Details

Applied Water Science, Volume 1


Applied Water Science, Volume 1

Fundamentals and Applications
1. Aufl.

von: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tauseef Ahmad Rangreez

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 18.05.2021
ISBN/EAN: 9781119725220
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Water is one of the most precious and basic needs of life for all living beings, and a precious national asset. Without it, the existence of life cannot be imagined. Availability of pure water is decreasing day by day, and water scarcity has become a major problem that is faced by our society for the past few years. Hence, it is essential to find and disseminate the key solutions for water quality and scarcity issues. The inaccessibility and poor water quality continue to pose a major threat to human health worldwide. Around billions of people lacking to access drinkable water. The water contains the pathogenic impurities; which are responsible for water-borne diseases. The concept of water quality mainly depends on the chemical, physical, biological, and radiological measurement standards to evaluate the water quality and determine the concentration of all components, then compare the results of this concentration with the purpose for which this water is used. Therefore, awareness and a firm grounding in water science are the primary needs of readers, professionals, and researchers working in this research area.</p> <p>This book explores the basic concepts and applications of water science. It provides an in-depth look at water pollutants’ classification, water recycling, qualitative and quantitative analysis, and efficient wastewater treatment methodologies. It also provides occurrence, human health risk assessment, strategies for removal of radionuclides and pharmaceuticals in aquatic systems.  The book chapters are written by leading researchers throughout the world. This book is an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of environmental science, geoscience, water science, physics and chemistry.</p>
<p>Preface xix</p> <p><b>1 Sorbent-Based Microextraction Techniques for the Analysis of Phthalic Acid Esters in Water Samples 1<br /></b><i>Miguel Ángel González-Curbelo, Javier González-Sálamo, Diana A. Varela-Martínez and Javier Hernández-Borges</i></p> <p>1.1 Introduction 2</p> <p>1.2 Solid-Phase Microextraction 6</p> <p>1.3 Stir Bar Sorptive Extraction 25</p> <p>1.4 Solid-Phase Extraction 26</p> <p>1.5 Others Minor Sorbent-Based Microextraction Techniques 48</p> <p>1.6 Conclusions 52</p> <p>Acknowledgements 53</p> <p>References 53</p> <p><b>2 Occurrence, Human Health Risks, and Removal of Pharmaceuticals in Aqueous Systems: Current Knowledge and Future Perspectives 63<br /></b><i>Willis Gwenzi, Artwell Kanda, Concilia Danha, Norah Muisa-Zikali and Nhamo Chaukura</i></p> <p>2.1 Introduction 64</p> <p>2.2 Occurrence and Behavior of Pharmaceutics in Aquatic Systems 65</p> <p>2.2.1 Nature and Sources 65</p> <p>2.2.2 Dissemination and Occurrence in Aquatic Systems 67</p> <p>2.2.3 Behaviour in Aquatic Systems 71</p> <p>2.3 Human Health Risks and Their Mitigation 73</p> <p>2.3.1 Human Exposure Pathways 73</p> <p>2.3.2 Potential Human Health Risks 74</p> <p>2.3.3 Human Health Risks: A Developing World Perspective 81</p> <p>2.3.4 Removal of Pharmaceuticals 82</p> <p>2.3.4.1 Conventional Removal Methods 83</p> <p>2.3.4.2 Advanced Removal Methods 85</p> <p>2.3.4.3 Hybrid Removal Processes 88</p> <p>2.4 Knowledge Gaps and Future Research Directions 88</p> <p>2.4.1 Increasing Africa’s Research Footprint 88</p> <p>2.4.2 Hotspot Sources and Reservoirs 89</p> <p>2.4.3 Behavior and Fate in Aquatic Systems 89</p> <p>2.4.4 Ecotoxicology of Pharmaceuticals and Metabolites 89</p> <p>2.4.5 Human Exposure Pathways 89</p> <p>2.4.6 Human Toxicology and Epidemiology 90</p> <p>2.4.7 Removal Capacity of Low-Cost Water Treatment Processes 90</p> <p>2.5 Summary, Conclusions, and Outlook 90</p> <p>Author Contributions 91</p> <p>References 91</p> <p><b>3 Oil-Water Separations 103<br /></b><i>Pallavi Jain, Sapna Raghav and Dinesh Kumar</i></p> <p>3.1 Introduction 103</p> <p>3.2 Sources and Composition 106</p> <p>3.3 Common Oil-Water Separation Techniques 106</p> <p>3.4 Oil-Water Separation Technologies 107</p> <p>3.4.1 Advancement in the Technology of Membrane 111</p> <p>3.4.1.1 Polymer-Based Membranes 111</p> <p>3.4.1.2 Ceramic-Based Membranes 111</p> <p>3.5 Separation of Oil/Water Utilizing Meshes 113</p> <p>3.5.1 Mechanism Involved 113</p> <p>3.5.2 Meshes Functionalization 114</p> <p>3.5.2.1 Inorganic Materials 115</p> <p>3.5.2.2 Organic Materials 115</p> <p>3.6 Separation of Oil-Water Mixture Using Bioinspired Surfaces 116</p> <p>3.6.1 Nature’s Lesson 116</p> <p>3.6.2 Superhydrophilic/Phobic and Superoleophilic/Phobic Porous Surfaces 117</p> <p>3.7 Conclusion 118</p> <p>Acknowledgment 118</p> <p>References 119</p> <p><b>4 Microplastics Pollution 125<br /></b><i>Agnieszka Dąbrowska</i></p> <p>4.1 Introduction and General Considerations 125</p> <p>4.2 Key Scientific Issues Concerning Water and Microplastics Pollution 126</p> <p>4.3 Marine Microplastics: From the Anthropogenic Litter to the Plastisphere 131</p> <p>4.4 Social and Human Perspectives: From Sustainable Development to Civil Science 133</p> <p>4.5 Conclusions and Future Projections 134</p> <p>References 134</p> <p><b>5 Chloramines Formation, Toxicity, and Monitoring Methods in Aqueous Environments 139<br /></b><i>Rania El-Shaheny and Mahmoud El-Maghrabey</i></p> <p>5.1 Introduction 140</p> <p>5.2 Inorganic Chloramines Formation and Toxicity 140</p> <p>5.3 Analytical Methods for Inorganic Chloramines 143</p> <p>5.3.1 Colorimetric and Batch Methods 144</p> <p>5.3.2 Chromatographic Methods 148</p> <p>5.3.3 Membrane Inlet Mass Spectrometry 150</p> <p>5.4 Organic Chloramines Formation and Toxicity 151</p> <p>5.5 Analytical Methods for Organic Chloramines 154</p> <p>5.6 Conclusions 156</p> <p>References 156</p> <p><b>6 Clay-Based Adsorbents for the Analysis of Dye Pollutants 163<br /></b><i>Mohammad Shahadat, Momina, Yasmin, Sunil Kumar, Suzylawati Ismail, S. Wazed Ali and Shaikh Ziauddin Ahammad</i></p> <p>6.1 Introduction 164</p> <p>6.1.1 Biological Method 165</p> <p>6.1.2 Physical Method 165</p> <p>6.1.3 Why Only Clays? 165</p> <p>6.1.4 Clay-Based Adsorbents 166</p> <p>6.1.4.1 Kaolinite 166</p> <p>6.1.4.2 Rectorite 168</p> <p>6.1.4.3 Halloysite 169</p> <p>6.1.4.4 Montmorillonite 170</p> <p>6.1.4.5 Sepiolite 170</p> <p>6.1.4.6 Laponite 171</p> <p>6.1.4.7 Bentonite 171</p> <p>6.1.4.8 Zeolites 172</p> <p>6.2 Membrane Filtration 180</p> <p>6.3 Chemical Treatment 181</p> <p>6.3.1 Fenton and Photo-Fenton Process 182</p> <p>6.3.2 Mechanism Using Acid and Base Catalyst 182</p> <p>6.4 Photo-Catalytic Oxidation 186</p> <p>6.5 Conclusions 188</p> <p>Acknowledgments 188</p> <p>References 188</p> <p><b>7 Biochar-Supported Materials for Wastewater Treatment 199<br /></b><i>Hanane Chakhtouna, Mohamed El Mehdi Mekhzoum, Nadia Zari, Hanane Benzeid, Abou el kacem Qaiss and Rachid Bouhfid</i></p> <p>7.1 Introduction 200</p> <p>7.2 Generalities of Biochar: Structure, Production, and Properties 201</p> <p>7.2.1 Biochar Structure 201</p> <p>7.2.2 Biochar Production 203</p> <p>7.2.2.1 Pyrolysis 204</p> <p>7.2.2.2 Gasification 204</p> <p>7.2.2.3 Hydrothermal Carbonization 205</p> <p>7.2.3 Biochar Properties 205</p> <p>7.2.3.1 Porosity 205</p> <p>7.2.3.2 Surface Area 207</p> <p>7.2.3.3 Surface Functional Groups 207</p> <p>7.2.3.4 Cation Exchange Capacity 210</p> <p>7.2.3.5 Aromaticity 210</p> <p>7.3 Biochar-Supported Materials 212</p> <p>7.3.1 Magnetic Biochar Composites 212</p> <p>7.3.2 Nano-Metal Oxide/Hydroxide-Biochar Composites 214</p> <p>7.3.3 Functional Nanoparticles-Coated Biochar Composites 216 </p> <p>7.4 Conclusion 220</p> <p>References 222</p> <p><b>8 Biological Swine Wastewater Treatment 227<br /></b><i>Aline Meireles dos Santos, Alberto Meireles dos Santos, Patricia Arrojo da Silva, Leila Queiroz Zepka and Eduardo Jacob-Lopes</i></p> <p>8.1 Introduction 227</p> <p>8.2 Swine Wastewater Characteristics 228</p> <p>8.3 Microorganisms of Biological Swine Wastewater Treatment 231</p> <p>8.4 Classification of Biological Swine Wastewater Treatment 235</p> <p>8.5 Biological Processes For Swine Wastewater Treatment 236</p> <p>8.5.1 Suspended Growth Processes 237</p> <p>8.5.1.1 Activated Sludge Process 237</p> <p>8.5.1.2 Sequential Batch Reactor 237</p> <p>8.5.1.3 Sequencing Batch Membrane Bioreactor 238</p> <p>8.5.1.4 Anaerobic Contact Process 238</p> <p>8.5.1.5 Anaerobic Digestion 238</p> <p>8.5.2 Attached Growth Processes 239</p> <p>8.5.2.1 Rotating Biological Contactor 239</p> <p>8.5.2.2 Upflow Anaerobic Sludge Blanket 240</p> <p>8.5.2.3 Anaerobic Filter 240</p> <p>8.5.2.4 Hybrid Anaerobic Reactor 241</p> <p>8.6 Challenges and Future Prospects in Swine Wastewater Treatment 241</p> <p>References 242</p> <p><b>9 Determination of Heavy Metal Ions From Water 255<br /></b><i>Ritu Payal and Tapasya Tomer</i></p> <p>9.1 Introduction 255</p> <p>9.2 Detection of Heavy Metal Ions 256</p> <p>9.2.1 Atomic Absorption Spectroscopy 257</p> <p>9.2.2 Nanomaterials 257</p> <p>9.2.3 High-Resolution Surface Plasmon Resonance Spectroscopy with Anodic Stripping Voltammetry 258</p> <p>9.2.4 Biosensors 259</p> <p>9.2.4.1 Enzyme-Based Biosensors 260</p> <p>9.2.4.2 Electrochemical Sensors 261</p> <p>9.2.4.3 Polymer-Based Biosensors 261</p> <p>9.2.4.4 Bacterial-Based Sensors 262</p> <p>9.2.4.5 Protein-Based Sensors 262</p> <p>9.2.5 Attenuated Total Reflectance 262</p> <p>9.2.6 High-Resolution Differential Surface Plasmon Resonance Sensor 262</p> <p>9.2.7 Hydrogels 263</p> <p>9.2.8 Chelating Agents 264</p> <p>9.2.9 Ionic Liquids 265</p> <p>9.2.10 Polymers 266</p> <p>9.2.10.1 Dendrimers 266</p> <p>9.2.11 Macrocylic Compounds 266</p> <p>9.2.12 Inductively Coupled Plasma Mass Spectrometry 267</p> <p>9.3 Conclusions 267</p> <p>References 268</p> <p><b>10 The Production and Role of Hydrogen-Rich Water in Medical Applications 273<br /></b><i>N. Jafta, S. Magagula, K. Lebelo, D. Nkokha and M.J. Mochane</i></p> <p>10.1 Introduction 273</p> <p>10.2 Functional Water 275</p> <p>10.3 Reduced Water 275</p> <p>10.4 Production of Hydrogen-Rich Water 277</p> <p>10.5 Mechanism Hydrogen Molecules During Reactive Oxygen Species Scavenging 279</p> <p>10.6 Hydrogen-Rich Water Effects on the Human Body 280</p> <p>10.6.1 Anti-Inflammatory Effects 280</p> <p>10.6.2 Anti-Radiation Effects 281</p> <p>10.6.3 Wound Healing Effects 282</p> <p>10.6.4 Anti-Diabetic Effects 284</p> <p>10.6.5 Anti-Neurodegenerative Effects 285</p> <p>10.6.6 Anti-Cancer Effects 285</p> <p>10.6.7 Anti-Arteriosclerosis Effects 285</p> <p>10.7 Other Effects of Hydrogenated Water 285</p> <p>10.7.1 Effect of Hydrogen-Rich Water in Hemodialysis 285</p> <p>10.7.2 Effect on Anti-Cancer Drug Side Effects 286</p> <p>10.8 Applications of Hydrogen-Rich Water 286</p> <p>10.8.1 In Health Care 286</p> <p>10.8.2 In Sports Science 288</p> <p>10.8.3 In Therapeutic Applications and Delayed Progression of Diseases 289</p> <p>10.9 Safety of Using Hydrogen-Rich Water 290</p> <p>10.10 Concluding Remarks 291</p> <p>References 292</p> <p><b>11 Hydrosulphide Treatment 299<br /></b><i>Marzie Fatehi and Ali Mohebbi</i></p> <p>11.1 Introduction 300</p> <p>11.1.1 Agriculture 302</p> <p>11.1.2 Medical 307</p> <p>11.1.3 Industrial 315</p> <p>11.2 Conclusions 325</p> <p>References 326</p> <p><b>12 Radionuclides: Availability, Effect, and Removal Techniques 331<br /></b><i>Tejaswini Sahoo, Rashmirekha Tripathy, Jagannath Panda, Madhuri Hembram, Saraswati Soren, C.K. Rath, Sunil Kumar Sahoo and Rojalin Sahu</i></p> <p>12.1 Introduction 332</p> <p>12.1.1 Available Radionuclides in the Environment 333</p> <p>12.1.1.1 Uranium 333</p> <p>12.1.1.2 Thorium (Z = 90) 334</p> <p>12.1.1.3 Radium (Z = 88) 335</p> <p>12.1.1.4 Radon (Z = 86) 336</p> <p>12.1.1.5 Polonium and Lead 336</p> <p>12.1.2 Presence of Radionuclide in Drinking Water 337</p> <p>12.1.2.1 Health Impacts of Radionuclides 338</p> <p>12.1.2.2 Health Issues Caused Due to Uranium 338</p> <p>12.1.2.3 Health Issues Caused Due to Radium 339</p> <p>12.1.2.4 Health Issues Caused Due to Radon 339</p> <p>12.1.2.5 Health Issues Caused Due to Lead and Polonium 339</p> <p>12.2 Existing Techniques and Materials Involved in Removal of Radionuclide 340</p> <p>12.2.1 Ion Exchange 340</p> <p>12.2.2 Reverse Osmosis 340</p> <p>12.2.3 Aeration 341</p> <p>12.2.4 Granulated Activated Carbon 341</p> <p>12.2.5 Filtration 342</p> <p>12.2.6 Lime Softening, Coagulation, and Co-Precipitation 342</p> <p>12.2.7 Flocculation 343</p> <p>12.2.8 Nanofilteration 343</p> <p>12.2.9 Greensand Filteration 344</p> <p>12.2.10 Nanomaterials 344</p> <p>12.2.10.1 Radionuclides Sequestration by MOFs 344</p> <p>12.2.10.2 Radionuclides Removal by COFs 345</p> <p>12.2.10.3 Elimination of Radionuclides by GOs 346</p> <p>12.2.10.4 Radionuclide Sequestration by CNTs 346</p> <p>12.2.11 Ionic Liquids 347</p> <p>12.3 Summary of Various Nanomaterial and Efficiency of Water Treating Technology 348</p> <p>12.4 Management of Radioactive Waste 348</p> <p>12.5 Conclusion 350</p> <p>References 350</p> <p><b>13 Applications of Membrane Contactors for Water Treatment 361<br /></b><i>Ashish Kapoor, Elangovan Poonguzhali, Nanditha Dayanandan and Sivaraman Prabhakar</i></p> <p>13.1 Introduction 362</p> <p>13.2 Characteristics of Membrane Contactors 362</p> <p>13.3 Membrane Module Configurations 365</p> <p>13.4 Mathematical Aspects of Membrane Contactors 366</p> <p>13.5 Advantages and Limitations of Membrane Contactors 367</p> <p>13.5.1 Advantages 367</p> <p>13.5.1.1 High Interfacial Contact 368</p> <p>13.5.1.2 Absence of Flooding and Loading 368</p> <p>13.5.1.3 Minimization of Back Mixing and Emulsification 368</p> <p>13.5.1.4 Freedom for Solvent Selection 368</p> <p>13.5.1.5 Reduction in Solvent Inventory 368</p> <p>13.5.1.6 Modularity 369</p> <p>13.5.2 Limitations 369</p> <p>13.6 Membrane Contactors as Alternatives to Conventional Unit Operations 370</p> <p>13.6.1 Liquid-Liquid Extraction 370</p> <p>13.6.2 Membrane Distillation 370</p> <p>13.6.3 Osmotic Distillation 372</p> <p>13.6.4 Membrane Crystallization 372</p> <p>13.6.5 Membrane Emulsification 372</p> <p>13.6.6 Supported Liquid Membranes 373</p> <p>13.6.7 Membrane Bioreactors 373</p> <p>13.7 Applications 374</p> <p>13.7.1 Wastewater Treatment 374</p> <p>13.7.2 Metal Recovery From Aqueous Streams 375</p> <p>13.7.3 Desalination 375</p> <p>13.7.4 Concentration of Products in Food and Biotechnological Industries 375</p> <p>13.7.5 Gaseous Stream Treatment 376</p> <p>13.7.6 Energy Sector 376</p> <p>13.8 Conclusions and Future Prospects 377</p> <p>References 378</p> <p><b>14 Removal of Sulfates From Wastewater 383<br /></b><i>Ankita Dhillon, Rekha Sharma and Dinesh Kumar</i></p> <p>14.1 Introduction 383</p> <p>14.2 Effect of Sulfate Contamination on Human Health 384</p> <p>14.3 Groundwater Distribution of Sulfate 384</p> <p>14.4 Traditional Methods for Sulfate Removal 385</p> <p>14.4.1 Treatment With Lime 385</p> <p>14.4.2 Treatment With Limestone 386</p> <p>14.4.3 Wetlands 387</p> <p>14.5 Modern Day’s Technique for Sulfate Removal 387</p> <p>14.5.1 Nanofiltration 387</p> <p>14.5.2 Electrocoagulation 388</p> <p>14.5.3 Precipitation Methods 389</p> <p>14.5.4 Adsorption 391</p> <p>14.5.5 Ion Exchange 392</p> <p>14.5.6 Biological Treatment 393</p> <p>14.5.7 Removal of Sulfate by Crystallization 394</p> <p>14.6 Conclusions and Future Perspective 394</p> <p>Acknowledgment 395</p> <p>References 395</p> <p><b>15 Risk Assessment on Human Health With Effect of Heavy Metals 401<br /></b><i>Athar Hussain, Manjeeta Priyadarshi, Fazil Qureshi and Salman Ahmed</i></p> <p>15.1 Introduction 402</p> <p>15.2 Toxic Effects Heavy Metals on Human Health 403</p> <p>15.3 Biomarkers and Bio-Indicators for Evaluation of Heavy Metal Contamination 406</p> <p>15.3.1 Hazard Quotient 407</p> <p>15.3.2 Transfer Factor 407</p> <p>15.3.3 Daily Intake of Metal 408</p> <p>15.3.4 The Bioaccumulation Factor 409</p> <p>15.3.5 Translocation Factor 410</p> <p>15.3.6 Enrichment Factor 410</p> <p>15.3.7 Metal Pollution Index 412</p> <p>15.3.8 Health Risk Index 412</p> <p>15.3.9 Pollution Load Index 412</p> <p>15.3.10 Index of Geo-Accumulation 413</p> <p>15.3.11 Potential Risk Index 413</p> <p>15.3.12 Exposure Assessment 414</p> <p>15.3.13 Carcinogenic Risk 415</p> <p>References 417</p> <p><b>16 Water Quality Monitoring and Management: Importance, Applications, and Analysis 421<br /></b><i>Abhinav Srivastava and V.P. Sharma</i></p> <p>16.1 Qualitative Analysis: An Introduction to Basic Concept 422</p> <p>16.2 Significant Applications of Qualitative Analysis 422</p> <p>16.2.1 Water Quality 424</p> <p>16.2.2 Water Quality Index 426</p> <p>16.3 Qualitative Analysis of Water 427</p> <p>16.3.1 Sampling Procedure 428</p> <p>16.3.2 Sample Transportation and Preservation 429</p> <p>16.3.3 Some Important Physico-Chemical Parameters of Water Quality 431</p> <p>16.4 Existing Water Quality Standards 434</p> <p>16.5 Quality Assurance and Quality Control 435</p> <p>16.6 Conclusions 437</p> <p>References 437</p> <p><b>17 Water Quality Standards 441<br /></b><i>Hosam M. Saleh and Amal I. Hassan</i></p> <p>17.1 Introduction 442</p> <p>17.2 Chemical Standards for Water Quality 443</p> <p>17.2.1 Physical Standards 443</p> <p>17.2.2 Chemical Standards for Salt Water Quality 445</p> <p>17.2.3 Biological Standards 446</p> <p>17.2.4 Radiation Standards 447</p> <p>17.2.5 Wastewater and Water Quality 447</p> <p>17.3 Inorganic Substances and Their Effect on Palatability and Household Uses 451</p> <p>17.3.1 Aluminum 451</p> <p>17.3.2 Calcium 451</p> <p>17.3.3 Magnesium 452</p> <p>17.3.4 Chlorides 452</p> <p>17.4 The Philosophy of Setting Standards for Drinking Water (Proportions and Concentrations of Water Components) 457</p> <p>17.5 Detection of Polychlorinated Biphenyls 458</p> <p>17.6 The Future Development of Water Analysis 459</p> <p>17.7 Conclusion 460</p> <p>References 460</p> <p><b>18 Qualitative and Quantitative Analysis of Water 469<br /></b><i>Amita Chaudhary, Ankur Dwivedi and Ashok N Bhaskarwar</i></p> <p>18.1 Introduction 469</p> <p>18.2 Sources of Water 470</p> <p>18.3 Water Quality 472</p> <p>18.3.1 Physical Parameters 472</p> <p>18.3.2 Chemical Parameters 472</p> <p>18.3.3 Biological Parameters 474</p> <p>18.3.4 Water Quality Index 474</p> <p>18.4 Factors Affecting the Quality of Surface Water 476</p> <p>18.5 Quantitative Analysis of the Organic Content of the Wastewater 477</p> <p>18.5.1 Biochemical Oxygen Demand 477</p> <p>18.5.1.1 DO Profile Curve in BOD Test 478</p> <p>18.5.1.2 Significance of BOD Test 479</p> <p>18.5.1.3 Nitrification in BOD Test 480</p> <p>18.5.2 Chemical Oxygen Demand 480</p> <p>18.5.3 Theoretical Oxygen Demand (ThOD) 482</p> <p>18.6 Treatment of Wastewater 483</p> <p>18.6.1 Primary Treatment Method 484</p> <p>18.6.1.1 Pre-Aeration 484</p> <p>18.6.1.2 Flocculation 484</p> <p>18.6.2 Secondary Treatment 485</p> <p>18.6.2.1 Aerobic Biological Process 485</p> <p>18.6.2.2 Anaerobic Biological Treatment 485</p> <p>18.6.2.3 Activated Sludge Process 487</p> <p>18.6.3 Tertiary Treatment 488</p> <p>18.6.3.1 Nutrients Removal 488</p> <p>18.6.3.2 Phosphorus Removal 490</p> <p>18.6.3.3 Ion-Exchange Process 490</p> <p>18.6.3.4 Membrane Process 491</p> <p>18.6.3.5 Disinfection 491</p> <p>18.6.3.6 Coagulation 491</p> <p>18.7 Instrumental Analysis of Wastewater Parameters 492</p> <p>18.7.1 Hardness 492</p> <p>18.7.2 Alkalinity 492</p> <p>18.7.3 pH 493</p> <p>18.7.4 Turbidity 493</p> <p>18.7.5 Total Dissolved Solids 494</p> <p>18.7.6 Total Organic Carbon 494</p> <p>18.7.7 Color 495</p> <p>18.7.8 Atomic Absorption Spectroscopy 495</p> <p>18.7.9 Inductive Coupled Plasma–Mass Spectroscopy 496</p> <p>18.7.10 Gas Chromatography With Mass Spectroscopy 497</p> <p>18.8 Methods for Qualitative Determination of Water 497</p> <p>18.8.1 Weight Loss Method 497</p> <p>18.8.2 Karl Fischer Method 498</p> <p>18.8.3 Fourier Transform Infrared Spectroscopy Method 499</p> <p>18.8.4 Nuclear Magnetic Resonance Spectroscopy Method 499</p> <p>18.9 Conclusion 500</p> <p>References 500</p> <p><b>19 Nanofluids for Water Treatment 503<br /></b><i>Charles Oluwaseun Adetunji, Wilson Nwankwo, Olusola Olaleye, Olanrewaju Akinseye, Temitope Popoola and Mohd Imran Ahamed</i></p> <p>19.1 Introduction 504</p> <p>19.2 Types of Nanofluids Used in the Treatment of Water 505</p> <p>19.2.1 Zero-Valent Metal Nanoparticles 505</p> <p>19.2.1.1 Silver Nanoparticles (AgNPs) 505</p> <p>19.2.1.2 Iron Nanoparticles 506</p> <p>19.2.1.3 Zinc Nanoparticles 507</p> <p>19.2.2 Metal Oxides Nanoparticles 507</p> <p>19.2.2.1 Tin Dioxide (TiO<sub>2</sub>) Nanoparticles 507</p> <p>19.2.2.2 Zinc Oxide Nanoparticles (ZnO NPs) 508</p> <p>19.2.2.3 Iron Oxides Nanoparticles 508</p> <p>19.2.3 Carbon Nanotubes 509</p> <p>19.2.4 Nanocomposite Membranes 509</p> <p>19.2.5 Modes of Action of These Nanofluids 509</p> <p>19.2.5.1 Carbon-Based Nano-Adsorbents (CNTs) for Organic Expulsion 509</p> <p>19.2.5.2 Heavy Metal Removal 510</p> <p>19.2.5.3 Metal-Based Nano-Adsorbents 510</p> <p>19.2.5.4 Polymeric Nano-Adsorbents 511</p> <p>19.2.5.5 Nanofiber Membranes 511</p> <p>19.2.5.6 Some Applications of Nanofluids in the Treatment of Water 512</p> <p>19.2.5.7 Informatics and AI Nanofluid-Enhanced Water Treatment 513</p> <p>19.3 Conclusion and Recommendation to Knowledge 516</p> <p>References 516</p> <p>Index 525</p>
<p><b>Inamuddin, PhD,</b> is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.</p><p><b>Mohd Imran Ahamed, PhD,</b> is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning.</p><p><b>Rajender Boddula, PhD,</b> is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters.</p><p><b>Tauseef Ahmad Rangreez, PhD,</b> is working as a postdoctoral fellow at the National Institute of Technology, Srinagar, India. He completed his PhD in applied chemistry from Aligarh Muslim University, Aligarh, India and worked as a project fellow under the University Grant Commission, India. He has published several research articles and co-edited books. His research interest includes ion-exchange chromatography, development of nanocomposite sensors for heavy metals and biosensors.</p>
<p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this is the first volume in a two-volume set that is the most thorough, up-to-date, and comprehensive volume on applied water science available today.</b></p><p>Water is one of the most precious and basic needs of life for all living beings, and a precious national asset. Without it, the existence of life cannot be imagined. Availability of pure water is decreasing day by day, and water scarcity has become a major problem that our society has faced for the past few years. Hence, it is essential to find and disseminate the key solutions for water quality and scarcity issues. Inaccessibility and poor water quality continue to pose a major threat to human health worldwide. Around billions of people lack to access drinkable water, and, often, water contains pathogenic impurities which are responsible for water-borne diseases. The concept of water quality mainly depends on the chemical, physical, biological, and radiological measurement standards to evaluate the water quality and determine the concentration of all components, then compare the results of this concentration with the purpose for which this water is used. Therefore, awareness and a firm grounding in water science are the primary needs of readers, professionals, and researchers working in this research area.</p><p>This book explores the basic concepts and applications of water science. It provides an in-depth look at water pollutants’ classification, water recycling, qualitative and quantitative analysis, and efficient wastewater treatment methodologies. It also provides occurrence, human health risk assessment, strategies for removal of radionuclides and pharmaceuticals in aquatic systems. The book chapters are written by leading researchers throughout the world. This book is an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of environmental science, geoscience, water science, physics and chemistry.</p><p>This outstanding new volume:</p><ul><li>Provides a detailed overview of applications and challenges in water science</li><li>Examines how to reach the best standard for measuring water quality</li><li>Highlights future research directions to address the lack of comprehensive data on water science</li></ul>

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €