Details

Radio Science Techniques for Deep Space Exploration


Radio Science Techniques for Deep Space Exploration


JPL Deep-Space Communications and Navigation Series 1. Aufl.

von: Sami W. Asmar

118,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 23.03.2022
ISBN/EAN: 9781119734161
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Explore the development and state-of-the-art in deep space exploration using radio science techniques</b></p> <p>In <i>Radio Science Techniques for Deep Space Exploration</i>, accomplished NASA/JPL researcher and manager Sami Asmar delivers a multi-disciplinary exploration of the science, technology, engineering, mission operations, and signal processing relevant to deep space radio science. The book discusses basic principles before moving on to more advanced topics that include a wide variety of graphical illustrations and useful references to publications by experts in their respective fields.</p> <p>Complete explanations of changes in the characteristics of electromagnetic waves and the instrumentation and technology used in scientific experiments are examined.</p> <p><i>Radio Science Techniques for Deep Space Exploration</i> offers answers to the question of how to explore the solar system with radio links and better understand the interior structures, atmospheres, rings, and surfaces of other planets. The author also includes:</p> <ul> <li>Thorough introductions to radio science techniques and systems needed to investigate planetary atmospheres, rings, and surfaces</li> <li>Comprehensive explorations of planetary gravity and interior structures, as well as relativistic and solar studies</li> <li>Practical discussions of instrumentation, technologies, and future directions in radio science techniques</li> </ul> <p>Perfect for students and professors of physics, astronomy, planetary science, aerospace engineering, and communications engineering, <i>Radio Science Techniques for Deep Space Exploration</i> will also earn a place in the libraries of engineers and scientists in the aerospace industry.</p>
<p>Foreword xi</p> <p>Preface xiii</p> <p>Acknowledgments xv</p> <p>Author and Contributors xvii</p> <p><b>1 Investigations and Techniques </b><b>1</b></p> <p>1.0 Introduction 1</p> <p>1.1 Historical Background 2</p> <p>1.1.1 The Field of Radio Science 3</p> <p>1.2 Fundamental Concepts 5</p> <p>1.2.1 Categories of RS Investigations 10</p> <p>1.2.2 Related Fields 12</p> <p>1.3 Historical Development 14</p> <p>1.4 Overview of the Radio Science Instrumentation System 18</p> <p>1.4.1 Flight System 23</p> <p>1.4.2 Ground System 24</p> <p>1.4.3 Other Ground Stations 26</p> <p>1.5 Noise, Error Sources, and Calibrations 26</p> <p>1.6 Experiment Implementation, Data Archiving, and Critical Mission Support 29</p> <p>1.7 Radio Science at Home 30</p> <p>1.8 Future Directions 32</p> <p>1.9 Summary and Remaining Chapters 32</p> <p>Appendix 1A Selected Accomplishments and Planned Observations in Spacecraft Radio Science 35</p> <p>1A.1 Selected Accomplishments in Radio Science 35</p> <p>1A.2 Planned Observations in the Near-Term 36</p> <p>1A.3 Planned Observations in the Long Term 37</p> <p><b>2 Planetary Atmospheres, Rings, and Surfaces </b><b>39</b></p> <p>2.1 Overview of Radio Occultations 39</p> <p>2.2 Neutral Atmospheres 45</p> <p>2.2.1 Abel Inversion 48</p> <p>2.3 Ionospheres 52</p> <p>2.4 Rings 53</p> <p>2.4.1 Ring Occultation Observables 55</p> <p>2.4.2 Ring Occultation Analysis 56</p> <p>2.4.3 Ring Diffraction Correction 60</p> <p>2.4.4 Data Decimation and Profile Resolution 61</p> <p>2.4.5 Signal-to-noise Ratio-resolution Tradeoff 61</p> <p>2.5 Surface Scattering 64</p> <p><b>3 Gravity Science and Planetary Interiors </b><b>69</b></p> <p>3.1 Overview 69</p> <p>3.2 Gravity Observables and Formulations 74</p> <p>3.2.1 Alternative Basis and Methods 75</p> <p>3.2.2 Tidal Forces and Time Variable Gravity 76</p> <p>3.2.3 Covariance Analysis 81</p> <p>3.3 Earth and Moon Gravity Measurements and the Development of Crosslinks 83</p> <p>3.4 Shape and Topography Data for Interpretation of Gravity Measurements 87</p> <p>3.4.1 Imagery 92</p> <p>3.4.2 Altimetry 93</p> <p>3.4.3 Space-based Radar 94</p> <p>3.4.4 Radio Occultations 94</p> <p>3.4.5 Ground-based Radar 94</p> <p>3.4.6 Examples of Results of Gravity–Topography Analysis 94</p> <p>3.5 Application to Solar System Bodies 95</p> <p>3.5.1 Moon 96</p> <p>3.5.2 Mercury 96</p> <p>3.5.3 Venus 97</p> <p>3.5.4 Mars 97</p> <p>3.5.5 Jupiter 99</p> <p>3.5.6 Saturn 102</p> <p>3.5.7 Uranus 103</p> <p>3.5.8 Neptune 104</p> <p>3.5.9 Pluto 104</p> <p>3.5.10 Asteroids and Comets 104</p> <p>3.5.11 Pioneer and Earth Flyby Anomalies 105</p> <p>3.6 A User’s Guide 106</p> <p>3.6.1 Calculation of Observables and Partials 108</p> <p>3.6.2 Estimation Filter 109</p> <p>3.6.3 Solution Analysis 109</p> <p>Appendix 3A Planetary Geodesy 111</p> <p>3A.1 Planetary Geodesy: Gravitational Potentials and Fields 111</p> <p>3A.2 Gravity Determination Technique 114</p> <p>3A.3 Dynamical Integration 114</p> <p>3A.4 Processing of Observations 116</p> <p>3A.5 Filtering of Observations 117</p> <p><b>4 Solar and Fundamental Physics </b><b>123</b></p> <p>4.1 Principles of Heliospheric Observations 123</p> <p>4.2 Inner Heliospheric Electron Density 126</p> <p>4.3 Density Power Spectrum 127</p> <p>4.4 Intermittency, Nonstationarity, and Events 127</p> <p>4.5 Faraday Rotation 128</p> <p>4.6 Spaced-receiver Measurements 128</p> <p>4.7 Space-time Localization of Plasma Irregularities 129</p> <p>4.8 Utility for Telecommunications Engineering 130</p> <p>4.9 Precision Tests of Relativistic Gravity 131</p> <p>4.10 Scientific Goals and Objectives 133</p> <p>4.10.1 Determine γ to an Accuracy of 2 × 10<sup>−6</sup> 134</p> <p>4.10.2 Determine β to an Accuracy of ~3 × 10<sup>−5 </sup>135</p> <p>4.10.3 Determine η to an Accuracy of at Least 4.4 × 10<sup>−4</sup> 135</p> <p>4.10.4 Determine α<sub>1</sub> to an Accuracy of 7.8 × 10<sup>−6</sup> 135</p> <p>4.10.5 Determine the Solar Oblateness to an Accuracy of 4.8 × 10<sup>−9 </sup>135</p> <p>4.10.6 Test Any Time Variation of the Gravitational Constant, <i>G</i>, to an Accuracy of 3 × 10<sup>−13</sup> Per Year 135</p> <p>4.10.7 Characterize the Solar Corona 136</p> <p>4.11 Comparison with Other Experiments 136</p> <p>4.11.1 Cassini 136</p> <p>4.11.2 Gravity Probe B 137</p> <p>4.11.3 Messenger 137</p> <p>4.11.4 Lunar Laser Ranging 137</p> <p>4.11.5 Gaia 137</p> <p>4.12 MORE Summary 138</p> <p>4.13 Anomalous Motion of Pioneers 10 and 11 138</p> <p>Appendix 4A Solar Corona Observation Methodology Illustrated by Mars Express 139</p> <p>4A.1 Formulation 139</p> <p>4A.2 Total Electron Content from Ranging Data 141</p> <p>4A.3 Change in Total Electron Content from Doppler Data 143</p> <p>4A.4 Electron Density 144</p> <p>4A.5 Coronal Mass Ejections 145</p> <p>4A.6 Separation of Uplink and Downlink Effects from Plasma 150</p> <p>4A.7 Earth Atmospheric Correction 152</p> <p>4A.8 Example Data 153</p> <p>Appendix 4B Faraday Rotation Methodology Illustrated by Magellan Observations 157</p> <p>4B.1 Formulation 157</p> <p>4B.2 Coronal Radio Sounding 158</p> <p>4B.3 The Faraday Rotation Effect 160</p> <p>4B.4 Measurement of the Total Electron Content 161</p> <p>4B.5 Combining the Faraday Rotation and Total Electron Content 162</p> <p>4B.6 Instrument Overview: The Magellan Spacecraft 164</p> <p>4B.7 Instrument Overview: The Deep Space Network 165</p> <p>4B.8 Data Processing and Results 166</p> <p>4B.9 Conclusion 167</p> <p>Appendix 4C Precision Doppler Tracking of Deep Space Probes and the Search for Low-frequency Gravitational Radiation 171</p> <p>4C.1 Background 171</p> <p>4C.2 Response of Spacecraft Doppler Tracking to Gravitational Waves 172</p> <p>4C.3 Noise in Doppler GW Observations and Their Transfer Functions 174</p> <p>4C.4 Detector Performance 176</p> <p>4C.4.1 Periodic and Quasi-periodic Waves 176</p> <p>4C.4.2 Burst Waves 177</p> <p>4C.4.3 Stochastic Waves 178</p> <p>4C.5 Sensitivity Improvements in Future Doppler GW Observations 179</p> <p><b>5 Technologies, Instrumentation, and Operations </b><b>181</b></p> <p>5.1 Overview 181</p> <p>5.1.1 End-to-End Instrumentation Overview 182</p> <p>5.1.2 Experiment Error Budgets 187</p> <p>5.2 Key Concepts and Terminology 191</p> <p>5.2.1 The Allan Deviation for Frequency and Timing Standards 191</p> <p>5.2.2 Signal Operational Modes 197</p> <p>5.2.3 Reception Modes 200</p> <p>5.2.4 Signal Carrier Modulation Modes 202</p> <p>5.3 Radio Science Technologies 203</p> <p>5.3.1 Spacecraft Ultrastable Oscillator 204</p> <p>5.3.2 Spacecraft Ka-band Translator 213</p> <p>5.3.3 Spacecraft Open-loop Receiver 215</p> <p>5.3.4 Spacecraft Radio Science Beacon 215</p> <p>5.3.5 Ground Water Vapor Radiometer 215</p> <p>5.3.6 Ground Advanced Ranging Instrument 215</p> <p>5.3.7 Ground Bethe Hole Coupler 216</p> <p>5.3.8 Ground Advanced Pointing Techniques 217</p> <p>5.4 Operations and Experiment Planning 217</p> <p>5.5 Data Products 218</p> <p>5.5.1 Range Rate 219</p> <p>5.5.2 Range 220</p> <p>5.5.3 Delta Differential One-way Ranging (Delta-DOR) 222</p> <p>5.5.4 Differenced Range Versus Integrated Doppler 222</p> <p>5.5.5 Open-loop Receiver (Radio Science Receiver) 223</p> <p>5.5.6 Media Calibration 224</p> <p>5.5.7 Spacecraft Trajectory 225</p> <p>5.5.8 Calibration Data Sets 225</p> <p>Appendix 5A Spacecraft Telecommunications System and Radio Science Flight Instrument for Several Deep Space Missions 227</p> <p><b>6 Future Directions in Radio Science Investigations and Technologies </b><b>231</b></p> <p>6.1 Fundamental Questions toward a Future Exploration Roadmap 231</p> <p>6.1.1 Fundamental Questions about the Utility of RS Techniques 232</p> <p>6.1.2 Possible Triggers for Specific Innovations for Future Investigations 233</p> <p>6.1.3 Possible Synergies with Other Fields 233</p> <p>6.1.4 Examining Relevant Methodologies 234</p> <p>6.2 Science-Enabling Technologies: Constellations of Small Spacecraft 235</p> <p>6.2.1 Constellations for Investigations of Atmospheric Structure and Dynamics 236</p> <p>6.2.2 Constellations for Investigations of Interior Structure and Dynamics 238</p> <p>6.2.3 Constellations for Simultaneous and Differential Measurements 239</p> <p>6.2.4 Constellations of Entry Probes and Atmospheric Vehicles 240</p> <p>6.2.5 Constellations for Investigations of Planetary Surface 241</p> <p>6.3 Science-enabling via Optical Links 243</p> <p>6.4 Science-enabling Calibration Techniques 243</p> <p>6.4.1 Earth’s Troposphere Water Vapor Radiometry 244</p> <p>6.4.2 Antenna Mechanical Noise 244</p> <p>6.4.3 Advanced Ranging 245</p> <p>6.5 Summary 246</p> <p>Appendix 6A The National Academies Planetary Science Decadal Survey, Radio Science Contribution, 2009: Planetary Radio Science: Investigations of Interiors, Surfaces, Atmospheres, Rings, and Environments 247</p> <p>6A.1 Summary 248</p> <p>6A.2 Background 248</p> <p>6A.3 Historical Opportunities and Discoveries 249</p> <p>6A.4 Recent Opportunities and Discoveries 249</p> <p>6A.5 Future Opportunities 250</p> <p>6A.6 Technological Advances in Flight Instrumentation 252</p> <p>6A.7 The Future of Flight Instrumentation 253</p> <p>6A.7.1 Crosslink Radio Science 253</p> <p>6A.7.2 Ka-band Transponders and Other Instrumentation 254</p> <p>6A.8 Ground Instrumentation 254</p> <p>6A.8.1 NASA’s Deep Space Network 254</p> <p>6A.8.2 Other Facilities 254</p> <p>6A.9 New Communications Architectures: Arrays and Optical Links 255</p> <p>6A.10 Conclusion and Goals 255</p> <p>Appendix 6B The National Academies Planetary Science Decadal Survey, Radio Science Contribution: Solar System Interiors, Atmospheres, and Surfaces Investigations via Radio Links: Goals for the Next Decade 257</p> <p>6B.1 Summary 258</p> <p>6B.2 Current Status of RS Investigations 259</p> <p>6B.3 Key Science Goals for the Next Decade 260</p> <p>6B.4 Radio Science Techniques for Achieving the Science Goals of the Next Decade 262</p> <p>6B.5 Technology Development Needed in the Next Decade 263</p> <p>References 267</p> <p>Acronyms and Abbreviations 311</p> <p>Index 331</p>
<p><b>SAMI W. ASMAR</b> is Manager of Strategic Partnerships for the Interplanetary Network Directorate at NASA’s Jet Propulsion Laboratory, California Institute of Technology, and the General Secretary of the Consultative Committee for Space Data Systems. He has over thirty years’ experience in the field of radio science and, among other recognition, has been awarded three NASA Exceptional Achievement Medals.</p>
<p><b>EXPLORE THE DEVELOPMENT AND STATE-OF-THE-ART IN DEEP SPACE EXPLORATION USING RADIO SCIENCE TECHNIQUES</b></p> <p>In <i>Radio Science Techniques for Deep Space Exploration, </i>accomplished NASA/JPL researcher and manager Sami W. Asmar delivers a multi-disciplinary exploration of the science, technology, engineering, mission operations, and signal processing relevant to deep space radio science. The book discusses basic principles before moving on to more advanced topics that include a wide variety of graphical illustrations and useful references to publications by experts in their respective fields. <p>Complete explanations of changes in the characteristics of electromagnetic waves and the instrumentation and technology used in scientific experiments are examined. <p><i>Radio Science Techniques for Deep Space Exploration</i> offers answers to the question of how to explore the solar system with radio links and better understand the interior structures, atmospheres, rings, and surfaces of other planets. The author also includes: <ul><li>Thorough introductions to radio science techniques and systems needed to investigate planetary atmospheres, rings, and surfaces</li> <li>Comprehensive explorations of planetary gravity and interior structures, as well as relativistic and solar studies</li> <li>Practical discussions of instrumentation, technologies, and future directions in radio science techniques</li></ul> <p>Perfect for students and professors of physics, astronomy, planetary science, aerospace engineering, and communications engineering,<i> Radio Science Techniques for Deep Space Exploration </i>will also earn a place in the libraries of engineers and scientists in the aerospace industry.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €