Details

Computational Fractional Dynamical Systems


Computational Fractional Dynamical Systems

Fractional Differential Equations and Applications
1. Aufl.

von: Snehashish Chakraverty, Rajarama M. Jena, Subrat K. Jena

100,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 18.10.2022
ISBN/EAN: 9781119696995
Sprache: englisch
Anzahl Seiten: 272

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Computational Fractional Dynamical Systems</b> <p><b>A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations</b> <p>Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. <p><i>Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications </i>presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. <ul><li> Covers various aspects of efficient methods regarding fractional-order systems</li> <li> Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering</li> <li> Provides a systematic approach for handling fractional-order models arising in science and engineering </li> <li>Incorporates a wide range of methods with corresponding results and validation</li></ul> <p><i>Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications</i> is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.
<p>Preface</p> <p>Acknowledgments</p> <p>About the Authors</p> <p>                Introduction to Fractional Calculus</p> <p>1.1.          Introduction</p> <p>1.2.          Birth of fractional calculus</p> <p>1.3.          Useful mathematical functions</p> <p>      1.3.1.       The gamma function</p> <p>      1.3.2.       The beta function</p> <p>      1.3.3.       The Mittag-Leffler function     </p> <p>      1.3.4.       The Mellin-Ross function</p> <p>      1.3.5.       The Wright function</p> <p>      1.3.6.       The error function</p> <p>      1.3.7.       The hypergeometric function</p> <p>1.3.8.       The H-function</p> <p>1.4.          Riemann–Liouville fractional integral and derivative</p> <p>1.5.          Caputo fractional derivative</p> <p>1.6.          Grünwald-Letnikov fractional derivative and integral</p> <p>1.7.          Riesz fractional derivative and integral</p> <p>1.8.          Modified Riemann-Liouville derivative</p> <p>      1.9.          Local fractional derivative</p> <p>1.9.1.       Local fractional continuity of a function</p> <p>1.9.2.       Local fractional derivative</p> <p>                References</p> <p> </p> <p>                Recent Trends in Fractional Dynamical Models and Mathematical Methods</p> <p>2.1.          Introduction</p> <p>2.2.          Fractional calculus: A generalization of integer-order calculus</p> <p>2.3.          Fractional derivatives of some functions and their graphical illustrations</p> <p>2.4.          Applications of fractional calculus</p> <p>2.4.1.       N.H. Abel and Tautochronous problem</p> <p>2.4.2.       Ultrasonic wave propagation in human cancellous bone</p> <p>2.4.3.       Modeling of speech signals using fractional calculus</p> <p>2.4.4.       Modeling the cardiac tissue electrode interface using fractional calculus</p> <p>2.4.5.     Application of fractional calculus to the sound waves propagation in rigid porous                      Materials</p> <p>2.4.6.        Fractional calculus for lateral and longitudinal control of autonomous vehicles</p> <p>2.4.7.        Application of fractional calculus in the theory of viscoelasticity</p> <p>2.4.8.        Fractional differentiation for edge detection</p> <p>2.4.9.        Wave propagation in viscoelastic horns using a fractional calculus rheology model</p> <p>2.4.10.      Application of fractional calculus to fluid mechanics</p> <p>2.4.11.      Radioactivity, exponential decay and population growth</p> <p>2.4.12.      The Harmonic oscillator</p> <p>2.5.           Overview of some analytical/numerical methods</p> <p>2.5.1.        Fractional Adams–Bashforth/Moulton methods</p> <p>2.5.2.        Fractional Euler method</p> <p>2.5.3.          Finite difference method</p> <p>2.5.4.          Finite element method</p> <p>2.5.5.        Finite volume method</p> <p>2.5.6.        Meshless method</p> <p>2.5.7.        Reproducing kernel Hilbert space method</p> <p>2.5.8.        Wavelet method</p> <p>2.5.9.        The Sine-Gordon expansion method</p> <p>2.5.10.      The Jacobi elliptic equation method</p> <p>2.5.11.      The generalized Kudryashov method</p> <p>                 References</p> <p> </p> <p>                Adomian Decomposition Method (ADM)</p> <p>3.1.           Introduction</p> <p>3.2.           Basic Idea of  ADM</p> <p>3.3.           Numerical Examples</p> <p>                 References</p> <p> </p> <p>                Adomian Decomposition Transform Method</p> <p>4.1.            Introduction</p> <p>4.2.            Transform methods for the Caputo sense derivatives</p> <p>4.3.            Adomian decomposition Laplace transform method (ADLTM)</p> <p>4.4.            Adomian decomposition Sumudu transform method (ADSTM)</p> <p>4.5.            Adomian decomposition Elzaki transform method (ADETM)</p> <p>4.6.            Adomian decomposition Aboodh transform method (ADATM)</p> <p>4.7.            Numerical Examples</p> <p>4.7.1.         Implementation of ADLTM</p> <p>4.7.2.         Implementation of ADSTM</p> <p>4.7.3.         Implementation of ADETM</p> <p>4.7.4.         Implementation of ADATM</p> <p> </p> <p> </p> <p>                   References</p> <p> </p> <p>                Homotopy Perturbation Method (HPM)</p> <p>5.1.            Introduction</p> <p>5.2.            Procedure of HPM</p> <p>5.3.            Numerical examples</p> <p>                  References</p> <p> </p> <p>                Homotopy Perturbation Transform Method</p> <p>6.1.            Introduction</p> <p>6.2.            Transform methods for the Caputo sense derivatives</p> <p>6.3.            Homotopy perturbation Laplace transform method (HPLTM)</p> <p>6.4.            Homotopy perturbation Sumudu transform method (HPSTM)</p> <p>6.5.            Homotopy perturbation Elzaki transform method (HPETM)</p> <p>6.6.            Homotopy perturbation Aboodh transform method (HPATM)</p> <p>6.7.            Numerical Examples</p> <p>6.7.1.         Implementation of HPLTM</p> <p>6.7.2.         Implementation of HPSTM</p> <p>6.7.3.         Implementation of HPETM</p> <p>6.7.4.         Implementation of HPATM</p> <p>                  References</p> <p> </p> <p>                Fractional Differential Transform Method</p> <p>7.1.            Introduction</p> <p>7.2.            Fractional differential transform method</p> <p>7.3.            Illustrative Examples</p> <p>                  References</p> <p> </p> <p>                Fractional Reduced Differential Transform Method</p> <p>8.1.            Introduction</p> <p>8.2.            Description of FRDTM</p> <p>8.3.            Numerical Examples</p> <p>                  References</p> <p> </p> <p>                Variational Iterative Method</p> <p>9.1.            Introduction</p> <p>9.2.            Procedure for VIM</p> <p>9.3.            Examples</p> <p>                  References</p> <p> </p> <p> </p> <p> </p> <p>                 Method of Weighted Residuals</p> <p> 10.1.         Introduction</p> <p>       10.2.         Collocation method</p> <p>       10.3.         Least-square method</p> <p>       10.4.         Galerkin method</p> <p>       10.5.         Numerical Examples</p> <p>                  References</p> <p> </p> <p>                 Boundary Characteristics Orthogonal Polynomials</p> <p> 11.1.         Introduction</p> <p> 11.2.         Gram–Schmidt orthogonalization procedure</p> <p> 11.3.         Generation of BCOPs</p> <p> 11.4.         Galerkin method with BCOPs</p> <p> 11.5.         Least-Square method with BCOPs</p> <p> 11.6.         Application Problems</p> <p>                  References</p> <p> </p> <p>                 Residual Power Series Method</p> <p>12.1.           Introduction</p> <p>12.2.           Theorems and lemma related to RPSM</p> <p>12.3.           Basic idea of RPSM</p> <p>12.4.           Convergence Analysis</p> <p>12.5.           Examples</p> <p>                   References</p> <p> </p> <p>                Homotopy Analysis Method</p> <p>13.1.           Introduction</p> <p>13.2.           Theory of homotopy analysis method</p> <p>13.3.           Convergence theorem of HAM</p> <p>13.4.           Test Examples</p> <p>                   References</p> <p> </p> <p>                Homotopy Analysis Transform Method</p> <p>14.1.           Introduction</p> <p>      14.2.           Transform methods for the Caputo sense derivative</p> <p>      14.3.           Homotopy analysis Laplace transform method (HALTM)</p> <p>      14.4.           Homotopy analysis Sumudu transform method (HASTM)</p> <p>      14.5.           Homotopy analysis Elzaki transform method (HAETM)</p> <p>      14.6.           Homotopy analysis Aboodh transform method (HAATM)</p> <p>      14.7.           Numerical Examples</p> <p>      14.7.1.         Implementation of HALTM</p> <p>      14.7.2.         Implementation of HASTM</p> <p>      14.7.3.         Implementation of HAETM</p> <p>      14.7.4.         Implementation of HAATM</p> <p>                         References</p> <p> </p> <p>                 q-Homotopy Analysis Method</p> <p> 15.1.         Introduction</p> <p> 15.2.         Theory of q-HAM</p> <p> 15.3.         Illustrative Examples</p> <p>                  References</p> <p> </p> <p>                  q-Homotopy Analysis transform Method</p> <p>  16.1.         Introduction</p> <p>  16.2.         Transform methods for the Caputo sense derivative</p> <p>        16.3.         q-homotopy analysis Laplace transform method (q-HALTM)</p> <p>        16.4.         q-homotopy analysis Sumudu transform method (q-HASTM)</p> <p>        16.5.         q-homotopy analysis Elzaki transform method (q-HAETM)</p> <p>        16.6.         q-homotopy analysis Aboodh transform method (q-HAATM)</p> <p>        16.7.         Test Problems</p> <p>        16.7.1.        Implementation of q-HALTM</p> <p>        16.7.2.        Implementation of q-HASTM</p> <p>        16.7.3.        Implementation of q-HAETM</p> <p>        16.7.4.        Implementation of q-HAATM</p> <p>                          References</p> <p> </p> <p>                  (G'/G)-Expansion Method</p> <p>   17.1.          Introduction</p> <p>   17.2.          Description of the (G'/G)-expansion method</p> <p>   17.3.          Application Problems</p> <p>                     References</p> <p> </p> <p>                  (G’/G^2)-Expansion Method</p> <p>   18.1.          Introduction</p> <p> 18.2.            Description of the (G’/G^2)-expansion method</p> <p> 18.3.            Numerical Examples</p> <p>                     References</p> <p> </p> <p>                  (G’/G,1/G)-Expansion Method</p> <p>  19.1.           Introduction</p> <p>  19.2.           Algorithm of the (G’/G,1/G)-expansion method</p> <p>  19.3.           Illustrative Examples</p> <p>                     References</p> <p> </p> <p>                 The modified simple equation method</p> <p> 20.1.           Introduction</p> <p> 20.2.           Procedure of the modified simple equation method</p> <p> 20.3.           Application Problems</p> <p>                    References</p> <p> </p> <p>                 Sine-Cosine Method</p> <p> 21.1.           Introduction</p> <p> 21.2.           Details of Sine-Cosine method</p> <p> 21.3.           Numerical Examples</p> <p>                    References</p> <p> </p> <p>                 Tanh Method</p> <p> 22.1.            Introduction</p> <p> 22.2.            Description of the Tanh method</p> <p> 22.3.            Numerical Examples</p> <p>                     References</p> <p> </p> <p>                 Fractional sub-equation method</p> <p> 23.1.            Introduction</p> <p> 23.2.            Implementation of the fractional sub-equation method</p> <p> 23.3.            Numerical Examples</p> <p>                     References</p> <p> </p> <p>                 Exp-function Method</p> <p> 24.1.           Introduction</p> <p> 24.2.           Procedure of the Exp-function method</p> <p> 24.3.           Numerical Examples</p> <p>                    References</p> <p> </p> <p>                 Exp(-φ(ξ))-expansion method</p> <p> 25.1.          Introduction</p> <p> 25.2.          Methodology of the exp(-φ(ξ))-expansion method</p> <p> 25.3.          Numerical Examples</p> <p>                   References</p> <p>Index</p>
<p><b>Snehashish Chakraverty,</b> Senior Professor, Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, India. <p><b>Rajarama Mohan Jena,</b> Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India. <p><b>Subrat Kumar Jena,</b> Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.
<p><b>A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations</b> <p>Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution. <p><i>Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications </i>presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. <ul><li> Covers various aspects of efficient methods regarding fractional-order systems</li> <li> Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering</li> <li> Provides a systematic approach for handling fractional-order models arising in science and engineering </li> <li>Incorporates a wide range of methods with corresponding results and validation</li></ul> <p><i>Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications</i> is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.

Diese Produkte könnten Sie auch interessieren: