Details

Microgrid Technologies


Microgrid Technologies


1. Aufl.

von: Sharmeela Chenniappan, Sivaraman Palanisamy, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.03.2021
ISBN/EAN: 9781119710622
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems.</p> <p>Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. </p> <p>The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices.</p> <p>The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. </p> <p>Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library. </p>
<p>Foreword xxi</p> <p>Acknowledgements xxiii</p> <p><b>1 A Comprehensive Review on Energy Management in Micro-Grid System 1<br /></b><i>Sanjay Kumar, R. K. Saket, Sanjeevikumar Padmanaban and Jens Bo Holm-Nielsen</i></p> <p>1.1 Introduction 2</p> <p>1.2 Generation and Storage System in MicroGrid 6</p> <p>1.2.1 Distributed Generation of Electrical Power 6</p> <p>1.2.2 Incorporation of Electric Car in Micro-Grid as a Device for Backup 7</p> <p>1.2.3 Power and Heat Integration in Management System 8</p> <p>1.2.4 Combination of Heat and Electrical Power System 9</p> <p>1.3 System of Energy Management 10</p> <p>1.3.1 Classification of MSE 10</p> <p>1.3.1.1 MSE Based on Conventional Sources 10</p> <p>1.3.1.2 MSE Based on SSE 10</p> <p>1.3.1.3 MSE Based on DSM 11</p> <p>1.3.1.4 MSE Based on Hybrid System 11</p> <p>1.3.2 Steps of MSE During Problem Solving 11</p> <p>1.3.2.1 Prediction of Uncertain Parameters 12</p> <p>1.3.2.2 Uncertainty Modeling 12</p> <p>1.3.2.3 Mathematical Formulation 12</p> <p>1.3.2.4 Optimization 13</p> <p>1.3.3 Micro-Grid in Islanded Mode 13</p> <p>1.3.3.1 Objective Functions and Constraints of System 13</p> <p>1.3.4 Micro-Grid Operation in Grid-Connected Mode 14</p> <p>1.3.4.1 Objective Functions and Constraints of the Systems 14</p> <p>1.4 Algorithms Used in Optimizing Energy Management System 16</p> <p>1.5 Conclusion 19</p> <p>References 20</p> <p><b>2 Power and Energy Management in Microgrid 25<br /></b><i>Jayesh J. Joglekar</i></p> <p>2.1 Introduction 25</p> <p>2.2 Microgrid Structure 26</p> <p>2.2.1 Selection of Source for DG 27</p> <p>2.2.1.1 Phosphoric Acid Fuel Cell (PAFC) 27</p> <p>2.2.1.2 Mathematical Modeling of PAFC Fuel Cell 27</p> <p>2.3 Power Flow Management in Microgrid 31</p> <p>2.4 Generalized Unified Power Flow Controller (GUPFC) 33</p> <p>2.4.1 Mathematical Modeling of GUPFC 34</p> <p>2.5 Active GUPFC 38</p> <p>2.5.1 Active GUPFC Control System 39</p> <p>2.5.1.1 Series Converter 40</p> <p>2.5.1.2 Shunt Converter 42</p> <p>2.5.2 Simulation of Active GUPFC With General Test System 43</p> <p>2.5.3 Simulation of Active GUPFC With IEEE 9 Bus Test System 43</p> <p>2.5.3.1 Test Case: 1—Without GUPFC and Without Fuel Cell 45</p> <p>2.5.3.2 Test Case: 2—Without GUPFC and With Fuel Cell 47</p> <p>2.5.3.3 Test Case: 3—With GUPFC and Without Fuel Cell 48</p> <p>2.5.3.4 Test Case: 4—With GUPFC and With Fuel Cell 49</p> <p>2.5.3.5 Test Case: 5—With Active GUPFC 49</p> <p>2.5.4 Summary 52</p> <p>2.6 Appendix General Test System 53</p> <p>2.6.1 IEEE 9 Bus Test System 53</p> <p>References 55</p> <p><b>3 Review of Energy Storage System for Microgrid 57<br /></b><i>G.V. Brahmendra Kumar and K. Palanisamy</i></p> <p>3.1 Introduction 58</p> <p>3.2 Detailed View of ESS 60</p> <p>3.2.1 Configuration of ESS 60</p> <p>3.2.2 Structure of ESS With Other Devices 60</p> <p>3.2.3 ESS Classifications 62</p> <p>3.3 Types of ESS 62</p> <p>3.3.1 Mechanical ESS 62</p> <p>3.3.2 Flywheel ESS 63</p> <p>3.3.3 CAES System 64</p> <p>3.3.4 PHS System 65</p> <p>3.3.5 CES Systems 66</p> <p>3.3.6 Hydrogen Energy Storage (HES) 67</p> <p>3.3.7 Battery-Based ESS 68</p> <p>3.3.8 Electrical Energy Storage (EES) System 71</p> <p>3.3.8.1 Capacitors 71</p> <p>3.3.8.2 Supercapacitors (SCs) 72</p> <p>3.3.9 SMES 73</p> <p>3.3.10 Thermal Energy Storage Systems (TESS) 74</p> <p>3.3.10.1 SHS 75</p> <p>3.3.10.2 Latent 75</p> <p>3.3.10.3 Absorption 75</p> <p>3.3.10.4 Hybrid ESS 76</p> <p>3.4 Comparison of Current ESS on Large Scale 77</p> <p>3.5 Importance of Storage in Modern Power Systems 77</p> <p>3.5.1 Generation Balance and Fluctuation in Demand 77</p> <p>3.5.2 Intermediate Penetration of Renewable Energy 77</p> <p>3.5.3 Use of the Grid 80</p> <p>3.5.4 Operations on the Market 80</p> <p>3.5.5 Flexibility in Scheduling 80</p> <p>3.5.6 Peak Shaving Support 80</p> <p>3.5.7 Improve the Quality of Power 81</p> <p>3.5.8 Carbon Emission Control 81</p> <p>3.5.9 Improvement of Service Efficiency 81</p> <p>3.5.10 Emergency Assistance and Support for Black Start 81</p> <p>3.6 ESS Issues and Challenges 81</p> <p>3.6.1 Selection of Materials 82</p> <p>3.6.2 ESS Size and Cost 82</p> <p>3.6.3 Energy Management System 83</p> <p>3.6.4 Impact on the Environment 83</p> <p>3.6.5 Issues of Safety 83</p> <p>3.7 Conclusion 84</p> <p>Acknowledgment 85</p> <p>References 85</p> <p><b>4 Single Phase Inverter Fuzzy Logic Phase Locked Loop 91<br /></b><i>Maxwell Sibanyoni, S.P. Daniel Chowdhury and L.J. Ngoma</i></p> <p>4.1 Introduction 91</p> <p>4.2 PLL Synchronization Techniques 92</p> <p>4.2.1 T/4 Transport Delay PLL 95</p> <p>4.2.2 Inverse Park Transform PLL 96</p> <p>4.2.3 Enhanced PLL 97</p> <p>4.2.4 Second Order Generalized Integrator Orthogonal Signal Generator Synchronous Reference Frame (SOGI-OSG SRF) PLL 98</p> <p>4.2.5 Cascaded Generalized Integrator PLL (CGI-PLL) 99</p> <p>4.2.6 Cascaded Delayed Signal Cancellation PLL 100</p> <p>4.3 Fuzzy Logic Control 101</p> <p>4.4 Fuzzy Logic PLL Model 103</p> <p>4.4.1 Fuzzification 103</p> <p>4.4.2 Inference Engine 105</p> <p>4.4.3 Defuzzification 108</p> <p>4.5 Simulation and Analysis of Results 110</p> <p>4.5.1 Test Signal Generator 110</p> <p>4.5.2 Proposed SOGI FLC PLL Performance Under Fault Conditions 113</p> <p>4.5.2.1 Test Case 1 113</p> <p>4.5.2.2 Test Case 2 114</p> <p>4.5.2.3 Test Case 3 115</p> <p>4.5.2.4 Test Case 4 115</p> <p>4.5.2.5 Test Case 5 116</p> <p>4.5.2.6 Test Case 6 117</p> <p>4.6 Conclusion 118</p> <p>Acknowledgment 118</p> <p>References 119</p> <p><b>5 Power Electronics Interfaces in Microgrid Applications 121<br /></b><i>Indrajit Sarkar</i></p> <p>5.1 Introduction 122</p> <p>5.2 Microgrid Classification 122</p> <p>5.2.1 AC Microgrid 122</p> <p>5.2.2 DC Microgrids 124</p> <p>5.2.3 Hybrid Microgrid 126</p> <p>5.3 Role of Power Electronics in Microgrid Application 127</p> <p>5.4 Power Converters 128</p> <p>5.4.1 DC/DC Converters 128</p> <p>5.4.2 Non-Isolated DC/DC Converters 129</p> <p>5.4.2.1 Maximum Power Point Tracking (MPPT) 130</p> <p>5.4.3 Isolated DC/DC Converters 135</p> <p>5.4.4 AC to DC Converters 137</p> <p>5.4.5 DC to AC Converters 139</p> <p>5.5 Conclusion 143</p> <p>References 143</p> <p><b>6 Reconfigurable Battery Management System for Microgrid Application 145<br /></b><i>Saravanan, S., Pandiyan, P., Chinnadurai, T., Ramji, Tiwari., Prabaharan, N., Senthil Kumar, R. and Lenin Pugalhanthi, P<b>.</b></i></p> <p>6.1 Introduction 146</p> <p>6.2 Individual Cell Properties 147</p> <p>6.2.1 Modeling of Cell 147</p> <p>6.2.1.1 Second Order Model 147</p> <p>6.2.2 Simplified Non-Linear Model 148</p> <p>6.3 State of Charge 149</p> <p>6.4 State of Health 150</p> <p>6.5 Battery Life 150</p> <p>6.6 Rate Discharge Effect 151</p> <p>6.7 Recovery Effect 152</p> <p>6.8 Conventional Methods and its Issues 152</p> <p>6.8.1 Series Connected 152</p> <p>6.8.2 Parallel Connected 154</p> <p>6.9 Series-Parallel Connections 154</p> <p>6.10 Evolution of Battery Management System 155</p> <p>6.10.1 Necessity for Reconfigurable BMS 156</p> <p>6.10.2 Conventional R-BMS Methods 156</p> <p>6.10.2.1 First Design 157</p> <p>6.10.2.2 Series Topology 158</p> <p>6.10.2.3 Self X Topology 158</p> <p>6.10.2.4 Dependable Efficient Scalable Architecture Method 159</p> <p>6.10.2.5 Genetic Algorithm-Based Method 160</p> <p>6.10.2.6 Graph-Based Technique 161</p> <p>6.10.2.7 Power Tree-Based Technique 162</p> <p>6.11 Modeling of Reconfigurable-BMS 163</p> <p>6.12 Real Time Design Aspects 164</p> <p>6.12.1 Sensing Module Stage 165</p> <p>6.12.2 Control Module Stage 165</p> <p>6.12.2.1 Health Factor of Reconfiguration 166</p> <p>6.12.2.2 Reconfiguration Time Delay and Transient Load Supply 166</p> <p>6.12.3 Actuation Module 167</p> <p>6.12.3.1 Order of Switching 167</p> <p>6.12.3.2 Stress and Faults of Switches 169</p> <p>6.12.3.3 Determining Number of Cells in a Module 170</p> <p>6.13 Opportunities and Challenges 171</p> <p>6.13.1 Modeling and Simulation 171</p> <p>6.13.2 Hardware Design 171</p> <p>6.13.3 Granularity 171</p> <p>6.13.4 Hardware Overhead 172</p> <p>6.13.5 Intelligent Algorithms 172</p> <p>6.13.6 Distributed Reconfigurable Battery Systems 172</p> <p>6.14 Conclusion 173</p> <p>References 173</p> <p><b>7 Load Flow Analysis for Micro Grid 177<br /></b><i>Sivaraman Palanisamy, Dr. Sharmeela Chenniappan and Dr. S. Elango</i></p> <p>7.1 Introduction 177</p> <p>7.1.1 Islanded Mode of Operation 178</p> <p>7.1.2 Grid Connected Mode of Operation 178</p> <p>7.2 Load Flow Analysis for Micro Grid 179</p> <p>7.3 Example 179</p> <p>7.3.1 Power Source 180</p> <p>7.4 Energy Storage System 180</p> <p>7.5 Connected Loads 182</p> <p>7.6 Reactive Power Compensation 182</p> <p>7.7 Modeling and Simulation 182</p> <p>7.7.1 Case 1 182</p> <p>7.7.2 Case 2 184</p> <p>7.7.3 Case 3 187</p> <p>7.7.4 Case 4 189</p> <p>7.7.5 Case 5 191</p> <p>7.8 Conclusion 193</p> <p>References 195</p> <p><b>8 AC Microgrid Protection Coordination 197<br /></b><i>Ali M. Eltamaly, Yehia Sayed Mohamed, Abou-Hashema M. El-Sayed and Amer Nasr A. Elghaffar</i></p> <p>8.1 Introduction 197</p> <p>8.2 Fault Analysis 200</p> <p>8.2.1 Symmetrical Fault Analysis 201</p> <p>8.2.2 Single Line to Ground Fault 202</p> <p>8.2.3 Line-to-Line Fault 204</p> <p>8.2.4 Double Line-to-Ground Fault 206</p> <p>8.3 Protection Coordination 208</p> <p>8.3.1 Overcurrent Protection 209</p> <p>8.3.2 Directional Overcurrent/Earth Fault Function 211</p> <p>8.3.3 Distance Protection Function 214</p> <p>8.3.4 Distance Acceleration Scheme 217</p> <p>8.3.5 Under/Over Voltage/Frequency Protection 219</p> <p>8.4 Conclusion 221</p> <p>Acknowledgment 224</p> <p>References 224</p> <p><b>9 A Numerical Approach for Estimating Emulated Inertia With Decentralized Frequency Control of Energy Storage Units for Hybrid Renewable Energy Microgrid System 227<br /></b><i>Shubham Tiwari, Jai Govind Singh and Weerakorn Ongsakul</i></p> <p>9.1 Introduction 228</p> <p>9.2 Proposed Methodology 231</p> <p>9.2.1 Response in Conventional Grids 231</p> <p>9.2.2 Strategy for Digital Inertia Emulation in Hybrid Renewable Energy Microgrids 232</p> <p>9.2.3 Proposed Mathematical Formulation for Estimation of Digital Inertia Constant for Static Renewable Energy Sources 235</p> <p>9.3 Results and Discussions 238</p> <p>9.3.1 Test System 238</p> <p>9.3.2 Simulation and Study of Case 1 241</p> <p>9.3.2.1 Investigation of Scenario A 241</p> <p>9.3.2.2 Investigation of Scenario B 243</p> <p>9.3.2.3 Discussion for Case 1 245</p> <p>9.3.3 Simulation and Study of Case 2 246</p> <p>9.3.3.1 Investigation of Scenario A 246</p> <p>9.3.3.2 Investigation of Scenario B 248</p> <p>9.3.3.3 Discussion for Case 2 250</p> <p>9.3.4 Simulation and Study for Case 3 250</p> <p>9.3.4.1 Discussion for Case 3 251</p> <p>9.4 Conclusion 252</p> <p>References 253</p> <p><b>10 Power Quality Issues in Microgrid and its Solutions 255<br /></b><i>R. Zahira, D. Lakshmi and C.N. Ravi</i></p> <p>10.1 Introduction 256</p> <p>10.1.1 Benefits of Microgrid 257</p> <p>10.1.2 Microgrid Architecture 257</p> <p>10.1.3 Main Components of Microgrid 258</p> <p>10.2 Classification of Microgrids 258</p> <p>10.2.1 Other Classifications 259</p> <p>10.2.2 Based on Function Demand 259</p> <p>10.2.3 By AC/DC Type 259</p> <p>10.3 DC Microgrid 260</p> <p>10.3.1 Purpose of the DC Microgrid System 260</p> <p>10.4 AC Microgrid 261</p> <p>10.5 AC/DC Microgrid 262</p> <p>10.6 Enhancement of Voltage Profile by the Inclusion of RES 263</p> <p>10.6.1 Sample Microgrid 263</p> <p>10.7 Power Quality in Microgrid 267</p> <p>10.8 Power Quality Disturbances 270</p> <p>10.9 International Standards for Power Quality 270</p> <p>10.10 Power Quality Disturbances in Microgrid 271</p> <p>10.10.1 Modeling of Microgrid 271</p> <p>10.11 Shunt Active Power Filter (SAPF) Design 272</p> <p>10.11.1 Reference Current Generation 274</p> <p>10.12 Control Techniques of SAPF 276</p> <p>10.13 SPWM Controller 277</p> <p>10.14 Sliding Mode Controller 277</p> <p>10.15 Fuzzy-PI Controller 278</p> <p>10.16 GWO-PI Controller 279</p> <p>10.17 Metaphysical Description of Optimization Problems With GWO 281</p> <p>10.18 Conclusion 284</p> <p>References 285</p> <p><b>11 Power Quality Improvement in Microgrid System Using PSO-Based UPQC Controller 287<br /></b><i>T. Eswara Rao, Krishna Mohan Tatikonda, S. Elango and J. Charan Kumar</i></p> <p>11.1 Introduction 288</p> <p>11.2 Microgrid System 289</p> <p>11.2.1 Wind Energy System 290</p> <p>11.2.1.1 Modeling of Wind Turbine System 290</p> <p>11.2.2 Perturb and Observe MPPT Algorithm 291</p> <p>11.2.3 MPPT Converter 291</p> <p>11.3 Unified Power Quality Conditioner 293</p> <p>11.3.1 UPQC Series Converter 293</p> <p>11.3.2 UPQC Shunt APF Controller 295</p> <p>11.4 Particle Swarm Optimization 297</p> <p>11.4.1 Velocity Function 297</p> <p>11.4.2 Analysis of PSO Technique 298</p> <p>11.5 Simulation and Results 299</p> <p>11.5.1 Case 1: With PI Controller 300</p> <p>11.5.2 Case 2: With PSO Technique 301</p> <p>11.6 Conclusion 304</p> <p>References 305</p> <p><b>12 Power Quality Enhancement and Grid Support Using Solar Energy Conversion System 309<br /></b><i>CH. S. Balasubrahmanyam, Om Hari Gupta and Vijay K. Sood</i></p> <p>12.1 Introduction 309</p> <p>12.2 Renewable Energy and its Conversion Into Useful Form 312</p> <p>12.3 Power System Harmonics and Their Cause 313</p> <p>12.4 Power Factor (p.f.) and its Effects 316</p> <p>12.5 Solar Energy System With Power Quality Enhancement (SEPQ) 317</p> <p>12.6 Results and Discussions 320</p> <p>12.6.1 Mode-1 (SEPQ as STATCOM) 320</p> <p>12.6.2 Mode-2 (SEPQ as Shunt APF) 320</p> <p>12.6.3 Mode-3 (SEPQ as D-STATCOM) 322</p> <p>12.7 Conclusion 326</p> <p>References 327</p> <p><b>13 Power Quality Improvement of a 3-Phase-3-Wire Grid-Tied PV-Fuel Cell System by 3-Phase Active Filter Employing Sinusoidal Current Control Strategy 329<br /></b><i>Rudranarayan Senapati, Sthita Prajna Mishra, Rajendra Narayan Senapati and Priyansha Sharma</i></p> <p>13.1 Introduction 330</p> <p>13.2 Active Power Filter (APF) 333</p> <p>13.2.1 Shunt Active Power Filter (ShPF) 334</p> <p>13.2.1.1 Configuration of ShPF 334</p> <p>13.2.2 Series Active Power Filter (SAF) 335</p> <p>13.2.2.1 Configuration of SAF 336</p> <p>13.3 Sinusoidal Current Control Strategy (SCCS) for APFs 337</p> <p>13.4 Sinusoidal Current Control Strategy for ShPF 342</p> <p>13.5 Sinusoidal Current Control Strategy for SAF 349</p> <p>13.6 Solid Oxide Fuel Cell (SOFC) 353</p> <p>13.6.1 Operation 354</p> <p>13.6.2 Anode 355</p> <p>13.6.3 Electrolyte 355</p> <p>13.6.4 Cathode 356</p> <p>13.6.5 Comparative Analysis of Various Fuel Cells 356</p> <p>13.7 Simulation Analysis 356</p> <p>13.7.1 Shunt Active Power Filter 358</p> <p>13.7.1.1 ShPF for a 3-φ 3-Wire (3P3W) System With Non-Linear Loading 358</p> <p>13.7.1.2 For a PV-Grid System (Constant Irradiance Condition) 360</p> <p>13.7.1.3 For a PV-SOFC Integrated System 364</p> <p>13.7.2 Series Active Power Filter 366</p> <p>13.7.2.1 SAF for a 3-φ 3-Wire (3P3W) System With Non-Linear Load Condition 366</p> <p>13.7.2.2 For a PV-Grid System (Constant Irradiance Condition) 368</p> <p>13.7.2.3 For a PV-SOFC Integrated System 370</p> <p>13.8 Conclusion 373</p> <p>References 373</p> <p><b>14 Application of Fuzzy Logic in Power Quality Assessment of Modern Power Systems 377<br /></b><i>V. Vignesh Kumar and C.K. Babulal</i></p> <p>14.1 Introduction 378</p> <p>14.2 Power Quality Indices 379</p> <p>14.2.1 Total Harmonic Distortion 379</p> <p>14.2.2 Total Demand Distortion 380</p> <p>14.2.3 Power and Power Factor Indices 380</p> <p>14.2.4 Transmission Efficiency Power Factor (TEPF) 381</p> <p>14.2.5 Oscillation Power Factor (OSCPF) 382</p> <p>14.2.6 Displacement Power Factor (DPF) 383</p> <p>14.3 Fuzzy Logic Systems 383</p> <p>14.4 Development of Fuzzy Based Power Quality Evaluation Modules 384</p> <p>14.4.1 Stage I: Fuzzy Logic Based Total Demand Distortion 385</p> <p>14.4.1.1 Performance of FTDDF Under Sinusoidal Situations 388</p> <p>14.4.1.2 Performance of FTDDF Under Nonsinusoidal Situations 389</p> <p>14.4.2 Stage II—Fuzzy Representative Quality Power Factor (FRQPF) 390</p> <p>14.4.2.1 Performance of FRQPF Under Sinusoidal and Nonsinusoidal Situations 393</p> <p>14.4.3 Stage III—Fuzzy Power Quality Index (FPQI) Module 395</p> <p>14.4.3.1 Performance of FPQI Under Sinusoidal and Nonsinusoidal Situations 397</p> <p>14.5 Conclusion 401</p> <p>References 401</p> <p><b>15 Applications of Internet of Things for Microgrid 405<br /></b><i>Vikram Kulkarni, Sarat Kumar Sahoo and Rejo Mathew</i></p> <p>15.1 Introduction 405</p> <p>15.2 Internet of Things 408</p> <p>15.2.1 Architecture and Design 409</p> <p>15.2.2 Analysis of Data Science 410</p> <p>15.3 Smart Micro Grid: An IoT Perspective 410</p> <p>15.4 Literature Survey on the IoT for SMG 411</p> <p>15.4.1 Advanced Metering Infrastructure Based on IoT for SMG 414</p> <p>15.4.2 Sub-Systems of AMI 414</p> <p>15.4.3 Every Smart Meter Based on IoT has to Provide the Following Functionalities 416</p> <p>15.4.4 Communication 417</p> <p>15.4.5 Cloud Computing Applications for SMG 418</p> <p>15.5 Cyber Security Challenges for SMG 419</p> <p>15.6 Conclusion 421</p> <p>References 423</p> <p><b>16 Application of Artificial Intelligent Techniques in Microgrid 429<br /></b><i>S. Anbarasi, S. Ramesh, S. Sivakumar and S. Manimaran</i></p> <p>16.1 Introduction 430</p> <p>16.2 Main Problems Faced in Microgrid 431</p> <p>16.3 Application of AI Techniques in Microgrid 431</p> <p>16.3.1 Power Quality Issues and Control 432</p> <p>16.3.1.1 Preamble of Power Quality Problem 432</p> <p>16.3.1.2 Issues with Control and Operation of MicroGrid Systems 433</p> <p>16.3.1.3 AI Techniques for Improving Power Quality Issues 434</p> <p>16.3.2 Energy Storage System With Economic Power Dispatch 438</p> <p>16.3.2.1 Energy Storage System in Microgrid 438</p> <p>16.3.2.2 Need for Intelligent Approaches in Energy Storage System 440</p> <p>16.3.2.3 Intelligent Methodologies for ESS Integrated in Microgrid 441</p> <p>16.3.3 Energy Management System 444</p> <p>16.3.3.1 Description of Energy Management System 444</p> <p>16.3.3.2 EMS and Distributed Energy Resources 445</p> <p>16.3.3.3 Intelligent Energy Management for a Microgrid 446</p> <p>16.4 Conclusion 448</p> <p>References 449</p> <p><b>17 Mathematical Modeling for Green Energy Smart Meter for Microgrids 451<br /></b><i>Moloko Joseph Sebake and Meera K. Joseph</i></p> <p>17.1 Introduction 451</p> <p>17.1.1 Smart Meter 452</p> <p>17.1.2 Green Energy 453</p> <p>17.1.3 Microgrid 453</p> <p>17.1.4 MPPT Solar Charge Controller 454</p> <p>17.2 Related Work 454</p> <p>17.3 Proposed Technical Architecture 456</p> <p>17.3.1 Green Energy Smart Meter Architecture 456</p> <p>17.3.2 Solar Panel 456</p> <p>17.3.3 MPPT Controller 456</p> <p>17.3.4 Battery 457</p> <p>17.3.5 Solid-State Switch 457</p> <p>17.3.6 Electrical Load 457</p> <p>17.3.7 Solar Voltage Sensor 457</p> <p>17.3.8 Batter Voltage Sensor 458</p> <p>17.3.9 Current Sensor 458</p> <p>17.3.10 Microcontroller 458</p> <p>17.3.11 Wi-Fi Module 458</p> <p>17.3.12 GSM/3G/LTE Module 459</p> <p>17.3.13 LCD Display 459</p> <p>17.4 Proposed Mathematical Model 459</p> <p>17.5 Results 462</p> <p>Conclusion 468</p> <p>References 469</p> <p><b>18 Microgrid Communication 471<br /></b><i>R. Sandhya and Sharmeela Chenniappan</i></p> <p>18.1 Introduction 471</p> <p>18.2 Reasons for Microgrids 473</p> <p>18.3 Microgrid Control 474</p> <p>18.4 Control Including Communication 474</p> <p>18.5 Control with No Communication 475</p> <p>18.6 Requirements 478</p> <p>18.7 Reliability 478</p> <p>18.8 Microgrid Communication 479</p> <p>18.9 Microgrid Communication Networks 481</p> <p>18.9.1 Wi-Fi 481</p> <p>18.9.2 WiMAX-Based Network 482</p> <p>18.9.3 Wired and Wireless-Based Integrated Network 482</p> <p>18.9.4 Smart Grids 482</p> <p>18.10 Key Aspects of Communication Networks in Smart Grids 483</p> <p>18.11 Customer Premises Network (CPN) 483</p> <p>18.12 Architectures and Technologies Utilized in Communication Networks Within the Transmission Grid 485</p> <p>References 487</p> <p><b>19 Placement of Energy Exchange Centers and Bidding Strategies for Smartgrid Environment 491<br /></b><i>Balaji, S. and Ayush, T.</i></p> <p>19.1 Introduction 491</p> <p>19.1.1 Overview 491</p> <p>19.1.2 Energy Exchange Centers 492</p> <p>19.1.3 Energy Markets 493</p> <p>19.2 Local Energy Centers and Optimal Placement 495</p> <p>19.2.1 Problem Formulation (Clustering of Local Energy Market) 496</p> <p>19.2.2 Clustering Algorithm 496</p> <p>19.2.3 Test Cases 497</p> <p>19.2.4 Results and Discussions 498</p> <p>19.2.5 Conclusions for Simulations Based on Modified K Means Clustering for Optimal Location of EEC 501</p> <p>19.3 Local Energy Markets and Bidding Strategies 503</p> <p>19.3.1 Prosumer Centric Retail Electricity Market 504</p> <p>19.3.2 System Modeling 505</p> <p>19.3.2.1 Prosumer Centric Framework 505</p> <p>19.3.2.2 Electricity Prosumers 505</p> <p>19.3.2.3 Modeling of Utility Companies 507</p> <p>19.3.2.4 Modeling of Distribution System Operator (DSO) 507</p> <p>19.3.2.5 Supply Function Equilibrium 507</p> <p>19.3.2.6 Constraints 508</p> <p>19.3.3 Solution Methodology 509</p> <p>19.3.3.1 Game Theory Approach 509</p> <p>19.3.3.2 Relaxation Algorithm 511</p> <p>19.3.3.3 Bi-Level Algorithm 511</p> <p>19.3.3.4 Simulation Results 512</p> <p>19.3.3.5 Nikaido-Isoda Formulation 513</p> <p>19.3.4 Case Study 513</p> <p>19.3.4.1 Plots 514</p> <p>19.3.4.2 Anti-Dumping 514</p> <p>19.3.4.3 Macro-Control 514</p> <p>19.3.4.4 Sensitivity Analysis 514</p> <p>Conclusion 517</p> <p>References 518</p> <p>Index 521</p>
<p><b>Sharmeela Chenniappan, PhD,</b> is an associate professor in the Department of EEE, CEG campus, Anna University, Chennai, India. She has 20 years of teaching experience at both the undergraduate and postgraduate levels and has done a number of research projects and consultancy work in renewable energy, power quality and design of power quality compensators for various industries. She is currently working on future books for the Wiley-Scrivener imprint.</p> <p><b>Sivaraman Palanisamy</b> has an M.E. in power systems engineering from Anna University, Chennai and is an assistant engineering manager at a leading engineering firm in India He has more than six years of experience in the field of power system studies and related areas and is an expert in many power systems simulation software programs. He is also currently working on other projects to be published under the Wiley-Scrivener imprint.</p> <p><b>Sanjeevikumar Padmanaban, PhD,</b> is a faculty member with the Department of Energy Technology, Aalborg University, Esbjerg, Denmark. He is a fellow in multiple professional societies and associations and is an editor and contributor for multiple science and technical journals in this field. Like his co-editors, he is also currently working on other projects for Wiley-Scrivener.</p> <p><b>Jens Bo Holm-Nielsen</b> currently works at the Department of Energy Technology, Aalborg University and is Head of the Esbjerg Energy Section. Through his research, he helped establish the Center for Bioenergy and Green Engineering in 2009 and serves as the head of the research group. He has vast experience in the field of bio-refineries and biogas production and has served as the technical advisory for many industries in this field.</p>
<p><b>Covering the concepts and fundamentals of microgrid technologies, this volume, written and edited by a global team of experts, also goes into the practical applications that can be utilized across multiple industries, for both the engineer and the student.</b></p><p>Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems.</p><p>Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others.</p><p>The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices.</p><p>The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies.</p><p>Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.</p>

Diese Produkte könnten Sie auch interessieren:

Symbian OS Explained
Symbian OS Explained
von: Jo Stichbury
PDF ebook
32,99 €
Symbian OS Internals
Symbian OS Internals
von: Jane Sales
PDF ebook
56,99 €
Parallel Combinatorial Optimization
Parallel Combinatorial Optimization
von: El-Ghazali Talbi
PDF ebook
120,99 €