Details

Spintronics


Spintronics

Materials, Devices, and Applications
Wiley Series in Materials for Electronic & Optoelectronic Applications 1. Aufl.

von: Kaiyou Wang, Meiyin Yang, Jun Luo

117,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.07.2022
ISBN/EAN: 9781119698951
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Discover the latest advances in spintronic materials, devices, and applications</b></p> <p>In <i>Spintronics: Materials, Devices and Applications</i>, a team of distinguished researchers delivers a holistic introduction to spintronic effects within cutting-edge materials and applications. Containing the perfect balance of academic research and practical application, the book discusses the potential—and the key limitations and challenges—of spintronic devices.</p> <p>The latest title in the Wiley Series in Materials for Electronic and Optoelectronic Applications, <i>Spintronics: Materials, Devices and Applications</i> explores giant magneto-resistance (GMR) and tunneling magnetic resistance (TMR) materials, spin-transfer torque and spin-orbit torque materials, spin oscillators, and spin materials for use in artificial neural networks. Applications in multi-ferroelectric and antiferromagnetic materials are presented as well.</p> <p>This book also includes:</p> <ul> <li>A thorough introduction to recent research developments in the fields of spintronic materials, devices, and applications</li> <li>Comprehensive explorations of skymions, magnetic semiconductors, and antiferromagnetic materials</li> <li>Practical discussions of spin-transfer torque materials and devices for magnetic random-access memory</li> <li>In-depth examinations of giant magneto-resistance materials and devices for magnetic sensors</li> </ul> <p>Perfect for advanced students and researchers in materials science, physics, electronics, and computer science, <i>Spintronics: Materials, Devices and Applications</i> will also earn a place in the libraries of professionals working in the manufacture of optics, photonics, and nanometrology equipment.</p>
<p>List of Contributors xi</p> <p>Series Preface xiii</p> <p>Preface xv</p> <p><b>1 Introduction 1</b><br /><i>Kaiyou Wang</i></p> <p><b>2 Giant Magnetoresistance (GMR) Materials and Devices for Biomedical and Industrial Applications 3</b><br /><i>Kai Wu, Diqing Su, Renata Saha, and Jian-Ping Wang</i></p> <p>2.1 Introduction 3</p> <p>2.2 Giant Magnetoresistance (GMR) Effect 4</p> <p>2.3 Different Types of GMR Sensors 7</p> <p>2.3.1 Rigid GMR Sensors 7</p> <p>2.3.1.1 Long-strip GMR Sensors 7</p> <p>2.3.1.2 Large-area GMR Sensors 8</p> <p>2.3.2 Flexible GMR Sensors 9</p> <p>2.3.3 Printable GMR Sensors 11</p> <p>2.3.4 Granular GMR Sensors (Thin Film- and Solution-based) 11</p> <p>2.4 GMR Sensors: Surface Modification and Auxiliary Tools 12</p> <p>2.4.1 GMR Sensor Surface Modification for Biomedical Applications 12</p> <p>2.4.2 Integration of a Magnetic Flux Concentrator (MFC) 14</p> <p>2.4.2.1 Superconducting MFC 14</p> <p>2.4.2.2 Soft-ferromagnetic Material-based MFC 14</p> <p>2.4.3 Integration of Microfluidic Channels 16</p> <p>2.5 GMR-based Biomedical Applications 16</p> <p>2.5.1 GMR-based Immunoassays 16</p> <p>2.5.1.1 Wash-free and Non-wash-free Immunoassays 17</p> <p>2.5.1.2 Different Immunoassay Methods 17</p> <p>2.5.1.3 GMR for Disease Diagnosis 19</p> <p>2.5.1.4 GMR-based Point-of-Care (POC) Devices 24</p> <p>2.5.2 GMR-based Genotyping 25</p> <p>2.5.3 GMR-based Bio-magnetic Field Recording 28</p> <p>2.5.4 GMR-based Food and Drug Safety Supervision 32</p> <p>2.6 GMR-based Industrial Applications 34</p> <p>2.6.1 GMR for Position Sensing 34</p> <p>2.6.2 GMR for Current Sensing 35</p> <p>2.6.3 GMR for Material Defect Inspection 37</p> <p>2.7 Conclusions and Outlook 39</p> <p>References 40</p> <p><b>3 Tunneling Magnetoresistance (TMR) Materials and Devices for Magnetic Sensors 51</b><br /><i>Zitong Zhou, Kun Zhang, and Qunwen Leng</i></p> <p>3.1 Principle of Tunneling Magnetoresistance Effect 52</p> <p>3.1.1 Tunneling Process 52</p> <p>3.1.2 Spin-dependent Tunneling Process 53</p> <p>3.1.3 The Julliére Model 54</p> <p>3.1.4 Typical Structure of the Magnetic Sensing Unit 56</p> <p>3.2 Material and Process 56</p> <p>3.2.1 TMR Barrier Materials 56</p> <p>3.2.2 Ferromagnetic Layers in TMR 59</p> <p>3.2.3 TMR Film Stack 61</p> <p>3.2.4 Perpendicular Magnetic Anisotropy (PMA) in TMR 65</p> <p>3.2.5 Material Fabrication and Pattern Process 65</p> <p>3.2.5.1 Magnetron Sputtering 66</p> <p>3.2.5.2 Ion Beam Deposition (IBD) 67</p> <p>3.2.5.3 Evaporation 67</p> <p>3.2.5.4 Chemical Vapor Deposition (CVD) 67</p> <p>3.2.5.5 Photolithography 69</p> <p>3.2.5.6 Etching 69</p> <p>3.3 The Noise of TMR Sensors 70</p> <p>3.3.1 The Source of Noise from TMR Sensors 70</p> <p>3.3.2 Methods to Suppress the Noise 72</p> <p>3.3.2.1 Increase the Number of MTJs in TMR Device 72</p> <p>3.3.2.2 Optimize Free Layer Volume 73</p> <p>3.3.2.3 Flux Concentrator 73</p> <p>3.3.2.4 Applying a Bias Magnetic Field 74</p> <p>3.4 TMR Sensors and Applications 75</p> <p>3.4.1 TMR Read Heads 75</p> <p>3.4.2 The TMR Angle Sensors 76</p> <p>3.4.3 Geomagnetic Measurement 79</p> <p>3.4.4 Spin-MEMS Combined Application 80</p> <p>3.4.5 Nondestructive Testing (NDT) 82</p> <p>3.4.6 Ultra-low Magnetic Field Detection: Biosensor 83</p> <p>3.5 Conclusion 85</p> <p>References 86</p> <p><b>4 Spin-Transfer Torque Materials and Devices for Magnetic Random-Access Memory (STT-MRAM) 93</b><br /><i>Yan Cui and Jun Luo</i></p> <p>4.1 The Background and Mechanism of STT-MRAM 93</p> <p>4.1.1 The Background of STT-MRAM 93</p> <p>4.1.2 The Mechanism of STT-MRAM 93</p> <p>4.1.2.1 LLGS Equation 93</p> <p>4.1.2.2 The Write Mechanism of STT-MRAM 94</p> <p>4.1.2.3 The Magnetism of STT-MTJ 97</p> <p>4.1.2.4 The Switching Properties of STT-MTJ 99</p> <p>4.2 The Integrated Process of STT-MRAM 102</p> <p>4.2.1 CMP Technology 102</p> <p>4.2.2 Magnetic Film Deposition Technology 103</p> <p>4.2.3 Photolithography Technology 103</p> <p>4.2.4 Etching Technology 103</p> <p>4.2.5 Dielectric Isolation Technology 104</p> <p>4.2.6 Contact Technology 104</p> <p>4.2.7 Passivation Deposition 104</p> <p>4.3 Testing of the STT-MTJ Device 105</p> <p>4.4 The Development Status of STT-MRAM 105</p> <p>References 107</p> <p><b>5 Spin-Orbit Torque (SOT) Materials and Devices 113</b><br /><i>Yucai Li, Kevin William Edmonds, and Kaiyou Wang</i></p> <p>5.1 Spin-Orbit Coupling in Materials 113</p> <p>5.2 Manipulation of Magnetic Materials by SOT 116</p> <p>5.2.1 The Mechanism of SOT in Ferromagnets 116</p> <p>5.2.2 Measurement Techniques of SOT 117</p> <p>5.2.3 Field-Free SOT Magnetization Switching in Ferromagnets 119</p> <p>5.2.4 Domain Wall and Skyrmion Motion Driven by SOT 121</p> <p>5.2.5 Manipulation of Antiferromagnets by SOT 122</p> <p>5.3 SOT Materials 123</p> <p>5.3.1 Traditional Materials 123</p> <p>5.3.2 Interfacial Engineering 124</p> <p>5.3.3 Oxide Heterostructures 125</p> <p>5.3.4 The van der Waals Materials and Topological Materials 125</p> <p>5.4 Devices and Application 128</p> <p>5.4.1 SOT-MTJ and SOT-MRAM 128</p> <p>5.4.2 In-memory Computing 129</p> <p>5.4.3 SOT Artificial Intelligence Device 130</p> <p>5.4.4 Internet of Things 131</p> <p>5.5 Conclusion 131</p> <p>References 132</p> <p><b>6 Spin Oscillators 139</b><br /><i>Huayao Tu and Zhongming Zeng</i> </p> <p>6.1 Introduction 139</p> <p>6.2 Fundamental Physics 140</p> <p>6.2.1 Spin Transfer Torque and Magnetization Dynamics 140</p> <p>6.2.2 Spin Hall Effect (SHE) and Spin-Orbit Torque (SOT) 141</p> <p>6.2.3 Operation Principle of SO 142</p> <p>6.3 Device Classification 143</p> <p>6.3.1 Geometries 143</p> <p>6.3.2 Magnetic Equilibrium States 145</p> <p>6.3.3 Material Structures 145</p> <p>6.3.3.1 Spin Valves 145</p> <p>6.3.3.2 Magnetic Tunnel Junctions 146</p> <p>6.3.3.3 Bilayer 146</p> <p>6.3.3.4 Single Layer 147</p> <p>6.4 Emerging Spin-torque Oscillators Based on Magnetic Solitons 148</p> <p>6.4.1 Vortex 148</p> <p>6.4.2 Skyrmion 149</p> <p>6.5 Functional Properties 150</p> <p>6.5.1 Frequency 150</p> <p>6.5.1.1 Modulation Properties 152</p> <p>6.5.2 Output Power 152</p> <p>6.5.3 Linewidth 155</p> <p>6.5.4 Phase-locking and Synchronization 157</p> <p>6.6 Applications 159</p> <p>6.6.1 Microwave Source 159</p> <p>6.6.2 Spin Wave Emitter 160</p> <p>6.6.3 Microwave Detector and Energy Harvester 160</p> <p>6.6.4 Magnetic Field Detector 163</p> <p>6.6.5 Neuromorphic Computing 164</p> <p>6.7 Summary and Outlook 166</p> <p>References 167</p> <p><b>7 Magnetic Tunnel Junctions for Artificial Neural Network 179</b><br /><i>Meiyin Yang, Tengzhi Yang, and Jun Luo</i></p> <p>7.1 Introduction of Neural Computing 179</p> <p>7.2 Hardware Requirements for an Artificial Intelligence Neural Network 182</p> <p>7.3 Introduction to Magnetic Tunnel Junction Devices 183</p> <p>7.4 Magnetic Tunnel Junction for Neuron Hardware 185</p> <p>7.4.1 Introduction of STT-MTJ and SOT-MTJ 185</p> <p>7.4.2 Different MTJ-Based Neuron Hardware 186</p> <p>7.4.2.1 Step Function 187</p> <p>7.4.2.2 Nonlinear Activation Function 188</p> <p>7.4.2.3 Spike or Probability Based Neuron 189</p> <p>7.5 Magnetic Tunnel Junctions for Synaptic Devices 192</p> <p>7.6 Learning Methods Suitable for MTJs 194</p> <p>7.7 Summary and Outlook 195</p> <p>References 195</p> <p><b>8 Three-Dimensional Magnetic Structures of B20 Chiral Magnets 203</b><br /><i>Kejing Ran, Dongsheng Song, Weiwei Wang, Haifeng Du, and Shilei Zhang</i></p> <p>8.1 Theoretical Development 203</p> <p>8.2 Observation Technique 206</p> <p>8.2.1 Electron Holography 206</p> <p>8.2.1.1 Historical Survey 206</p> <p>8.2.1.2 Experimental Setup 207</p> <p>8.2.2 Resonant Elastic X-ray Scattering 209</p> <p>8.2.2.1 Historical Survey 209</p> <p>8.2.2.2 Theoretical Treatment 210</p> <p>8.2.2.3 Experimental Setup 212</p> <p>8.3 Experimental Results 214</p> <p>8.3.1 Magnetic Bobbers 214</p> <p>8.3.2 Surface Twists 216</p> <p>References 217</p> <p><b>9 Multiferroelectric Materials  221</b><br /><i>Xiaobin Guo and Li Xi</i></p> <p>9.1 Electric Field-driven Magnetization Switching 222</p> <p>9.2 Electric Field-driven Exchange Bias Reversal and Antiferromagnetic <br />Domain Wall Motion 229</p> <p>9.3 Electric Field-driven Antiferromagnetic Vector Switching 237</p> <p>Acknowledgements 239</p> <p>References 240</p> <p><b>10 Robust Manipulation of Magnetic Properties in (Ga,Mn)As 243</b><br /><i>Hailong Wang and  Jianhua Zhao</i></p> <p>10.1 Background and Introduction 243</p> <p>10.2 Electric Field Effects on the Magnetic Properties of (Ga,Mn)As 245</p> <p>10.3 Manipulation of the Magnetism in (Ga,Mn)As by Light and Strain 256</p> <p>10.4 Giant Modulation of Magnetism via Organic Molecules 257</p> <p>10.5 Conclusion and Outlook 260</p> <p>Acknowledgements 262</p> <p>References 262</p> <p><b>11 Antiferromagnetic Materials and Their Manipulations  271</b><br /><i>Xionghua Liu and Kaiyou Wang</i></p> <p>11.1 Introduction 271</p> <p>11.2 Antiferromagnetic Materials 272</p> <p>11.2.1 Metallic Antiferromagnets 272</p> <p>11.2.2 Insulating Antiferromagnets 273</p> <p>11.2.3 Semiconducting and Semimetallic Antiferromagnets 274</p> <p>11.3 Manipulations of Antiferromagnetic States 275</p> <p>11.3.1 Magnetic Control of Antiferromagnets 275</p> <p>11.3.2 Strain Control of Antiferromagnets 277</p> <p>11.3.3 Optical Control of Antiferromagnets 279</p> <p>11.3.4 Electrical Control of Antiferromagnets 281</p> <p>11.4 Topological Antiferromagnetic Spintronics 283</p> <p>11.5 Summaries and Prospects 286</p> <p>References 286</p> <p><b>12 Prospects 295</b><br /><i>Meiyin Yang and Kaiyou Wang</i></p> <p>Index 299</p>
<p><b> Edited by</b></p> <p><b> Kaiyou Wang</b> is Director of State Key Laboratory of Superlattices & Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. <p><b> Meiyin Yang</b> is Professor at the Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China. <p><b> Jun Luo</b> is Professor at the Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China. <p><b>Series Editors</b> <p><b> Arthur Willoughby</b> University of Southampton, Southampton, UK <p><b> Peter Capper</b> Ex-Leonardo M. W. Ltd, Southampton, UK <p><b> Safa Kasap</b> University of Saskatchewan, Saskatoon, Canada
<p><b> Spintronics</b> <p><b>Materials, Devices and Applications</b> <p><b>Discover the latest advances in spintronic materials, devices, and applications</b> <p>In <i>Spintronics: Materials, Devices and Applications</i>, a team of distinguished researchers delivers a holistic introduction to spintronic effects within cutting-edge materials and applications. Containing the perfect balance of academic research and practical application, the book discusses the potential—and the key limitations and challenges—of spintronic devices. <p>The latest title in the Wiley Series in Materials for Electronic and Optoelectronic Applications, <i>Spintronics: Materials, Devices and Applications</i> explores giant magneto-resistance (GMR) and tunneling magnetic resistance (TMR) materials, spin-transfer torque and spin-orbit torque materials, spin oscillators, and spin materials for use in artificial neural networks. Applications in multi-ferroelectric and antiferromagnetic materials are presented as well. <p>This book also includes: <ul><li>A thorough introduction to recent research developments in the fields of spintronic materials, devices, and applications</li> <li>Comprehensive explorations of skymions, magnetic semiconductors, and antiferromagnetic materials</li> <li>Practical discussions of spin-transfer torque materials and devices for magnetic random-access memory</li> <li>In-depth examinations of giant magneto-resistance materials and devices for magnetic sensors</li></ul> <p>Perfect for advanced students and researchers in materials science, physics, electronics, and computer science, <i>Spintronics: Materials, Devices and Applications</i> will also earn a place in the libraries of professionals working in the manufacture of optics, photonics, and nanometrology equipment.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €