion: 6G, the Network, and Computing 158</p> <p><b>11 An Approach to Automated Multi-domain Service Production for Future 6G Networks </b><b>167<br /> </b><i>Mohamed Boucadair, Christian Jacquenet, and Emmanuel Bertin</i></p> <p>11.1 Introduction 167</p> <p>11.1.1 Background 167</p> <p>11.1.2 The Need for Multi-domain 6G Networks 168</p> <p>11.1.3 Challenges of Multi-domain Service Production and Operation 169</p> <p>11.2 Framework and Assumptions 170</p> <p>11.2.1 Terminology 170</p> <p>11.2.2 Assumptions 171</p> <p>11.2.2.1 SDN-enabled Domains 171</p> <p>11.2.2.2 On-service Orchestrators 172</p> <p>11.2.2.3 Any Kind of Multi-domain Service, Whatever the Vertical 172</p> <p>11.2.3 Roles 173</p> <p>11.2.4 Possible Multi-domain Service Delivery Frameworks 174</p> <p>11.2.4.1 A Set of Bilateral Agreements 174</p> <p>11.2.4.2 A Set of Bilateral Agreements by Means of a Marketplace 174</p> <p>11.2.4.3 A Set of Bilateral Agreements by Means of a Broker 175</p> <p>11.3 Automating the Delivery of Multi-domain Services 175</p> <p>11.3.1 General Considerations 175</p> <p>11.3.2 Discovering Partnering Domains and Communicating with Partnering SDN Controllers 176</p> <p>11.3.3 Multi-domain Service Subscription Framework 178</p> <p>11.3.4 Multi-domain Service Delivery Procedure 179</p> <p>11.4 An Example: Dynamic Enforcement of Differentiated, Multi-domainService Traffic Forwarding Policies by Means of Service Function Chaining 181</p> <p>11.4.1 SFC Control Plane 181</p> <p>11.4.2 Consistency of Operation 182</p> <p>11.4.3 Design Considerations 182</p> <p>11.5 Research Challenges 183</p> <p>11.5.1 Security of Operations 184</p> <p>11.5.2 Consistency of Decisions 184</p> <p>11.5.3 Consistency of Data 184</p> <p>11.5.4 Performance and Scalability 185</p> <p>11.6 Conclusion 185</p> <p><b>12 6G Access and Edge Computing – ICDT Deep Convergence </b><b>187<br /> </b><i>Chih-Lin I, Jinri Huang, and Noel Crespi</i></p> <p>12.1 Introduction 187</p> <p>12.2 True ICT Convergence: RAN Evolution to 5G 187</p> <p>12.2.1 C-RAN: Centralized, Cooperative, Cloud, and Clean 190</p> <p>12.2.1.1 NGFI: From Backhaul to xHaul 191</p> <p>12.2.1.2 From Cloud to Fog 194</p> <p>12.2.2 A Turbocharged Edge: MEC 195</p> <p>12.2.3 Virtualization and Cloud Computing 197</p> <p>12.3 Deep ICDT Convergence Toward 6G 198</p> <p>12.3.1 Open and Smart: Two Major Trends Since 5G 198</p> <p>12.3.1.1 RAN Intelligence – Enabled with Wireless Big Data 199</p> <p>12.3.1.2 OpenRAN 202</p> <p>12.3.1.3 Scope of RAN Intelligence Use Cases 205</p> <p>12.3.2 An OpenRAN Architecture with Native AI: RAN Intelligent Controller (RIC) 208</p> <p>12.3.2.1 NRT-RIC Functions 209</p> <p>12.3.2.2 nRT-RIC Functions 211</p> <p>12.3.3 Key Challenges and Potential Solutions 212</p> <p>12.3.3.1 Customized Data Collection and Control 212</p> <p>12.3.3.2 Radio Resource Management and Air Interface Protocol Processing Decoupling 213</p> <p>12.3.3.3 Open API for xApp 214</p> <p>12.4 Ecosystem Progress from 5G to 6G 214</p> <p>12.4.1 O-RAN Alliance 214</p> <p>12.4.2 Telecom Infrastructure Project 215</p> <p>12.4.3 GSMA Open Networking Initiative 216</p> <p>12.4.4 Open-source Communities 216</p> <p>12.5 Conclusion 217</p> <p><b>13 “One Layer to Rule Them All”: Data Layer-oriented 6G Networks </b><b>221<br /> </b><i>Marius Corici and Thomas Magedanz</i></p> <p>13.1 Perspective 221</p> <p>13.2 Motivation 222</p> <p>13.3 Requirements 223</p> <p>13.4 Benefits/Opportunities 225</p> <p>13.5 Data Layer High-level Functionality 227</p> <p>13.6 Instead of Conclusions 231</p> <p><b>14 Long-term Perspectives: Machine Learning for Future Wireless Networks </b><b>235<br /> </b><i>Sławomir Stan</i><i>́czak, Alexander Keller, Renato L.G. Cavalcante, Nikolaus Binder, and Soma Velayutham</i></p> <p>14.1 Introduction 235</p> <p>14.2 Why Machine Learning in Communication? 236</p> <p>14.2.1 Machine Learning in a Nutshell 237</p> <p>14.2.1.1 Kernel-based Learning with Projections 237</p> <p>14.2.1.2 Deep Learning 238</p> <p>14.2.1.3 Reinforcement Learning 241</p> <p>14.2.2 Choosing the Right Tool for the Job 242</p> <p>14.3 Machine Learning in Future Wireless Networks 243</p> <p>14.3.1 Robust Traffic Prediction for Energy-saving Optimization 244</p> <p>14.3.2 Fingerprinting-based Localization 244</p> <p>14.3.3 Joint Power and Beam Optimization 245</p> <p>14.3.4 Collaborative Compressive Classification 245</p> <p>14.3.5 Designing Neural Architectures for Sparse Estimation 247</p> <p>14.3.6 Online Loss Map Reconstruction 248</p> <p>14.3.7 Learning Non-Orthogonal Multiple Access and Beamforming 248</p> <p>14.3.8 Simulating Radiative Transfer 250</p> <p>14.4 The Soul of 6G will be Machine Learning 251</p> <p>14.5 Conclusion 252</p> <p><b>15 Managing the Unmanageable: How to Control Open and Distributed 6G Networks </b><b>255<br /> </b><i>Imen Grida Ben Yahia, Zwi Altman, Joanna Balcerzak, Yosra Ben Slimen, and Emmanuel Bertin</i></p> <p>15.1 Introduction 255</p> <p>15.2 Managing Open and Distributed Radio Access Networks 256</p> <p>15.2.1 Radio Access Network 256</p> <p>15.2.2 Innovation in the Standardization Arena 258</p> <p>15.2.2.1 RAN 258</p> <p>15.3 Core Network and End-to- End Network Management 260</p> <p>15.3.1 Network Architecture and Management 260</p> <p>15.3.2 Changes in Architecture and Network Management from Standardization Perspective 262</p> <p>15.3.3 Quality of Service and Experience 263</p> <p>15.3.4 Standardization Effort in Data Analytics 264</p> <p>15.4 Trends in Machine Learning Suitable to Network Data and 6G 265</p> <p>15.4.1 Federated Learning 265</p> <p>15.4.2 Auto-Labeling Techniques and Network Actuations 266</p> <p>15.5 Conclusions 268</p> <p><b>16 6G and the Post-Shannon Theory </b><b>271<br /> </b><i>Juan A. Cabrera, Holger Boche, Christian Deppe, Rafael F. Schaefer, Christian Scheunert, and Frank H. P. Fitzek</i></p> <p>16.1 Introduction 271</p> <p>16.2 Message Identification for Post-Shannon Communication 273</p> <p>16.2.1 Explicit Construction of RI Codes 277</p> <p>16.2.2 Secrecy for Free 279</p> <p>16.2.3 Message Identification Without Randomness 280</p> <p>16.3 Resources Considered Useless Become Relevant 281</p> <p>16.3.1 Common Randomness for Nonsecure Communication 281</p> <p>16.3.2 Feedback in Identification and the Additivity of Bundled Channels 282</p> <p>16.4 Physical Layer Service Integration 283</p> <p>16.4.1 Motivation and Requirements 283</p> <p>16.4.2 Detectability of Denial-of-Service Attacks 284</p> <p>16.4.3 Further Limits for Computer-Aided Approaches 288</p> <p>16.5 Other Implementations of Post-Shannon Communication 288</p> <p>16.5.1 Post-Shannon in Multi-Code CDMA 288</p> <p>16.5.2 Waveform Coding in MIMO Systems 289</p> <p>16.6 Conclusions: A Call to Academia and Standardization Bodies 290</p> <p>Index 295</p>
<p><b>Emmanuel Bertin, PhD,</b> is a Senior Expert at Orange Innovation, France and an Adjunct Professor at Institut Polytechnique de Paris, France. His focus is on the digital transformation of networking, as well as on the associated organizational challenges.</p> <p><b>Noel Crespi, PhD,</b> is Professor and Head of Laboratory at the Telecom SudParis, Institut Polytechnique de Paris, France. His focus is on softwarization and Artificial Intelligence. <p><b>Thomas Magedanz, PhD,</b> is University Professor at Technische Universität Berlin and Director of the Software-based Networks Department at Fraunhofer FOKUS in Berlin, Germany. His research focus is on software-based networking and open wireless research testbeds.
<p><b>Discover the societal and technology drivers contributing to build the next generation of wireless telecommunication networks</b></p> <p><i>Shaping Future 6G Networks: Needs, Impacts, and Technologies</i> is a holistic snapshot on the evolution of 5G technologies towards 6G. With contributions from international key players in industry and academia, the book presents the hype versus the realistic capabilities of 6G technologies, and delivers cutting-edge business and technological insights into the future wireless telecommunications landscape. <p>You’ll learn about: <ul><li>Forthcoming demand for post 5G networks, including new requirements coming from small and large businesses, manufacturing, logistics, and automotive industry</li> <li>Societal implications of 6G, including digital sustainability, strategies for increasing energy efficiency, as well as future open networking ecosystems</li> <li>Impacts of integrating non-terrestrial networks to build the 6G architecture</li> <li>Opportunities for emerging THz radio access technologies in future integrated communications, positioning, and sensing capabilities in 6G</li> <li>Design of highly modular and distributed 6G core networks driven by the ongoing RAN-Core integration and the benefits of AI/ML-based control and management</li> <li>Disruptive architectural considerations influenced by the Post-Shannon Theory</li></ul> <p>The insights in <i>Shaping Future 6G Networks</i> will greatly benefit IT engineers and managers focused on the future of networking, as well as undergraduate and graduate engineering students focusing on the design, implementation, and management of mobile networks and applications.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €