Details

Lignocellulose Bioconversion Through White Biotechnology


Lignocellulose Bioconversion Through White Biotechnology


1. Aufl.

von: Anuj Kumar Chandel

145,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.09.2022
ISBN/EAN: 9781119735960
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Lignocellulose Bioconversion Through White Biotechnology</b> <p><b>Comprehensive resource summarizing the recent technological advancements in white biotechnology and biomass conversion into fuels, chemicals, food, and more </b> <p><i>Lignocellulose Bioconversion Through White Biotechnology</i> presents cutting-edge information on lignocellulose biomass conversion, detailing how white biotechnology can develop sustainable biomass pretreatment methods, effective plant cell wall degrading enzymes to yield high quality cellulosic sugars, and the eventual conversion of these sugars into fuels, chemicals, and other materials. To provide comprehensive coverage of the subject, the work offers in-depth critical analysis into both techno-economic and life cycle analysis of lignocellulose-based products. <p>Each of the 16 chapters, written by a well-qualified and established researchers, academics, or engineers, presents key information on a specific facet of lignocellulose-based products. Topics covered include: <ul><li>Lignocellulose feedstock availability, types of feedstock, and potential crops that are of high interest to the industry</li> <li>Lignocellulose bioconversion, including both foundational technical aspects and new modern developments</li> <li>Plant cell wall degrading enzymes, including cellulase improvement and production challenges/solutions when scaling up</li> <li>Improvements and challenges when considering fermenting microorganisms for cellulosic sugars utilization</li> <li>Scaling up of lignocellulose conversion, including insight into current challenges and future practices</li> <li>Techno-economic aspects of lignocellulose feedstock conversion, green consumerism and industrialization aspects of renewable fuels/chemicals</li></ul> <p> Students, academics, researchers, bio-business analysts, and policy-makers working on sustainable fuels, chemicals, materials, and renewable fuels can use <i>Lignocellulose Bioconversion Through White Biotechnology</i> to gain invaluable expert insight into the subject, its current state of the art, and potential exciting future avenues to explore.
<p>List of Contributors xiii</p> <p>Preface xx</p> <p><b>1 White Biotechnology: Impeccable Role in Sustainable Bioeconomy 1<br /> </b><i>Anuj Kumar Chandel, Jesús J. Ascencio, Akhilesh K. Singh, Ruly T. Hilares, Lucas Ramos, Rishi Gupta, Yeruva Thirupathaiah, and Sridevi Jagavati</i></p> <p>1.1 Introduction 1</p> <p>1.2 Biomass Feedstock: Types and Composition 3</p> <p>1.3 Biomass Pretreatment: An Overview and State- of- the- Art 4</p> <p>1.4 Lignocellulosic Sugar Production 5</p> <p>1.5 Production of Ethanol and Biodiesel 8</p> <p>1.6 Drop- in Renewable Biofuels: Green Hydrocarbons 11</p> <p>1.7 Global Scenario of the Biofuel Industry 12</p> <p>1.8 Economic Outcomes 14</p> <p>1.9 Sustainability and Biorefinery 16</p> <p>1.10 Conclusion 16</p> <p>Acknowledgement 17</p> <p>References 17</p> <p><b>2 Lignocellulose Feedstock Availability, Types of Feedstocks, and New Designer Crops 24<br /> </b><i>V. Guadalupe Bustos, R. Daniel Trujillo, C. Linda M. Martínez, and S. Rodolfo Torres</i></p> <p>2.1 Introduction 24</p> <p>2.2 Lignocellulosic Biomass 25</p> <p>2.2.1 Plant Cell Wall 27</p> <p>2.3 Biomass Conversion Pathways 29</p> <p>2.3.1 Lignocellulosic Biomass Pretreatment 29</p> <p>2.3.2 Enzymatic Hydrolysis 32</p> <p>2.3.3 Conversion of Lignocellulosic Components 33</p> <p>2.3.3.1 Biofuels 33</p> <p>2.3.3.2 Pectins 34</p> <p>2.3.3.3 Cellulose Nanofibers 35</p> <p>2.4 Different Types of Biomass Available in Mexico 36</p> <p>2.4.1 Coconut Shells 36</p> <p>2.4.2 Sugarcane Bagasse 38</p> <p>2.4.2.1 Applications of Sugarcane Bagasse 39</p> <p>2.4.3 Tequilana Agave 39</p> <p>2.4.3.1 Heart or Piña 39</p> <p>2.4.3.2 Leaves 40</p> <p>2.4.3.3 Conditioning of Agave tequilana Leaves to Obtain Fermentable Sugars 40</p> <p>2.5 Conclusion 42</p> <p>References 42</p> <p><b>3 Lignocellulose Bioconversion: Technical Aspects and New Developments 55<br /> </b><i>J Gamboa- Santos and A Alzamendi</i></p> <p>3.1 Introduction 55</p> <p>3.2 Lignocellulosic (LC) Biomass Composition 56</p> <p>3.2.1 Cellulose 56</p> <p>3.2.2 Hemicellulose 56</p> <p>3.2.3 Lignin 57</p> <p>3.3 Biorefinery Concept in the Era of Sustainable Circular Economy 57</p> <p>3.4 Biorefinery Treatments 58</p> <p>3.4.1 Pretreatments 58</p> <p>3.4.1.1 Physical Methods 60</p> <p>3.4.1.2 Thermal Methods 62</p> <p>3.4.1.3 Chemical Methods 63</p> <p>3.4.1.4 Biological Methods 64</p> <p>3.5 New Innovative Technologies and Developments 67</p> <p>3.5.1 Development of Green/Environmentally Friendly Methods 68</p> <p>3.5.1.1 Green Solvents 69</p> <p>3.5.2 Biological New Developments 71</p> <p>3.5.2.1 Eco- friendly Bacterial Bioconversion 72</p> <p>3.5.2.2 Fungal Depolymerization 72</p> <p>3.5.2.3 Bacterial Depolymerization 73</p> <p>3.5.3 Combined Pretreatment Methods 73</p> <p>3.6 Final Remarks 74</p> <p>References 75</p> <p><b>4 An Evaluation of Steam Explosion Pretreatment to Enhance the Digestibility of Lignocellulosic Biomass 83<br /> </b><i>Bhima Bhukya and Praveen K. Keshav</i></p> <p>4.1 Introduction 83</p> <p>4.2 Mode of Action and Types of Steam Explosion Pretreatment 86</p> <p>4.3 Factors Affecting the Steam Explosion Pretreatment 87</p> <p>4.3.1 Effect on Particle Size of Biomass 87</p> <p>4.3.2 Effect of Moisture Content 88</p> <p>4.3.3 Effect of Combined Severity Factor 88</p> <p>4.3.4 Effect of Addition of Catalyst 89</p> <p>0005376972.indd 6 08-22-2022 19:25:16</p> <p>4.4 Various Post- pretreatment Approaches to Improve Saccharification of Steam Exploded Biomass 91</p> <p>4.5 Summary and Conclusions 91</p> <p>Acknowledgements 93</p> <p>References 93</p> <p><b>5 The Role of Plant Cell Wall Degrading Enzymes in Biorefinery Development 99<br /> </b><i>Katarina R. Mihajlovski and Marija D. Milić</i></p> <p>5.1 Introduction 99</p> <p>5.2 Lignocellulosic Biomass— the Plant Cell Wall 100</p> <p>5.3 The Cell Wall Degrading Enzymes 101</p> <p>5.4 Cellulases in a Biorefinery Development 102</p> <p>5.4.1 Commercial Cellulase Cocktails for Lignocellulosic Biomass Degradation 104</p> <p>5.4.2 Commercial Cellulase Preparation for Various Industrial Uses 112</p> <p>5.4.2.1 Laundry and Detergent Industry 116</p> <p>5.4.2.2 Textile Industry 116</p> <p>5.4.2.3 Pulp and Paper Industry 117</p> <p>5.4.2.4 Bakery Industry 118</p> <p>5.4.2.5 Beverages 119</p> <p>5.4.2.6 Edible Oils 120</p> <p>5.4.2.7 Animal Feed Industry 120</p> <p>5.5 Microbial Fermentations for Cellulase Production 121</p> <p>5.6 Conclusion 124</p> <p>Acknowledgement 127</p> <p>References 127</p> <p><b>6 Microbial Production of Biobased Chemicals: Improvements and Challenges 136<br /> </b><i>Luana Assis Serra, Débora Trichez, Clara Vida G. C. Carneiro, Letícia M. Mallmann Ferreira, Paula F. Franco, and João Ricardo M. Almeida</i></p> <p>6.1 Introduction 136</p> <p>6.2 Challenges in Developing Microorganisms for Lignocellulosic Sugar Utilization 138</p> <p>6.3 Relevant Biobased Chemicals from Biomass 141</p> <p>6.4 Microbial Products from Sugar Fermentation 145</p> <p>6.4.1 Organic Acids 145</p> <p>6.4.1.1 Adipic Acid 145</p> <p>6.4.1.2 Furan- 2,5- dicarboxylic Acid (C<sub>6</sub>H<sub>4</sub>O<sub>5</sub>) 150</p> <p>6.4.1.3 Itaconic Acid 151</p> <p>6.4.1.4 Lactic Acid and Polylactic Acid 152</p> <p>6.4.1.5 Levulinic Acid 153</p> <p>6.4.1.6 Succinic Acid 154</p> <p>6.4.2 Diols 155</p> <p>6.4.2.1 1,3- Propanediol (PDO) 155</p> <p>6.4.2.2 Propylene Glycol 156</p> <p>6.4.3 Polyols 157</p> <p>6.4.3.1 Sorbitol 157</p> <p>6.4.3.2 Xylitol 158</p> <p>6.4.4 Alcohols 159</p> <p>6.4.4.1 Butanol 159</p> <p>6.4.4.2 Ethanol 160</p> <p>6.4.5 Aldehydes 162</p> <p>6.4.5.1 Furfural 162</p> <p>6.4.6 Polyesters 163</p> <p>6.4.6.1 Polyhydroxyalkanoates (PHAs) 163</p> <p>6.4.7 Xylenes 164</p> <p>6.4.7.1 Para- xylene 164</p> <p>6.5 Conclusion 165</p> <p>References 165</p> <p><b>7 Molecular Biology Based Innovations in Lignocellulose Biorefinery 177<br /> </b><i>Nilesh Kumar Sharma and Mohit Bibra</i></p> <p>7.1 Introduction 177</p> <p>7.2 Lignocellulosic Biomass Potential 178</p> <p>7.3 Biomass Pretreatment 178</p> <p>7.3.1 Mechanical Pretreatment 179</p> <p>7.3.2 Chemical Pretreatment 179</p> <p>7.3.3 Biological Pretreatment 183</p> <p>7.3.4 Other Methods 183</p> <p>7.4 Different Approaches to Enhance Xylose Utilization 183</p> <p>7.4.1 Random Mutagenesis 184</p> <p>7.4.1.1 Evolutionary Adaptation 184</p> <p>7.4.1.2 Strain Hybridization 185</p> <p>7.4.2 Site- specific Engineering 187</p> <p>7.4.2.1 Targeting Sugar Transporters 187</p> <p>7.4.2.2 Targeting Xylose Metabolic Pathway 189</p> <p>7.4.2.3 Targeting Non- oxidative Pathway 191</p> <p>7.4.2.4 Engineering Non- conventional Yeast 191</p> <p>7.5 Conclusion and Future Prospects 192</p> <p>References 192</p> <p><b>8 Recent Developments in Synthetic Biology and their Role in Uplifting Lignocellulose Bioeconomy 203<br /> </b><i>Nayanika Sarkar, Adhinarayan Vamsidhar, Pratham Khaitan, and Samuel Jacob</i></p> <p>8.1 Introduction 203</p> <p>8.1.1 Synthetic Biology Routes for the Delignification of Lignocellulosic Biomass for Biorefinery 204</p> <p>8.1.2 The Key Players of Delignification 205</p> <p>8.1.3 Case Studies 206</p> <p>8.1.3.1 Fungi as Expression Host 206</p> <p>8.1.3.2 Yeast as Expression Host 207</p> <p>8.1.3.3 Bacteria as Expression Host 209</p> <p>8.2 Synthetic Biology Routes for Cellulose Degradation in Lignocellulosic Biomass 209</p> <p>8.2.1 Cellulose— a Major Plant Component 209</p> <p>8.2.2 Synthetic Biology for Hydrolysis of Cellulose 210</p> <p>8.2.3 Degradation using Nanoparticles 213</p> <p>8.3 Synthetic Biology Routes for the Production of Low- value and High- value Alcohols 213</p> <p>8.3.1 Low- value Alcohols 214</p> <p>8.3.1.1 Ethanol 214</p> <p>8.3.1.2 Methanol 214</p> <p>8.3.2 High- value Alcohols 215</p> <p>8.3.2.1 Xylitol 215</p> <p>8.3.2.2 Butanol 215</p> <p>8.4 Conclusion 217</p> <p>References 217</p> <p><b>9 Lignocellulose Bioconversion through Chemical Methods, Platform Chemicals, and New Chemicals 221<br /> </b><i>Manoela Martins, Patrícia F. Ávila, Marcos Fellipe da Silva, Allan Henrique Felix de Melo, Alberto M. Moura Lopes, and Rosana Goldbeck</i></p> <p>9.1 Introduction 221</p> <p>9.2 Lignocellulosic Biomass 222</p> <p>9.2.1 Chemical Composition of Lignocellulosic Biomass 222</p> <p>9.2.1.1 Cellulose 222</p> <p>9.2.1.2 Hemicellulose 222</p> <p>9.2.1.3 Lignin 223</p> <p>9.2.2 Biomass Types and Recalcitrance Properties 223</p> <p>9.3 Pretreatment and Fractionation of Lignocellulosic Materials 223</p> <p>9.3.1 Chemical Pretreatments 225</p> <p>9.3.1.1 Alkaline Pretreatment 225</p> <p>9.3.1.2 Acidic Pretreatment 225</p> <p>9.3.1.3 Ionic Liquids 225</p> <p>9.3.1.4 Wet Oxidation 226</p> <p>9.3.2 Physicochemical Pretreatment 226</p> <p>9.3.2.1 Steam Explosion 226</p> <p>9.3.2.2 Liquid Hot Water 227</p> <p>9.3.2.3 Ammonia Fiber/Freeze Explosion (AFEX), Ammonia Recycle Percolation (ARP) and Soaking Aqueous Ammonia (SAA) 227</p> <p>9.3.2.4 Supercritical Fluid 228</p> <p>9.3.3 Fractionating Treatments of Lignocellulosic Compounds 228</p> <p>9.4 Enzymatic Hydrolysis of Lignocellulosic Biomass 229</p> <p>9.4.1 Cellulases 229</p> <p>9.4.2 Ligninolytic Enzymes 230</p> <p>9.4.3 Pectic Enzymes 231</p> <p>9.4.4 Mannases 231</p> <p>9.4.5 Xylanases 231</p> <p>9.4.5.1 Backbone Enzymes 231</p> <p>9.4.5.2 Side Chain Enzymes 232</p> <p>9.4.5.3 Accessory Enzymes 232</p> <p>9.4.6 Enzyme Synergism 232</p> <p>9.5 Biorefinery— Biobased Chemicals Platform 233</p> <p>9.5.1 Contextualization— Bioeconomic and Biorefinery 233</p> <p>9.5.2 Bioethanol 234</p> <p>9.5.3 Other Value- added Bioproducts Obtained from Lignocellulosic Biomass 235</p> <p>9.5.3.1 Nanocellulose 236</p> <p>9.5.3.2 Prebiotics 237</p> <p>9.5.3.3 Organic Acids 237</p> <p>9.5.3.4 Sweeteners 239</p> <p>9.5.3.5 Biogas 239</p> <p>9.5.3.6 Vanillin 240</p> <p>Acknowledgment 240</p> <p>References 240</p> <p><b>10 Lignin Conversion through Biological and Chemical Routes 248<br /> </b><i>Marcos H. L. Silveira, Alain E. M. Mera, Anuj Kumar Chandel, and Eduardo A. Ribeiro</i></p> <p>10.1 Introduction 248</p> <p>10.1.1 Lignin Availability 249</p> <p>10.1.2 Lignin Structure 249</p> <p>10.1.3 Chemical Transformation Routes 252</p> <p>10.1.4 Lignin Conversion by Biological Routes 253</p> <p>10.1.5 Potential Chemicals from Lignin 255</p> <p>10.2 Conclusions 255</p> <p>Acknowledgements 257</p> <p>References 258</p> <p><b>11 Downstream Processing in Lignocellulose Conversion: Current Challenges and Future Practices 261<br /> </b><i>Kelly J. Dussán, Débora D. V. Silva, Ana F. M. Costa, Luana C. Grangeiro, and Ellen C. Giese</i></p> <p>11.1 Introduction 261</p> <p>11.2 Challenges and Perspectives Encompassing Circular Economy 263</p> <p>11.3 Improving Lignocellulose Conversion for Future Bioeconomy 267</p> <p>11.4 Industry 4.0: Advanced Technologies for the Biorefinery Platform 274</p> <p>11.5 Conclusions 280</p> <p>References 280</p> <p><b>12 Scale- up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles 289<br /> </b><i>Henrique M. Baudel, Danielle Matias Rodrigues, Eduardo Diebold, and Anuj Kumar Chandel</i></p> <p>12.1 Introduction 289</p> <p>12.2 Lignocellulosic Conversion Processes and Engineering: Challenges and Possible Solutions 293</p> <p>12.2.1 Steam Pretreatment: Issues and Potential Problems 297</p> <p>12.3 Ethanol from Eucalyptus Wastes 304</p> <p>12.4 Ethanol and Xylitol Production from Sprinkled Sugarcane Straw 307</p> <p>12.5 Conclusions and Remarks 309</p> <p>References 310</p> <p><b>13 Techno- economic Analysis of Bioconversion of Woody Biomass to Ethanol 312<br /> </b><i>Deepak Kumar, Anuj Kumar Chandel, and Lakhveer Singh</i></p> <p>13.1 Introduction 312</p> <p>13.2 Techno- economic Analysis 313</p> <p>13.3 Bioconversion of Woody Biomass to Ethanol 315</p> <p>13.4 Techno- economic Analysis of Woody Biomass to Ethanol 320</p> <p>13.5 Integrated TEA and life cycle assessment (LCA) 323</p> <p>13.6 Conclusions 325</p> <p>References 326</p> <p><b>14 Environmental Indicators, Life Cycle Analysis and Ecological Perspective on Biomass Conversion 330<br /> </b><i>Andreza A. Longati, Ediane S. Alves, Simone C. Myoshi, Andrew M. Elias, Felipe F. Furlan, Everson A. Miranda, and Roberto C. Giordano</i></p> <p>14.1 Introduction 330</p> <p>14.1.1 The Role of Biomass in a Sustainable Economy 330</p> <p>14.2 Life Cycle Assessment (LCA) 334</p> <p>14.3 New Brazilian National Biofuel Policy (RenovaBio): A Case Study for Sugarcane Distilleries 338</p> <p>14.4 Process Systems Engineering Tools for Biomass LCA 341</p> <p>14.5 Retro Techno- economic Environmental Analysis 343</p> <p>Acknowledgements 344</p> <p>References 345</p> <p><b>15 Green Consumerism and Role in Uplifting Lignocellulose Bioeconomy 351<br /> </b><i>BS Dhanya</i></p> <p>15.1 Introduction 351</p> <p>15.2 Lignocellulosic Biomass and its Contribution in Bioeconomy 352</p> <p>15.2.1 Lignocellulosic Biomass 352</p> <p>15.2.2 Life Cycle Assessment (LCA) of Lignocellulosic Biomass 355</p> <p>15.3 Lignocellulosic Bioeconomy and its Sustainability in the World 356</p> <p>15.3.1 Lignocellulose Bioeconomy in Malaysia 357</p> <p>15.3.2 Lignocellulose Bioeconomy in Japan 358</p> <p>15.3.3 Lignocellulose Bioeconomy in European Countries 359</p> <p>15.4 Green Consumerism and its Upsurge in the Lignocellulosic Bioeconomy 359</p> <p>15.4.1 Wide Scope in Green Consumerism 360</p> <p>15.4.2 Government Subsidies 360</p> <p>15.4.3 Eco- friendly Competitive Advantage 361</p> <p>15.4.4 Corporate Social Responsibility 361</p> <p>15.5 Challenges in Green Consumerism 361</p> <p>15.6 Future Prospects 363</p> <p>15.7 Conclusion 363</p> <p>References 364</p> <p><b>16 Going Green: Achieving the Circular Economy with Sustainable Biorefineries, Process Scale- Up, and Fermentation Optimization 367<br /> </b><i>Sreenivas R. Ravella, David N. Bryant, Phil J. Hobbs, Ana Winters, David J. Warren- Walker, and Joe Gallagher</i></p> <p>16.1 Introduction 367</p> <p>16.2 Sustainable Biorefineries and Supply Chain Aspects 368</p> <p>16.3 Pretreatment of Biomass Using Pilot- Scale Steam Explosion Rigs 370</p> <p>16.3.1 Steam Explosion (SE) of Miscanthus and Methane Production from Miscanthus as an Example 370</p> <p>16.3.2 Heat Requirement of Biorefineries 371</p> <p>16.4 Taguchi Methodology for Process Optimization 372</p> <p>16.5 Process Automation 372</p> <p>16.5.1 Automation 372</p> <p>16.5.1.1 Mobile Phone and Real- time Control 374</p> <p>16.5.1.2 BrewMonitor® System 374</p> <p>16.5.2 Process Optimization and Artificial Intelligence 374</p> <p>16.5.3 Biogas Pilot Plant 376</p> <p>16.5.4 Sensors 376</p> <p>16.5.5 Process Control Configuration with LabVIEW and NI Data Acquisition (DAQ) Devices 378</p> <p>16.5.5.1 Connect Sensors and Signals to a DAQ Device 378</p> <p>16.5.6 Rule- based Control Structure 378</p> <p>16.5.7 Pilot Plant Data 379</p> <p>16.5.8 LabVIEW Application for Laboratory- scale, Pilot- scale and Industrial Fermentations 379</p> <p>16.5.8.1 LabVIEW Datalogging and Supervisory Control Module 380</p> <p>16.5.9 Advantages of LabVIEW in Automation and Monitoring Commercial Plants 380</p> <p>16.6 Microbial Adaptation, Evolution, and Diversity for Process Optimization 381</p> <p>16.6.1 Microbiology of Volatile Fatty Acids (VFAs) Production in AD 383</p> <p>16.7 Final Remarks and Conclusions 387</p> <p>16.7.1 Main Conclusions 388</p> <p>Acknowledgements 388</p> <p>References 388</p> <p>Index 398</p>
<p><b>Anuj Kumar Chandel,</b> Assistant Professor, Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil. </p>
<p><b>Comprehensive resource summarizing the recent technological advancements in white biotechnology and biomass conversion into fuels, chemicals, food, and more </b></p> <p><i>Lignocellulose Bioconversion Through White Biotechnology</i> presents cutting-edge information on lignocellulose biomass conversion, detailing how white biotechnology can develop sustainable biomass pretreatment methods, effective plant cell wall degrading enzymes to yield high quality cellulosic sugars, and the eventual conversion of these sugars into fuels, chemicals, and other materials. To provide comprehensive coverage of the subject, the work offers in-depth critical analysis into both techno-economic and life cycle analysis of lignocellulose-based products. <p>Each of the 16 chapters, written by a well-qualified and established researchers, academics, or engineers, presents key information on a specific facet of lignocellulose-based products. Topics covered include: <ul><li>Lignocellulose feedstock availability, types of feedstock, and potential crops that are of high interest to the industry</li> <li>Lignocellulose bioconversion, including both foundational technical aspects and new modern developments</li> <li>Plant cell wall degrading enzymes, including cellulase improvement and production challenges/solutions when scaling up</li> <li>Improvements and challenges when considering fermenting microorganisms for cellulosic sugars utilization</li> <li>Scaling up of lignocellulose conversion, including insight into current challenges and future practices</li> <li>Techno-economic aspects of lignocellulose feedstock conversion, green consumerism and industrialization aspects of renewable fuels/chemicals</li></ul> <p> Students, academics, researchers, bio-business analysts, and policy-makers working on sustainable fuels, chemicals, materials, and renewable fuels can use <i>Lignocellulose Bioconversion Through White Biotechnology</i> to gain invaluable expert insight into the subject, its current state of the art, and potential exciting future avenues to explore.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €