Details

Nano- and Biocatalysts for Biodiesel Production


Nano- and Biocatalysts for Biodiesel Production


1. Aufl.

von: Avinash P. Ingle

179,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.06.2021
ISBN/EAN: 9781119730033
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Reviews recent advances in catalytic biodiesel synthesis, highlighting various nanocatalysts and nano(bio)catalysts developed for effective biodiesel production</b></p> <p><i>Nano- and Biocatalysts for Biodiesel Production</i> delivers an essential reference for academic and industrial researchers in biomass valorization and biofuel industries. The book covers both nanocatalysts and biocatalysts, bridging the gap between homogenous and heterogenous catalysis.</p> <p>Readers will learn about the techno-economical and environmental aspects of biodiesel production using different feedstocks and catalysts. They will also discover how nano(bio)catalysts can be used as effective alternatives to conventional catalysts in biodiesel production due to their unique properties, including reusability, high activation energy and rate of reaction, easy recovery, and recyclability.</p> <p>Readers will benefit from the inclusion of:</p> <ul> <li>Introductions to CaO nanocatalysts, zeolite nanocatalysts, titanium dioxide-based nanocatalysts and zinc-based in biodiesel production</li> <li>An exploration of carbon-based heterogeneous nanocatalysts for the production of biodiesel</li> <li>Practical discussions of bio-based nano catalysts for biodiesel production and the application of nanoporous materials as heterogeneous catalysts for biodiesel production</li> <li>An analysis of the techno-economical considerations of biodiesel production using different feedstocks</li> </ul> <p><i>Nano- and Biocatalysts for Biodiesel Production</i> focuses on recent advances in the field and offers a complete and informative guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, catalysis, biotechnology, bioengineering, nanotechnology, and materials science.</p>
<p>Preface <i>xv</i></p> <p>List of Contributors <i>xix</i></p> <p><b>1 Biodiesel: Different Feedstocks, Conventional Methods, and Factors Affecting its Production </b><b>1<br /></b><i>Hossein Esmaeili and Sajad Tamjidi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Different Feedstocks for Biodiesel Production 3</p> <p>1.2.1 Vegetable Sources 3</p> <p>1.2.2 Waste Oils 3</p> <p>1.2.3 Animal Fats 5</p> <p>1.2.4 Microalga Oil 6</p> <p>1.3 Conventional Methods of Biodiesel Production 8</p> <p>1.3.1 Microemulsion 8</p> <p>1.3.2 Pyrolysis or Thermal Cracking 8</p> <p>1.3.3 Transesterification 8</p> <p>1.4 Catalysts Used in Biodiesel Production 9</p> <p>1.4.1 Homogeneous Catalysts 9</p> <p>1.4.1.1 Homogeneous Alkaline Catalysts 9</p> <p>1.4.1.2 Homogeneous Acidic Catalysts 9</p> <p>1.4.2 Heterogeneous Catalysts 10</p> <p>1.4.2.1 Heterogeneous Alkaline Catalysts 10</p> <p>1.4.2.2 Heterogeneous Acid Catalysts 10</p> <p>1.4.3 Enzymatic Catalysts 11</p> <p>1.4.4 Nanocatalysts 12</p> <p>1.5 Effects of Different Factors on Biodiesel Production Yield 15</p> <p>1.5.1 Reaction Temperature 15</p> <p>1.5.2 Alcohol to Oil Molar Ratio 16</p> <p>1.5.3 Reaction Time 17</p> <p>1.5.4 Catalyst Dosage 17</p> <p>1.5.5 pH 17</p> <p>1.5.6 Mixing Rate 17</p> <p>1.5.7 Fatty Acids 18</p> <p>1.5.8 Water Content 18</p> <p>1.6 Physical Properties of Biodiesel 18</p> <p>1.7 Conclusions 19</p> <p>References 20</p> <p><b>2 Nano(Bio)Catalysts: An Effective Tool to Utilize Waste Cooking Oil for the Biodiesel Production </b><b>31<br /></b><i>Rushikesh Fopase, Swati Sharma and Lalit M. Pandey</i></p> <p>2.1 Introduction 31</p> <p>2.2 Waste Cooking Oils 33</p> <p>2.3 Pretreatment of WCOs 33</p> <p>2.4 Transesterification Process 34</p> <p>2.4.1 Kinetics of Transesterification 36</p> <p>2.5 Enzymatic Biocatalysts 37</p> <p>2.5.1 Lipases 38</p> <p>2.5.1.1 Extracellular Lipases 38</p> <p>2.5.1.2 Intracellular Lipases 39</p> <p>2.6 Enzyme Immobilization Techniques 41</p> <p>2.7 Physical Methods 42</p> <p>2.7.1 Adsorption 42</p> <p>2.7.2 Encapsulation 45</p> <p>2.7.3 Entrapment 46</p> <p>2.8 Chemical Methods 47</p> <p>2.8.1 Covalent Bonding 47</p> <p>2.8.2 Cross-Linking 49</p> <p>2.8.3 Summary 50</p> <p>2.9 Conclusions 50</p> <p>References 51</p> <p><b>3 A Review on the Use of Bio/Nanostructured Heterogeneous Catalysts in Biodiesel Production </b><b>59<br /></b><i>Samuel Santos, Jaime Puna, João Gomes and Jorge Marchetti</i></p> <p>3.1 Introduction 59</p> <p>3.2 Use of Micro- and Nanostructured Heterogeneous Catalysts in Biodiesel Production 62</p> <p>3.2.1 Microstructured Heterogeneous Catalysts 62</p> <p>3.2.1.1 Solid Acid Catalysts 62</p> <p>3.2.1.2 Solid Base Catalysts 63</p> <p>3.2.2 Nanostructured Heterogeneous Catalysts 65</p> <p>3.2.2.1 Gas Condensation 65</p> <p>3.2.2.2 Vacuum Deposition 65</p> <p>3.2.2.3 Chemical Deposition 66</p> <p>3.2.2.4 Sol-Gel Method 66</p> <p>3.2.2.5 Impregnation 67</p> <p>3.2.2.6 Nanogrinding 68</p> <p>3.2.2.7 Calcination-Hydration-Dehydration 68</p> <p>3.3 Enzymatic Catalysis 69</p> <p>3.3.1 Heterogeneous Biocatalysts (Lipases) and Their Immobilization 69</p> <p>3.3.1.1 Physical Adsorption 70</p> <p>3.3.1.2 Entrapment 70</p> <p>3.3.1.3 Covalent Bonding 71</p> <p>3.3.1.4 Cross-Linking 72</p> <p>3.3.2 Nano(Bio)Catalysts: Immobilization of Enzymes on Nanosupports 73</p> <p>3.3.2.1 Nanoparticles 73</p> <p>3.3.2.2 Carbon Nanotubes 75</p> <p>3.3.2.3 Nanofibers 76</p> <p>3.3.2.4 Nanocomposites 76</p> <p>3.4 Conclusions 77</p> <p>References 78</p> <p><b>4 Calcium-Based Nanocatalysts in Biodiesel Production </b><b>93<br /></b><i>Priti R. Pandit and Archit Mohapatra</i></p> <p>4.1 Introduction 93</p> <p>4.2 Nanocatalysts 94</p> <p>4.3 CaO-Based Nanocatalysts for Biodiesel Production 95</p> <p>4.3.1 Synthesis and Characterization of CaO-Based Nanocatalysts Using Waste Material 99</p> <p>4.3.2 CaO Nanocatalysts Supported with Metal Oxides for Biodiesel Production 102</p> <p>4.4 Effects of Different Parameters on Biodiesel Production 105</p> <p>4.4.1 Reaction Time 105</p> <p>4.4.2 Temperature 105</p> <p>4.4.3 Methanol to Oil Molar Ratio 106</p> <p>4.4.4 Catalyst Load 106</p> <p>4.5 Reusability and Leaching of Nanocatalysts 106</p> <p>4.6 Conclusions 107</p> <p>References 107</p> <p><b>5 Titanium Dioxide-Based Nanocatalysts in Biodiesel Production </b><b>115<br /></b><i>Elijah Olawale Ajala, Mary Adejoke Ajala and Harvis Bamidele Saka</i></p> <p>5.1 Introduction 115</p> <p>5.2 Natural Occurrences of Titania 117</p> <p>5.2.1 Rutile 117</p> <p>5.2.2 Anatase 118</p> <p>5.2.3 Rhombic Brookite 118</p> <p>5.2.4 Kaolin Clays 118</p> <p>5.2.5 Ilmenites or Manaccanite 120</p> <p>5.3 Precursors Used for the Synthesis of TiO<sub>2</sub> NPs 120</p> <p>5.3.1 Titanium Tetrachloride 121</p> <p>5.3.2 Titanium Tetraisopropoxide 121</p> <p>5.3.3 Titanium Butoxide 122</p> <p>5.4 Methods for the Synthesis of TiO<sub>2</sub> NPs 122</p> <p>5.4.1 Physical Methods 122</p> <p>5.4.1.1 Ball Milling 122</p> <p>5.4.1.2 Laser Ablation/Photoablation 123</p> <p>5.4.1.3 Sputtering 123</p> <p>5.4.2 Chemical Methods 123</p> <p>5.4.2.1 Microemulsion 123</p> <p>5.4.2.2 Precipitation 124</p> <p>5.4.2.3 Sol-Gel 124</p> <p>5.4.2.4 Hydrothermal 125</p> <p>5.4.2.5 Solvothermal 125</p> <p>5.4.2.6 Electrochemical/Deposition 125</p> <p>5.4.2.7 Sonochemical 126</p> <p>5.4.2.8 Direct Oxidation 126</p> <p>5.4.3 Biological Methods 126</p> <p>5.4.3.1 Green Synthesis Using Plant Extracts 126</p> <p>5.4.3.2 Microbial Synthesis 128</p> <p>5.4.3.3 Enzyme-Mediated Synthesis 129</p> <p>5.5 Methods for the Synthesis of TiO2-Based Nanocatalysts 130</p> <p>5.5.1 Wet Impregnation 130</p> <p>5.5.2 Dry Impregnation 131</p> <p>5.6 TiO<sub>2</sub>-Based Nanocatalysts for Biodiesel Production 131</p> <p>5.6.1 Sulfated TiO<sub>2</sub> Nanocatalysts 131</p> <p>5.6.2 Alkaline TiO<sub>2</sub> Nanocatalysts 133</p> <p>5.6.3 Co-Transition TiO<sub>2</sub> Nanocatalysts 133</p> <p>5.6.4 Alkali TiO<sub>2</sub> Nanocatalysts 134</p> <p>5.6.5 Bimetallic TiO<sub>2</sub> Nanocatalysts 135</p> <p>5.6.5.1 TiO<sub>2</sub>-Pd-Ni 135</p> <p>5.6.5.2 TiO<sub>2</sub>-Au-Cu 135</p> <p>5.7 Other TiO<sub>2</sub> Nanocomposite Catalysts 135</p> <p>5.8 Conclusions 136</p> <p>References 136</p> <p><b>6 Zinc-Based Nanocatalysts in Biodiesel Production </b><b>143<br /></b><i>Avinash P. Ingle</i></p> <p>6.1 Introduction 143</p> <p>6.2 Feedstocks Used for Biodiesel Production 144</p> <p>6.2.1 Vegetable Oils 144</p> <p>6.2.2 Microbial Oils 145</p> <p>6.2.3 Animal Fats 145</p> <p>6.2.4 Waste Oils 145</p> <p>6.2.5 Biomass 146</p> <p>6.3 Conventional Methods of Biodiesel Production 146</p> <p>6.3.1 Pyrolysis 146</p> <p>6.3.2 Transesterification 146</p> <p>6.3.2.1 Homogeneous Acid and Base (Alkali)-Catalyzed Transesterification 146</p> <p>6.3.2.2 Heterogeneous Acid and Base (Alkali)-Catalyzed Transesterification 147</p> <p>6.3.2.3 Enzymatic Transesterification 147</p> <p>6.4 Nanotechnology in Biodiesel Production 148</p> <p>6.5 Zinc-Based Nanocatalysts in Biodiesel Production 148</p> <p>6.6 Conclusions 151</p> <p>References 152</p> <p><b>7 Carbon-Based Nanocatalysts in Biodiesel Production </b><b>157<br /></b><i>Rahul Bhagat, Harris Panakkal, Indarchand Gupta and Avinash P. Ingle</i></p> <p>7.1 Introduction 157</p> <p>7.2 Feedstocks Used for Biodiesel Production 158</p> <p>7.2.1 Vegetable Oils 158</p> <p>7.2.2 Algae 159</p> <p>7.2.3 Animal Fats 160</p> <p>7.2.4 Waste Cooking Oils 160</p> <p>7.3 Conventional Heterogeneous Catalysts 160</p> <p>7.4 Carbon-Based Heterogeneous Nanocatalysts 164</p> <p>7.4.1 Carbon Nanotubes 166</p> <p>7.4.2 Sulfonated Carbon Nanotubes 167</p> <p>7.4.3 Graphene/Graphene Oxide-Based Nanocatalysts 168</p> <p>7.4.4 Carbon Nanofibers and Carbon Dots 169</p> <p>7.4.5 Carbon Nanohorns 170</p> <p>7.4.6 Other Carbon-Based Nanocatalysts 171</p> <p>7.5 Conclusions 174</p> <p>References 174</p> <p><b>8 Functionalized Magnetic Nanocatalysts in Biodiesel Production </b><b>183<br /></b><i>Kalyani Rajkumari and Lalthazuala Rokhum</i></p> <p>8.1 Introduction 183</p> <p>8.2 Relevance of Heterogeneous Catalysis in Biodiesel Production 185</p> <p>8.3 Surface Modification and Functionalization of NPs 186</p> <p>8.4 Applications of Functionalized Magnetic Nanocatalysts in Biodiesel Production 186</p> <p>8.4.1 Acid-Functionalized Magnetic Nanocatalysts 186</p> <p>8.4.2 Base-Functionalized Magnetic Nanocatalysts 189</p> <p>8.4.3 Magnetic Nanocatalysts Functionalized withWaste Materials 190</p> <p>8.4.4 Ionic Liquid-Immobilized Magnetic Nanocatalysts 192</p> <p>8.5 Conclusions 194</p> <p>References 195</p> <p><b>9 Bio-Based Catalysts in Biodiesel Production </b><b>201<br /></b><i>Umer Rashid, Shehu-Ibrahim Akinfalabi, Naeemah A. Ibrahim and Chawalit Ngamcharussrivichai</i></p> <p>9.1 Introduction 201</p> <p>9.2 Biodiesel: A Potential Source of Renewable Energy 204</p> <p>9.2.1 Progress in Biodiesel Development 204</p> <p>9.2.2 Development of Biodiesel in Malaysia 205</p> <p>9.2.3 Biodiesel Feedstocks 206</p> <p>9.2.3.1 PFAD as a Biodiesel Feedstock 207</p> <p>9.2.4 Common Methods Used for Biodiesel Reaction 208</p> <p>9.2.4.1 Esterification 209</p> <p>9.2.4.2 Transesterification 210</p> <p>9.3 Homogeneous Catalysis in Biodiesel Production 211</p> <p>9.4 Heterogeneous Catalysis in Biodiesel Production 213</p> <p>9.5 Catalyst Supports 215</p> <p>9.5.1 Alumina 216</p> <p>9.5.2 Silicate 216</p> <p>9.5.3 Zirconium Oxide 217</p> <p>9.5.4 Activated Carbon 217</p> <p>9.6 Heterogeneous Bio-Based Acid Catalysts 217</p> <p>9.7 Synthesis of Bio-Based Solid Acid Catalysts 218</p> <p>9.7.1 Palm Tree Fronds and Spikelets 219</p> <p>9.7.2 <i>Jatropha curcas </i>219</p> <p>9.7.3 Coconut Shells 220</p> <p>9.7.4 Rice Husks 220</p> <p>9.7.5 Bamboo 221</p> <p>9.7.6 Cocoa Pod Husks 221</p> <p>9.7.7 Hardwoods 222</p> <p>9.7.8 Peanut Hulls 222</p> <p>9.7.9 Wood Mixtures 223</p> <p>9.7.10 Palm Kernel Shells 223</p> <p>9.8 Magnetic Bio-Based Catalysts for Biodiesel Production 224</p> <p>9.9 Characterization of Bio-Based Catalysts 228</p> <p>9.9.1 Field Emission Scanning Electron Microscopy (FESEM) 228</p> <p>9.9.2 Fourier Transform Infrared (FT-IR) 229</p> <p>9.9.3 X-Ray Diffraction (XRD) 229</p> <p>9.9.4 Thermogravimetric Analysis (TGA) 230</p> <p>9.9.5 Temperature-Programmed Desorption – Ammonia (TPD-NH3) 231</p> <p>9.9.6 Brunauer–Emmett–Teller (BET) Analysis 231</p> <p>9.10 Reaction Parameters Affecting Biodiesel Production 232</p> <p>9.10.1 Reaction Time 232</p> <p>9.10.2 Catalyst Concentration 232</p> <p>9.10.3 Methanol to Fat/Oil Molar Ratio 232</p> <p>9.10.4 Reaction Temperature 233</p> <p>9.10.5 Mixing Rate 235</p> <p>9.11 Conclusions 235</p> <p>References 236</p> <p><b>10 Heterogeneous Nanocatalytic Conversion of Waste to Biodiesel </b><b>249<br /></b><i>Nilutpal Bhuyan, Manash J. Borah, Neelam Bora, Dipanka Saikia, Dhanapati Deka and Rupam Kataki</i></p> <p>10.1 Introduction 249</p> <p>10.2 Role of Catalysts in Biodiesel Production 250</p> <p>10.3 Feedstocks for Biodiesel Production 251</p> <p>10.3.1 First-Generation Feedstocks or Edible Oils 251</p> <p>10.3.2 Second-Generation Feedstocks or Non-Edible Oils 252</p> <p>10.3.3 Third-Generation Feedstocks or Algae 252</p> <p>10.3.4 Other Feedstocks 253</p> <p>10.4 Biodiesel Production Process 253</p> <p>10.4.1 Acid-Catalyzed Transesterification 254</p> <p>10.4.1.1 Mechanism of Acid-Catalyzed Transesterification 256</p> <p>10.4.2 Alkali- or Base-Catalyzed Transesterification 256</p> <p>10.4.2.1 Mechanism of Alkali- or Base-Catalyzed Transesterification 258</p> <p>10.4.3 Other Types of Transesterification 258</p> <p>10.5 Variables Affecting Transesterification 259</p> <p>10.6 Heterogeneous Nanocatalysts for Biodiesel Production 260</p> <p>10.7 Characterization of Nanoparticles Used for Biodiesel Production 262</p> <p>10.7.1 X-Ray Diffraction (XRD) 262</p> <p>10.7.2 Scanning Electron Microscopy (SEM) 262</p> <p>10.7.3 Energy Dispersive X-Ray Analysis (EDX) 262</p> <p>10.7.4 Transmission Electron Microscopy (TEM) 264</p> <p>10.7.5 Atomic Force Microscopy (AFM) 264</p> <p>10.7.6 Raman Spectroscopy 264</p> <p>10.7.7 Fourier Transform Infrared Spectroscopy (FT-IR) 264</p> <p>10.7.8 X-Ray Photoelectron Spectroscopy (XPS) 264</p> <p>10.7.9 Thermogravimetric Analysis (TGA) 265</p> <p>10.8 Influence of Nanoparticle Properties on Biodiesel Production 265</p> <p>10.9 Safety Issues Around the Application of Nanocatalysts in Biodiesel Production 267</p> <p>10.10 Future Perspectives 267</p> <p>10.11 Conclusions 268</p> <p>References 269</p> <p><b>11 Application of Rare Earth Cation-Exchanged Nanozeolite as a Support for the Immobilization of Fungal Lipase and their Use in Biodiesel Production </b><b>279<br /></b><i>Guilherme de Paula Guarnieri, Adriano de Vasconcellos, Fábio Rogério de Moraes </i><i>and José Geraldo Nery</i></p> <p>11.1 Introduction 279</p> <p>11.2 Case Study 282</p> <p>11.2.1 Origins of Materials and Enzymes 282</p> <p>11.2.2 Preparation of Na-FAU Nanozeolites 282</p> <p>11.2.3 Ion-Exchange Experiments 283</p> <p>11.2.4 Enzyme Immobilization on to Nanozeolitic Supports 283</p> <p>11.2.5 Physicochemical Characterization of As-Synthesized Nanozeolites and Nanozeolite–Enzyme Complexes 284</p> <p>11.2.6 Synthesis of FAAEs 286</p> <p>11.2.7 FAEE Yields Obtained with Nanozeolite Complexes 287</p> <p>11.2.8 Model of Lipase Immobilization on to Zeolite Supports 287</p> <p>11.3 Conclusions 290</p> <p>References 290</p> <p><b>12 Lipase-Immobilized Magnetic Nanoparticles: Promising Nanobiocatalysts for Biodiesel Production </b><b>295<br /></b><i>Tooba Touqeer, Muhammad Waseem Mumtaz and Hamid Mukhtar</i></p> <p>12.1 Introduction 295</p> <p>12.2 Transesterification for Biodiesel Production 296</p> <p>12.2.1 Homogenous Catalysts 296</p> <p>12.2.2 Heterogeneous Catalysts 297</p> <p>12.2.3 Enzymatic Catalysts 297</p> <p>12.3 Advantages of Using Magnetic Nanobiocatalysts 297</p> <p>12.3.1 High Enzyme Loading and Surface Area to Volume Ratio 298</p> <p>12.3.2 Low Mass Transfer Restriction and High Brownian Movement 299</p> <p>12.3.3 Effortless Recovery and Reusability 299</p> <p>12.3.4 Stability 299</p> <p>12.4 Synthesis of Nanobiocatalysts 299</p> <p>12.4.1 Preparation and Functionalization of Nanostructures 299</p> <p>12.4.2 Immobilizing Enzymes on Nanomaterials 300</p> <p>12.4.2.1 Adsorption Immobilization 300</p> <p>12.4.2.2 Covalent Immobilization 301</p> <p>12.5 Techniques for the Characterization of Nanobiocatalysts 302</p> <p>12.6 Transesterification Using Magnetic Nanobiocatalysts 303</p> <p>12.7 Factors Affecting Enzymatic Transesterification 304</p> <p>12.7.1 Type of Alcohol Used 304</p> <p>12.7.2 Solvent 305</p> <p>12.7.3 Reaction Temperature 306</p> <p>12.7.4 Water Content 306</p> <p>12.7.5 Alcohol to Oil Molar Ratio 306</p> <p>12.7.6 Source of Lipase 306</p> <p>12.8 Conclusions 307</p> <p>References 307</p> <p><b>13 Technoeconomic Analysis of Biodiesel Production Using Different Feedstocks </b><b>313<br /></b><i>Shemelis Nigatu Gebremariam</i></p> <p>13.1 Introduction 313</p> <p>13.2 Biodiesel Production Technologies 315</p> <p>13.3 Feedstock Types for Biodiesel Production 317</p> <p>13.4 Technical Performance Evaluation of Biodiesel Production 318</p> <p>13.4.1 Fuel Properties of Biodiesel 319</p> <p>13.4.1.1 Flash Point 319</p> <p>13.4.2 Cold Flow Properties 319</p> <p>13.4.2.1 Cloud Point 320</p> <p>13.4.2.2 Pour Point 320</p> <p>13.4.2.3 Cold Filter Plugging Point (CFPP) 321</p> <p>13.4.3 Cetane Number 321</p> <p>13.4.4 Density 322</p> <p>13.4.5 Viscosity 323</p> <p>13.4.6 Oxidation Stability 323</p> <p>13.4.7 Biodiesel Quality Standards 324</p> <p>13.5 Economic Performance Evaluation of the Biodiesel Production Process 324</p> <p>13.5.1 Fixed Capital Investment Cost 326</p> <p>13.5.2 Working Capital (Operating) Cost 329</p> <p>13.6 Conclusions 330</p> <p>References 331</p> <p>Index 339</p>
<p><b>Avinash P. Ingle, PhD,</b> is currently working as Ramanujan Fellow at Department of Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India. His research focus is on nanobiotechnology and nano-biofuel technology and he has over 10 years of research experience in the field of nanotechnology.</p>
<p><b>Reviews recent advances in catalytic biodiesel synthesis, highlighting various nanocatalysts and nano(bio)catalysts developed for effective biodiesel production</b></p><p><i>Nano- and Biocatalysts for Biodiesel Production</i> delivers an essential reference for academic and industrial researchers in biomass valorization and biofuel industries. The book covers both nanocatalysts and biocatalysts, bridging the gap between homogenous and heterogenous catalysis.</p><p>Readers will learn about the techno-economical and environmental aspects of biodiesel production using different feedstocks and catalysts. They will also discover how nano(bio)catalysts can be used as effective alternatives to conventional catalysts in biodiesel production due to their unique properties, including reusability, high activation energy and rate of reaction, easy recovery, and recyclability.</p><p>Readers will benefit from the inclusion of:</p><ul><li>Introductions to CaO nanocatalysts, zeolite nanocatalysts, titanium dioxide-based nanocatalysts and zinc-based biodiesel production</li><li>An exploration of carbon-based heterogeneous nanocatalysts for the production of biodiesel</li><li>Practical discussions of bio-based nano catalysts for biodiesel production and the application of nanoporous materials as heterogeneous catalysts for biodiesel production</li><li>An analysis of the techno-economical considerations of biodiesel production using different feedstocks</li></ul><p><i>Nano- and Biocatalysts for Biodiesel Production</i> focuses on recent advances in the field and offers a complete and informative guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, catalysis, biotechnology, bioengineering, nanotechnology, and materials science.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €