Details

Amorphous Oxide Semiconductors


Amorphous Oxide Semiconductors

IGZO and Related Materials for Display and Memory
Wiley Series in Display Technology 1. Aufl.

von: Hideo Hosono, Hideya Kumomi

116,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 16.05.2022
ISBN/EAN: 9781119715610
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>AMORPHOUS OXIDE SEMICONDUCTORS</b> <p><b>A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field</b> <p>In <i>Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory,</i> the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. <p>The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: <ul><li>A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design</li> <li>Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects</li> <li>Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics</li> <li>In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs</li></ul> <p>Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems,<i> Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory </i>will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. <p>WILEY SID Series in <b>Display Technology</b > <p>Series Editor: Ian Sage, Abelian Services, Malvern, UK <p>The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.
<p>Preface xv</p> <p>Series Editor’s Foreword <i>xvii</i></p> <p>About the Editors xviii</p> <p>List of Contributors xix</p> <p><b>Part I Introduction 1</b></p> <p>1.1 Transparent Amorphous Oxide Semiconductors for Display Applications 3<br /><i>Hideo Hosono</i></p> <p>1.1.1 Introduction to Amorphous Semiconductors as Thin-Film Transistor (TFT) Channels 3</p> <p>1.1.2 Historical Overview 4</p> <p>1.1.3 Oxide and Silicon 6</p> <p>1.1.4 Transparent Amorphous Oxide Semiconductors 6</p> <p>1.1.4.1 Electronic Structures 6</p> <p>1.1.4.2 Materials 8</p> <p>1.1.4.3 Characteristic Carrier Transport Properties 9</p> <p>1.1.4.4 Electronic States 10</p> <p>1.1.5 P-Type Oxide Semiconductors for Display Applications 13</p> <p>1.1.5.1 Oxides of Transition Metal Cations with an Electronic Configuration of (n−1)d 10 ns 0 (n = 4or5) 13</p> <p>1.1.5.2 Oxides of Metal Cations with an Electronic Configuration of ns 2 13</p> <p>1.1.5.3 Oxides of Metal Cations with an Electronic Configuration of nd 6 14</p> <p>1.1.6 Novel Amorphous Oxide Semiconductors 15</p> <p>1.1.7 Summary and Outlook 17</p> <p>References 18</p> <p>1.2 Transparent Amorphous Oxide Semiconductors 21<br /><i>Hideya Kumomi</i></p> <p>1.2.1 Introduction 21</p> <p>1.2.2 Technical Issues and Requirements of TFTs for AM-FPDs 21</p> <p>1.2.2.1 Field-Effect Mobility 21</p> <p>1.2.2.2 Off-State Leakage Current and On/Off Current Ratio 23</p> <p>1.2.2.3 Stability and Reliability 23</p> <p>1.2.2.4 Uniformity 23</p> <p>1.2.2.5 Large-Area Devices by Large-Area Mother-Glass Substrates 24</p> <p>1.2.2.6 Low-Temperature Fabrication and Flexibility 24</p> <p>1.2.3 History, Features, Uniqueness, Development, and Applications of AOS-TFTs 24</p> <p>1.2.3.1 History 24</p> <p>1.2.3.2 Features and Uniqueness 25</p> <p>1.2.3.3 Applications 27</p> <p>1.2.3.4 Development and Products of AM-FPDs 28</p> <p>1.2.4 Summary 29</p> <p>References 30</p> <p><b>Part II Fundamentals 31</b></p> <p><b>2 Electronic Structure and Structural Randomness 33<br /></b><i>Julia E. Medvedeva, Bishal Bhattarai, and D. Bruce Buchholz</i></p> <p>2.1 Introduction 33</p> <p>2.2 Brief Description of Methods and Approaches 35</p> <p>2.2.1 Computational Approach 35</p> <p>2.2.2 Experimental Approach 36</p> <p>2.3 The Structure and Properties of Crystalline and Amorphous In 2 O 3 36</p> <p>2.4 The Structure and Properties of Crystalline and Amorphous SnO 2 43</p> <p>2.5 The Structure and Properties of Crystalline and Amorphous ZnO 46</p> <p>2.6 The Structure and Properties of Crystalline and Amorphous Ga 2 O 3 52</p> <p>2.7 Role of Morphology in Structure–Property Relationships 57</p> <p>2.8 The Role of Composition in Structure–Property Relationships: IGO and IGZO 64</p> <p>2.9 Conclusions 69</p> <p>References 70</p> <p><b>3 Electronic Structure of Transparent Amorphous Oxide Semiconductors 73<br /></b><i>John Robertson and Zhaofu Zhang</i></p> <p>3.1 Introduction 73</p> <p>3.2 Mobility 73</p> <p>3.3 Density of States 74</p> <p>3.4 Band Structures of n-Type Semiconductors 78</p> <p>3.5 Instabilities 81</p> <p>3.6 Doping Limits and Finding Effective Oxide Semiconductors 86</p> <p>3.7 OLED Electrodes 88</p> <p>3.8 Summary 89</p> <p>References 89</p> <p><b>4 Defects and Relevant Properties 93<br /></b><i>Toshio Kamiya, Kenji Nomura, Keisuke Ide, and Hideo Hosono</i></p> <p>4.1 Introduction 93</p> <p>4.2 Typical Deposition Condition 93</p> <p>4.3 Overview of Electronic Defects in AOSs 94</p> <p>4.4 Origins of Electron Donors 96</p> <p>4.5 Oxygen- and Hydrogen-Related Defects and Near-VBM States 98</p> <p>4.6 Summary 102</p> <p>References 102</p> <p><b>5 Amorphous Semiconductor Mobility Physics and TFT Modeling 105<br /></b><i>John F. Wager</i></p> <p>5.1 Amorphous Semiconductor Mobility: An Introduction 105</p> <p>5.2 Diffusive Mobility 106</p> <p>5.3 Density of States 110</p> <p>5.4 TFT Mobility Considerations 111</p> <p>5.5 TFT Mobility Extraction, Fitting, and Model Validation 112</p> <p>5.6 Physics-Based TFT Mobility Modeling 118</p> <p>5.7 Conclusions 121</p> <p>References 122</p> <p><b>6 Percolation Description of Charge Transport in Amorphous Oxide Semiconductors: Band Conduction Dominated by Disorder 125<br /></b><i>A. V. Nenashev, F. Gebhard, K. Meerholz, and S. D. Baranovskii</i></p> <p>6.1 Introduction 125</p> <p>6.2 Band Transport via Extended States in the Random-Barrier Model (RBM) 126</p> <p>6.2.1 Deficiencies of the Rate-Averaging Approach: Electrotechnical Analogy 127</p> <p>6.2.2 Percolation Approach to Charge Transport in the RBM 129</p> <p>6.3 Random Band-Edge Model (RBEM) for Charge Transport in AOSs 131</p> <p>6.4 Percolation Theory for Charge Transport in the RBEM 133</p> <p>6.4.1 From Regional to Global Conductivities in Continuum Percolation Theory 133</p> <p>6.4.2 Averaging Procedure by Adler et al. 135</p> <p>6.5 Comparison between Percolation Theory and EMA 136</p> <p>6.6 Comparison with Experimental Data 137</p> <p>6.7 Discussion and Conclusions 140</p> <p>6.7.1 Textbook Description of Charge Transport in Traditional Crystalline Semiconductors (TCSs) 140</p> <p>6.7.2 Results of This Chapter for Charge Transport in Amorphous Oxide Semiconductors (AOSs) 141</p> <p>Acknowledgments 141</p> <p>References 141</p> <p><b>7 State and Role of Hydrogen in Amorphous Oxide Semiconductors 145<br /></b><i>Hideo Hosono and Toshio Kamiya</i></p> <p>7.1 Introduction 145</p> <p>7.2 Concentration and Chemical States 145</p> <p>7.3 Carrier Generation and Hydrogen 150</p> <p>7.3.1 Carrier Generation by H Injection at Low Temperatures 150</p> <p>7.3.2 Carrier Generation and Annihilation by Thermal Treatment 151</p> <p>7.4 Energy Levels and Electrical Properties 153</p> <p>7.5 Incorporation and Conversion of H Impurities 154</p> <p>7.6 Concluding Remarks 155</p> <p>Acknowledgments 156</p> <p>References 156</p> <p><b>Part III Processing 159</b></p> <p><b>8 Low-Temperature Thin-Film Combustion Synthesis of Metal-Oxide Semiconductors: Science and Technology 161<br /></b><i>Binghao Wang, Wei Huang, Antonio Facchetti, and Tobin J. Marks</i></p> <p>8.1 Introduction 161</p> <p>8.2 Low-Temperature Solution-Processing Methodologies 162</p> <p>8.2.1 Alkoxide Precursors 162</p> <p>8.2.2 Microwave-Assisted Annealing 165</p> <p>8.2.3 High-Pressure Annealing 165</p> <p>8.2.4 Photonic Annealing 165</p> <p>8.2.4.1 Laser Annealing 166</p> <p>8.2.4.2 Deep-Ultraviolet Illumination 168</p> <p>8.2.4.3 Flash Lamp Annealing 170</p> <p>8.2.5 Redox Reactions 170</p> <p>8.3 Combustion Synthesis for MO TFTs 171</p> <p>8.3.1 n-Type MO TFTs 172</p> <p>8.3.2 p-Type MO TFTs 178</p> <p>8.4 Summary and Perspectives 180</p> <p>Acknowledgments 180</p> <p>References 181</p> <p><b>9 Solution-Processed Metal-Oxide Thin-Film Transistors for Flexible Electronics 185<br /></b><i>Hyun Jae Kim</i></p> <p>9.1 Introduction 185</p> <p>9.2 Fundamentals of Solution-Processed Metal-Oxide Thin-Film Transistors 187</p> <p>9.2.1 Deposition Methods for Solution-Processed Oxide Semiconductors 187</p> <p>9.2.1.1 Coating-Based Deposition Methods 190</p> <p>9.2.1.2 Printing-Based Deposition Methods 191</p> <p>9.2.2 The Formation Mechanism of Solution-Processed Oxide Semiconductor Films 194</p> <p>9.3 Low-Temperature Technologies for Active-Layer Engineering of Solution-Processed Oxide TFTs 196</p> <p>9.3.1 Overview 196</p> <p>9.3.2 Solution Modulation 197</p> <p>9.3.2.1 Alkoxide Precursors 198</p> <p>9.3.2.2 pH Adjustment 199</p> <p>9.3.2.3 Combustion Reactions 199</p> <p>9.3.2.4 Aqueous Solvent 199</p> <p>9.3.3 Process Modulation 201</p> <p>9.3.3.1 Photoactivation Process 201</p> <p>9.3.3.2 High-Pressure Annealing (HPA) Process 202</p> <p>9.3.3.3 Microwave-Assisted Annealing Process 204</p> <p>9.3.3.4 Plasma-Assisted Annealing Process 204</p> <p>9.3.4 Structure Modulation 205</p> <p>9.3.4.1 Homojunction Dual-Active or Multiactive Layer 206</p> <p>9.3.4.2 Heterojunction Dual- or Multiactive Layer 206</p> <p>9.4 Applications of Flexible Electronics with Low-Temperature Solution-Processed Oxide TFTs 208</p> <p>9.4.1 Flexible Displays 208</p> <p>9.4.2 Flexible Sensors 208</p> <p>9.4.3 Flexible Integrated Circuits 209</p> <p>References 209</p> <p><b>10 Recent Progress on Amorphous Oxide Semiconductor Thin-Film Transistors Using the Atomic Layer Deposition Technique 213<br /></b><i>Hyun-Jun Jeong and Jin-Seong Park</i></p> <p>10.1 Atomic Layer Deposition (ALD) for Amorphous Oxide Semiconductor (AOS) Applications 213</p> <p>10.1.1 The ALD Technique 213</p> <p>10.1.2 Research Motivation for ALD AOS Applications 215</p> <p>10.2 AOS-TFTs Based on ALD 217</p> <p>10.2.1 Binary Oxide Semiconductor TFTs Based on ALD 217</p> <p>10.2.1.1 ZnO-TFTs 217</p> <p>10.2.1.2 InOx-TFTs 218</p> <p>10.2.1.3 SnOx-TFTs 218</p> <p>10.2.2 Ternary and Quaternary Oxide Semiconductor TFTs Based on ALD 220</p> <p>10.2.2.1 Indium–Zinc Oxide (IZO) and Indium–Gallium Oxide (IGO) 220</p> <p>10.2.2.2 Zinc–Tin Oxide (ZTO) 223</p> <p>10.2.2.3 Indium–Gallium–Zinc Oxide (IGZO) 223</p> <p>10.2.2.4 Indium–Tin–Zinc Oxide (ITZO) 226</p> <p>10.3 Challenging Issues of AOS Applications Using ALD 226</p> <p>10.3.1 p-Type Oxide Semiconductors 226</p> <p>10.3.1.1 Tin Monoxide (SnO) 228</p> <p>10.3.1.2 Copper Oxide (cu x O) 229</p> <p>10.3.2 Enhancing Device Performance: Mobility and Stability 230</p> <p>10.3.2.1 Composition Gradient Oxide Semiconductors 230</p> <p>10.3.2.2 Two-Dimensional Electron Gas (2DEG) Oxide Semiconductors 231</p> <p>10.3.2.3 Spatial and Atmospheric ALD for Oxide Semiconductors 234</p> <p>References 234</p> <p><b>Part IV Thin-Film Transistors 239</b></p> <p><b>11 Control of Carrier Concentrations in AOSs and Application to Bulk-Accumulation TFTs 241<br /></b><i>Suhui Lee and Jin Jang</i></p> <p>11.1 Introduction 241</p> <p>11.2 Control of Carrier Concentration in a-IGZO 242</p> <p>11.3 Effect of Carrier Concentration on the Performance of a-IGZO TFTs with a Dual-Gate Structure 247</p> <p>11.3.1 Inverted Staggered TFTs 247</p> <p>11.3.2 Coplanar TFTs 251</p> <p>11.4 High-Drain-Current, Dual-Gate Oxide TFTs 252</p> <p>11.5 Stability of Oxide TFTs: PBTS, NBIS, HCTS, Hysteresis, and Mechanical Strain 259</p> <p>11.6 TFT Circuits: Ring Oscillators and Amplifier Circuits 266</p> <p>11.7 Conclusion 270</p> <p>References 270</p> <p><b>12 Elevated-Metal Metal-Oxide Thin-Film Transistors: A Back-Gate Transistor Architecture with Annealing-Induced Source/Drain Regions 273<br /></b><i>Man Wong, Zhihe Xia, and Jiapeng li</i></p> <p>12.1 Introduction 273</p> <p>12.1.1 Semiconducting Materials for a TFT 274</p> <p>12.1.1.1 Amorphous Silicon 274</p> <p>12.1.1.2 Low-Temperature Polycrystalline Silicon 274</p> <p>12.1.1.3 MO Semiconductors 275</p> <p>12.1.2 TFT Architectures 276</p> <p>12.2 Annealing-Induced Generation of Donor Defects 279</p> <p>12.2.1 Effects of Annealing on the Resistivity of IGZO 279</p> <p>12.2.2 Microanalyses of the Thermally Annealed Samples 283</p> <p>12.2.3 Lateral Migration of the Annealing-Induced Donor Defects 284</p> <p>12.3 Elevated-Metal Metal-Oxide (EMMO) TFT Technology 286</p> <p>12.3.1 Technology and Characteristics of IGZO EMMO TFTs 287</p> <p>12.3.2 Applicability of EMMO Technology to Other MO Materials 291</p> <p>12.3.3 Fluorinated EMMO TFTs 292</p> <p>12.3.4 Resilience of Fluorinated MO against Hydrogen Doping 296</p> <p>12.3.5 Technology and Display Resolution Trend 298</p> <p>12.4 Enhanced EMMO TFT Technologies 301</p> <p>12.4.1 3-EMMO TFT Technology 302</p> <p>12.4.2 Self-Aligned EMMO TFTs 307</p> <p>12.5 Conclusion 309</p> <p>Acknowledgments 310</p> <p>References 310</p> <p><b>13 Hot Carrier Effects in Oxide-TFTs 315<br /></b><i>Mami N. Fujii, Takanori Takahashi, Juan Paolo Soria Bermundo, and Yukiharu Uraoka</i></p> <p>13.1 Introduction 315</p> <p>13.2 Analysis of Hot Carrier Effect in IGZO-TFTs 315</p> <p>13.2.1 Photoemission from IGZO-TFTs 315</p> <p>13.2.2 Kink Current in Photon Emission Condition 318</p> <p>13.2.3 Hot Carrier–Induced Degradation of a-IGZO-TFTs 318</p> <p>13.3 Analysis of the Hot Carrier Effect in High-Mobility Oxide-TFTs 322</p> <p>13.3.1 Bias Stability under DC Stresses in a High-Mobility IWZO-TFT 322</p> <p>13.3.2 Analysis of Dynamic Stress in Oxide-TFTs 323</p> <p>13.3.3 Photon Emission from the IWZO-TFT under Pulse Stress 323</p> <p>13.4 Conclusion 328</p> <p>References 328</p> <p><b>14 Carbon-Related Impurities and NBS Instability in AOS-TFTs 333<br /></b><i>Junghwan Kim and Hideo Hosono</i></p> <p>14.1 Introduction 333</p> <p>14.2 Experimental 334</p> <p>14.3 Results and Discussion 334</p> <p>14.4 Summary 337</p> <p>References 339</p> <p><b>Part V TFTs and Circuits 341</b></p> <p><b>15 Oxide TFTs for Advanced Signal-Processing Architectures 343<br /></b><i>Arokia Nathan, Denis Striakhilev, and Shuenn-Jiun Tang</i></p> <p>15.1 Introduction 343</p> <p>15.1.1 Device–Circuit Interactions 343</p> <p>15.2 Above-Threshold TFT Operation and Defect Compensation: AMOLED Displays 345</p> <p>15.2.1 AMOLED Display Challenges 345</p> <p>15.2.2 Above-Threshold Operation 347</p> <p>15.2.3 Temperature Dependence 347</p> <p>15.2.4 Effects of Process-Induced Spatial Nonuniformity 349</p> <p>15.2.5 Overview of External Compensation for AMOLED Displays 351</p> <p>15.3 Ultralow-Power TFT Operation in a Deep Subthreshold (Near Off-State) Regime 354</p> <p>15.3.1 Schottky Barrier TFTs 355</p> <p>15.3.2 Device Characteristics and Small Signal Parameters 358</p> <p>15.3.3 Common Source Amplifier 360</p> <p>15.4 Oxide TFT-Based Image Sensors 362</p> <p>15.4.1 Heterojunction Oxide Photo-TFTs 362</p> <p>15.4.2 Persistent Photocurrent 364</p> <p>15.4.3 All-Oxide Photosensor Array 365</p> <p>References 366</p> <p><b>16 Device Modeling and Simulation of TAOS-TFTs 369<br /></b><i>Katsumi Abe</i></p> <p>16.1 Introduction 369</p> <p>16.2 Device Models for TAOS-TFTs 369</p> <p>16.2.1 Mobility Model 369</p> <p>16.2.2 Density of Subgap States (DOS) Model 371</p> <p>16.2.3 Self-Heating Model 372</p> <p>16.3 Applications 373</p> <p>16.3.1 Temperature Dependence 373</p> <p>16.3.2 Channel-Length Dependence 373</p> <p>16.3.3 Channel-Width Dependence 375</p> <p>16.3.4 Dual-Gate Structure 378</p> <p>16.4 Reliability 379</p> <p>16.5 Summary 381</p> <p>Acknowledgments 381</p> <p>References 382</p> <p><b>17 Oxide Circuits for Flexible Electronics 383<br /></b><i>Kris Myny, Nikolaos Papadopoulos, Florian De Roose, and Paul Heremans</i></p> <p>17.1 Introduction 383</p> <p>17.2 Technology-Aware Design Considerations 383</p> <p>17.2.1 Etch-Stop Layer, Backchannel Etch, and Self-Aligned Transistors 384</p> <p>17.2.1.1 Etch-Stop Layer 384</p> <p>17.2.1.2 Backchannel Etch 385</p> <p>17.2.1.3 Self-Aligned Transistors 385</p> <p>17.2.1.4 Comparison 386</p> <p>17.2.2 Dual-Gate Transistors 386</p> <p>17.2.2.1 Stack Architecture 386</p> <p>17.2.2.2 Effect of the Backgate 388</p> <p>17.2.3 Moore’s Law for TFT Technologies 389</p> <p>17.2.3.1 Cmos 389</p> <p>17.2.3.2 Thin-Film Electronics Historically 389</p> <p>17.2.3.3 New Drivers for Thin-Film Scaling: Circuits 390</p> <p>17.2.3.4 L-Scaling 391</p> <p>17.2.3.5 W and L Scaling 391</p> <p>17.2.3.6 Overall Lateral Scaling 391</p> <p>17.2.3.7 Oxide Thickness and Supply Voltage Scaling 391</p> <p>17.2.4 Conclusion 392</p> <p>17.3 Digital Electronics 392</p> <p>17.3.1 Communication Chips 392</p> <p>17.3.2 Complex Metal-Oxide-Based Digital Chips 395</p> <p>17.4 Analog Electronics 396</p> <p>17.4.1 Thin-Film ADC Topologies 396</p> <p>17.4.2 Imager Readout Peripherals 397</p> <p>17.4.3 Healthcare Patches 399</p> <p>17.5 Summary 400</p> <p>Acknowledgments 400</p> <p>References 400</p> <p><b>Part VI Display and Memory Applications 405</b></p> <p><b>18 Oxide TFT Technology for Printed Electronics 407<br /></b><i>Toshiaki Arai</i></p> <p>18.1 OLEDs 407</p> <p>18.1.1 OLED Displays 407</p> <p>18.1.2 Organic Light-Emitting Diodes 408</p> <p>18.1.3 Printed OLEDs 409</p> <p>18.2 TFTs for OLED Driving 413</p> <p>18.2.1 TFT Candidates 413</p> <p>18.2.2 Pixel Circuits 413</p> <p>18.2.3 Oxide TFTs 414</p> <p>18.2.3.1 Bottom-Gate TFTs 415</p> <p>18.2.3.2 Top-Gate TFTs 418</p> <p>18.3 Oxide TFT–Driven Printed OLED Displays 424</p> <p>18.4 Summary 427</p> <p>References 428</p> <p><b>19 Mechanically Flexible Nonvolatile Memory Thin-Film Transistors Using Oxide Semiconductor Active Channels on Ultrathin Polyimide Films 431<br /></b><i>Sung-Min Yoon, Hyeong-Rae Kim, Hye-Won Jang, Ji-Hee Yang, Hyo-Eun Kim, and Sol-Mi Kwak</i></p> <p>19.1 Introduction 431</p> <p>19.2 Fabrication of Memory TFTs 432</p> <p>19.2.1 Substrate Preparation 432</p> <p>19.2.2 Device Fabrication Procedures 434</p> <p>19.2.3 Characterization Methodologies 435</p> <p>19.3 Device Operations of Flexible Memory TFTs 437</p> <p>19.3.1 Optimization of Flexible IGZO-TFTs on PI Films 437</p> <p>19.3.2 Nonvolatile Memory Operations of Flexible Memory TFTs 438</p> <p>19.3.3 Operation Mechanisms and Device Physics 442</p> <p>19.4 Choice of Alternative Materials 444</p> <p>19.4.1 Introduction to Conducting Polymer Electrodes 444</p> <p>19.4.2 Introduction of Polymeric Gate Insulators 446</p> <p>19.5 Device Scaling to Vertical-Channel Structures 447</p> <p>19.5.1 Vertical-Channel IGZO-TFTs on PI Films 447</p> <p>19.5.2 Vertical-Channel Memory TFTs Using IGZO Channel and ZnO Trap Layers 449</p> <p>19.6 Summary 453</p> <p>19.6.1 Remaining Technical Issues 453</p> <p>19.6.2 Conclusions and Outlooks 453</p> <p>References 454</p> <p><b>20 Amorphous Oxide Semiconductor TFTs for BEOL Transistor Applications 457<br /></b><i>Nobuyoshi Saito and Keiji Ikeda</i></p> <p>20.1 Introduction 457</p> <p>20.2 Improvement of Immunity to H 2 Annealing 458</p> <p>20.3 Increase of Mobility and Reduction of S/D Parasitic Resistance 463</p> <p>20.4 Demonstration of Extremely Low Off-State Leakage Current Characteristics 467</p> <p>References 471</p> <p><b>21 Ferroelectric-HfO 2 Transistor Memory with IGZO Channels 473<br /></b><i>Masaharu Kobayashi</i></p> <p>21.1 Introduction 473</p> <p>21.2 Device Operation and Design 475</p> <p>21.3 Device Fabrication 478</p> <p>21.4 Experimental Results and Discussions 479</p> <p>21.4.1 FE-HfO 2 Capacitors with an IGZO Layer 479</p> <p>21.4.2 IGZO Channel FeFETs 481</p> <p>21.5 Summary 484</p> <p>Acknowledgments 484</p> <p>References 485</p> <p><b>22 Neuromorphic Chips Using AOS Thin-Film Devices 487<br /></b><i>Mutsumi Kimura</i></p> <p>22.1 Introduction 487</p> <p>22.2 Neuromorphic Systems with Crosspoint-Type α-GTO Thin-Film Devices 488</p> <p>22.2.1 Neuromorphic Systems 488</p> <p>22.2.1.1 α-GTO Thin-Film Devices 488</p> <p>22.2.1.2 System Architecture 489</p> <p>22.2.2 Experimental Results 492</p> <p>22.3 Neuromorphic System Using an LSI Chip and α-IGZO Thin-Film Devices [24] 493</p> <p>22.3.1 Neuromorphic System 494</p> <p>22.3.1.1 Neuron Elements 494</p> <p>22.3.1.2 Synapse Elements 494</p> <p>22.3.1.3 System Architecture 495</p> <p>22.3.2 Working Principle 495</p> <p>22.3.2.1 Cellular Neural Network 495</p> <p>22.3.2.2 Tug-of-War Method 497</p> <p>22.3.2.3 Modified Hebbian Learning 497</p> <p>22.3.2.4 Majority-Rule Handling 498</p> <p>22.3.3 Experimental Results 498</p> <p>22.3.3.1 Raw Data 498</p> <p>22.3.3.2 Associative Memory 499</p> <p>22.4 Conclusion 499</p> <p>Acknowledgments 500</p> <p>References 500</p> <p><b>23 Oxide TFTs and Their Application to X-Ray Imaging 503<br /></b><i>Robert A. Street</i></p> <p>23.1 Introduction 503</p> <p>23.2 Digital X-Ray Detection and Imaging Modalities 504</p> <p>23.2.1 Indirect Detection Imaging 504</p> <p>23.2.2 Direct Detection Imaging 505</p> <p>23.2.3 X-Ray Imaging Modalities 505</p> <p>23.3 Oxide-TFT X-Ray Detectors 506</p> <p>23.3.1 TFT Backplane Requirements for Digital X-Rays 506</p> <p>23.3.2 An IGZO Detector Fabrication and Characterization 506</p> <p>23.3.3 Other Reported Oxide X-Ray Detectors 509</p> <p>23.4 How Oxide TFTs Can Improve Digital X-Ray Detectors 509</p> <p>23.4.1 Noise and Image Quality in X-Ray Detectors 510</p> <p>23.4.2 Minimizing Additive Electronic Noise with Oxides 510</p> <p>23.4.3 Pixel Amplifier Backplanes 511</p> <p>23.4.4 IGZO-TFT Noise 511</p> <p>23.5 Radiation Hardness of Oxide TFTs 513</p> <p>23.6 Oxide Direct Detector Materials 515</p> <p>23.7 Summary 515</p> <p>References 515</p> <p><b>Part VII New Materials 519</b></p> <p><b>24 Toward the Development of High-Performance p-Channel Oxide-TFTs and All-Oxide Complementary Circuits 521<br /></b><i>Kenji Nomura</i></p> <p>24.1 Introduction 521</p> <p>24.2 Why Is High-Performance p-Channel Oxide Difficult? 521</p> <p>24.3 The Current Development of p-Channel Oxide-TFTs 524</p> <p>24.4 Comparisons of p-Type Cu 2 O and SnO Channels 526</p> <p>24.5 Comparisons of the TFT Characteristics of Cu 2 O and SnO-TFTs 529</p> <p>24.6 Subgap Defect Termination for p-Channel Oxides 532</p> <p>24.7 All-Oxide Complementary Circuits 534</p> <p>24.8 Conclusions 535</p> <p>References 536</p> <p><b>25 Solution-Synthesized Metal Oxides and Halides for Transparent p-Channel TFTs 539<br /></b><i>Ao Liu, Huihui Zhu, and Yong-Young Noh</i></p> <p>25.1 Introduction 539</p> <p>25.2 Solution-Processed p-Channel Metal-Oxide TFTs 540</p> <p>25.3 Transparent Copper(I) Iodide (CuI)–Based TFTs 546</p> <p>25.4 Conclusions and Perspectives 548</p> <p>Acknowledgments 549</p> <p>References 549</p> <p><b>26 Tungsten-Doped Active Layers for High-Mobility AOS-TFTs 553<br /></b><i>Zhang Qun</i></p> <p>26.1 Introduction 553</p> <p>26.2 Advances in Tungsten-Doped High-Mobility AOS-TFTs 555</p> <p>26.2.1 a-IWO-TFTs 555</p> <p>26.2.2 a-IZWO-TFTs 562</p> <p>26.2.3 Dual Tungsten-Doped Active-Layer TFTs 565</p> <p>26.2.4 Treatment on the Backchannel Surface 566</p> <p>26.3 Perspectives for High-Mobility AOS Active Layers 570</p> <p>References 572</p> <p><b>27 Rare Earth– and Transition Metal–Doped Amorphous Oxide Semiconductor Phosphors for Novel Light-Emitting Diode Displays 577<br /></b><i>Keisuke Ide, Junghwan Kim, Hideo Hosono, and Toshio Kamiya</i></p> <p>27.1 Introduction 577</p> <p>27.2 Eu-Doped Amorphous Oxide Semiconductor Phosphor 577</p> <p>27.3 Multiple-Color Emissions from Various Rare Earth–Doped AOS Phosphors 579</p> <p>27.4 Transition Metal–Doped AOS Phosphors 582</p> <p>References 584</p> <p><b>28 Application of AOSs to Charge Transport Layers in Electroluminescent Devices 585<br /></b><i>Junghwan Kim and Hideo Hosono</i></p> <p>28.1 Electronic Structure and Electrical Properties of Amorphous Oxide Semiconductors (AOSs) 585</p> <p>28.2 Criteria for Charge Transport Layers in Electroluminescent (EL) Devices 585</p> <p>28.3 Amorphous Zn-Si-O Electron Transport Layers for Perovskite Light-Emitting Diodes (PeLEDs) 587</p> <p>28.4 Amorphous In-Mo-O Hole Injection Layers for OLEDs 589</p> <p>28.5 Perspective 594</p> <p>References 595</p> <p><b>29 Displays and Vertical-Cavity Surface-Emitting Lasers 597<br /></b><i>Kenichi Iga</i></p> <p>29.1 Introduction to Displays 597</p> <p>29.2 Liquid Crystal Displays (LCDs) 597</p> <p>29.2.1 History of LCDs 597</p> <p>29.2.2 Principle of LCD: The TN Mode 598</p> <p>29.2.3 Other LC Modes 600</p> <p>29.2.4 Light Sources 600</p> <p>29.2.5 Diffusion Plate and Light Guiding Layer 601</p> <p>29.2.6 Microlens Arrays 601</p> <p>29.2.7 Short-Focal-Length Projection 602</p> <p>29.3 Organic EL Display 602</p> <p>29.3.1 Method (a): Color-Coding Method 603</p> <p>29.3.2 Method (b): Filter Method 603</p> <p>29.3.3 Method (c): Blue Conversion Method 603</p> <p>29.4 Vertical-Cavity Surface-Emitting Lasers 604</p> <p>29.4.1 Motivation of Invention 604</p> <p>29.4.2 What Is the Difference? 605</p> <p>29.4.3 Device Realization 605</p> <p>29.4.4 Applications 607</p> <p>29.5 Laser Displays including VCSELs 607</p> <p>29.5.1 Laser Displays 607</p> <p>29.5.2 Color Gamut 608</p> <p>29.5.3 Laser Backlight Method 609</p> <p>Acknowledgments 610</p> <p>References 611</p> <p>Index 613</p>
<p><b>Hideo Hosono, P<small>H</small>D,</b> is Honorary and Institute Professor at the Tokyo Institute of Technology and distinguished fellow at the National Institute for Materials Science, Japan. He received his doctorate from the Tokyo Metropolitan University in 1982, and his research is focused on the creation of novel electronic functional materials. He is a pioneer of oxide semiconductors including IGZO-TFTs, iron-based superconductors and electrides.</p> <p><b>Hideya Kumomi, D<small>R</small>.S<small>CI</small>.,</b> is Specially Appointed Professor at the Tokyo Institute of Technology Materials Research Center for Element Strategy, Japan. He received his doctorate from Waseda University in 1996 and his research has been focused on semiconductor materials and devices.
<p><b>A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field</b></p> <p>In <i>Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory,</i> the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. <p>The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: <ul><li>A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design</li> <li>Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects</li> <li>Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics</li> <li>In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs</li></ul> <p>Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems,<i> Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory </i>will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. <p>WILEY SID Series in <b>Display Technology</b > <p>Series Editor: Ian Sage, Abelian Services, Malvern, UK <p>The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €