Details

Thermal Design


Thermal Design

Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells
2. Aufl.

von: HoSung Lee

128,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 17.05.2022
ISBN/EAN: 9781119686033
Sprache: englisch
Anzahl Seiten: 928

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Thermal Design</b> <p><b>Discover a new window to thermal engineering and thermodynamics through the study of thermal design</b> <p>Thermal engineering is a specialized sub-discipline of mechanical engineering that focuses on the movement and transfer of heat energy between two mediums or altered into other forms of energy. Thermal engineers must have a strong knowledge of thermodynamics and the processes that convert generated energy from thermal sources into chemical, mechanical, or electrical energy — as such, thermal engineers can be employed in many industries, particularly in automotive manufacturing, commercial construction, and the HVAC industry. As part of their job, thermal engineers often have to improve a current system to make it more efficient, and so must be aware of a wide array of variables and familiar with a broad sweep of systems to ensure the work they do is economically viable. <p>In this significantly updated new edition, <i>Thermal Design</i> details the physical mechanisms of standard thermal devices while integrating essential formulas and detailed derivations to give a practical understanding of the field to students. The textbook examines the design of thermal devices through mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. Moreover, it presents information on significant thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems — all of which are increasingly important and fundamental to numerous fields such as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space. <p>Readers of the Second Edition of <i>Thermal Design</i> will also find: <ul><li>A new chapter on thermoelectrics that reflects the latest modern technology that has recently been developed</li> <li>More problems and examples to help clarify points throughout the book</li> <li>A range of appendices, including new additions, that include more specifics on topicscovered in the book, tutorials for applications, and computational work</li> <li>A solutions manual provided on a companion website</li></ul> <p><i>Thermal Design</i> is a useful reference for engineers and researchers in me chanical engineering, as well as senior undergraduate and graduate students in mechanical engineering.
<p>Preface to the Second Edition xix</p> <p>Preface to the First Edition xxi</p> <p>About the Companion Website xxv</p> <p><b>1 Introduction 1</b></p> <p>1.1 Introduction 1</p> <p>1.2 Humans and Energy 1</p> <p>1.3 Thermodynamics 2</p> <p>1.3.1 Energy, Heat, and Work 2</p> <p>1.3.2 The First Law of Thermodynamics 2</p> <p>1.3.3 Heat Engines, Refrigerators, and Heat Pumps 5</p> <p>1.3.4 The Second Law of Thermodynamics 7</p> <p>1.3.5 Carnot Cycle 7</p> <p>1.4 Heat Transfer 11</p> <p>1.4.1 Introduction 11</p> <p>1.4.2 Conduction 12</p> <p>1.4.3 Convection 15</p> <p>1.4.3.1 Parallel Flow on an Isothermal Plate 16</p> <p>1.4.3.2 A Cylinder in Cross Flow 18</p> <p>1.4.3.3 Flow in Ducts 20</p> <p>1.4.3.4 Free Convection 25</p> <p>1.4.4 Radiation 29</p> <p>1.4.4.1 Thermal Radiation 29</p> <p>1.4.4.2 View Factor 34</p> <p>1.4.4.3 Radiation Exchange Between Diffuse-Gray Surfaces 34</p> <p>Problems 38</p> <p>References 42</p> <p><b>2 Heat Sinks 45</b></p> <p>2.1 Longitudinal Fin of Rectangular Profile 45</p> <p>2.2 Heat Transfer from Fin 47</p> <p>2.3 Fin Effectiveness 48</p> <p>2.4 Fin Efficiency 48</p> <p>2.5 Corrected Profile Length 49</p> <p>2.6 Optimizations 49</p> <p>2.6.1 Constant Profile Area A p 49</p> <p>2.6.2 Constant Heat Transfer from a Fin 52</p> <p>2.6.3 Constant Fin Volume or Mass 53</p> <p>2.6.4 Optimum Dimensions of Rectangular Fin 55</p> <p>2.6.5 Radial Fins 60</p> <p>2.6.6 Optimization of Radial Fins 63</p> <p>2.7 Plate Fin Heat Sinks 68</p> <p>2.7.1 Free (Natural) Convection Cooling 68</p> <p>2.7.1.1 Small Spacing Channel 68</p> <p>2.7.1.2 Large Spacing Channel 71</p> <p>2.7.1.3 Optimum Fin Spacing 71</p> <p>2.7.2 Forced Convection Cooling 72</p> <p>2.7.2.1 Small Spacing Channel 73</p> <p>2.7.2.2 Large Spacing Channel 74</p> <p>2.8 Multiple Fin Array Ii 75</p> <p>2.8.1 Natural (Free) Convection Cooling 77</p> <p>2.9 Thermal Resistance and Overall Surface Efficiency 78</p> <p>2.10 Fin Design with Thermal Radiation 97</p> <p>2.10.1 Single Longitudinal Fin with Radiation 97</p> <p>Problems 109</p> <p>Computer Assignments 116</p> <p>Project 116</p> <p>References 117</p> <p><b>3 Heat Pipes 119</b></p> <p>3.1 Operation of Heat Pipe 119</p> <p>3.2 Surface Tension 120</p> <p>3.3 Heat Transfer Limitations 122</p> <p>3.3.1 Capillary Limitation 123</p> <p>3.3.1.1 Maximum Capillary Pressure Difference 123</p> <p>3.3.1.2 Vapor Pressure Drop 125</p> <p>3.3.1.3 Liquid Pressure Drop 127</p> <p>3.3.1.4 Normal Hydrostatic Pressure Drop 127</p> <p>3.3.1.5 Axial Hydrostatic Pressure Drop 128</p> <p>3.3.2 Approximation for Capillary Pressure Difference 128</p> <p>3.3.3 Sonic Limitation 128</p> <p>3.3.4 Entrainment Limitation 129</p> <p>3.3.5 Boiling Limitation 129</p> <p>3.3.6 Viscous Limitation 130</p> <p>3.3.6.1 Summary of Heat Transport Limits 134</p> <p>3.3.6.2 Effective Thermal Conductivity 135</p> <p>3.4 Heat Pipe Thermal Resistance 136</p> <p>3.4.1 Contact Resistance 138</p> <p>3.5 Variable Conductance Heat Pipes (VCHP) 141</p> <p>3.5.1 Gas-Loaded Heat Pipes 141</p> <p>3.5.2 Clayepyron–Clausius Equation 143</p> <p>3.5.3 Applications 144</p> <p>3.6 Loop Heat Pipes 146</p> <p>3.7 Micro Heat Pipes 148</p> <p>3.7.1 Steady-State Models 148</p> <p>3.7.1.1 Conventional Model 148</p> <p>3.7.1.2 Cotter’s Model 150</p> <p>3.8 Working Fluid 154</p> <p>3.8.1 Figure of Merit 154</p> <p>3.8.2 Compatibility 156</p> <p>3.9 Wick Structures 157</p> <p>3.10 Design Example 158</p> <p>3.10.1 Selection of Material and Working Fluid 158</p> <p>3.10.2 Working Fluid Properties 159</p> <p>3.10.2.1 Estimation of Vapor Space Radius 159</p> <p>3.10.3 Estimation of Operating Limits 159</p> <p>3.10.3.1 Capillary Limits 159</p> <p>3.10.3.2 Sonic Limits 160</p> <p>3.10.3.3 Entrainment Limits 160</p> <p>3.10.3.4 Boiling Limits 161</p> <p>3.10.4 Wall Thickness 162</p> <p>3.10.5 Wick Selection 163</p> <p>3.10.6 Maximum Arterial Depth 164</p> <p>3.10.7 Design of Arterial Wick 165</p> <p>3.10.8 Capillary Limitation 166</p> <p>3.10.8.1 Liquid Pressure Drop in the Arteries 167</p> <p>3.10.8.2 Liquid Pressure Drop in the Circumferential Wick 167</p> <p>3.10.8.3 Vapor Pressure Drop in the Vapor Space 168</p> <p>3.10.9 Performance Map 169</p> <p>3.10.10 Check the Temperature Drop 170</p> <p>Problems 170</p> <p>Design Problem 173</p> <p>References 174</p> <p><b>4 Compact Heat Exchangers 177</b></p> <p>4.1 Introduction 177</p> <p>4.2 Fundamentals of Heat Exchangers 180</p> <p>4.2.1 Counterflow and Parallel Flows 180</p> <p>4.2.2 Overall Heat Transfer Coefficient 182</p> <p>4.2.3 Log Mean Temperature Difference (LMTD) 184</p> <p>4.2.4 Flow Properties 186</p> <p>4.2.5 Nusselt Numbers 186</p> <p>4.2.6 Effectiveness–NTU (ε–NTU) Method 189</p> <p>4.2.6.1 Parallel Flow 191</p> <p>4.2.6.2 Counterflow 192</p> <p>4.2.6.3 Crossflow 192</p> <p>4.2.7 Heat Exchanger Pressure Drop 199</p> <p>4.2.8 Fouling Resistances (Fouling Factors) 201</p> <p>4.2.9 Overall Surface (Fin) Efficiency 202</p> <p>4.2.10 Reasonable Velocities of Various Fluids in Pipe Flow 203</p> <p>4.3 Double-Pipe Heat Exchangers 204</p> <p>4.4 Shell-and-Tube Heat Exchangers 213</p> <p>4.4.1 Baffles 214</p> <p>4.4.2 Multiple Passes 214</p> <p>4.4.3 Dimensions of Shell-and-Tube Heat Exchanger 215</p> <p>4.4.4 Shell-Side Tube Layout 215</p> <p>4.5 Plate Heat Exchangers (PHEs) 224</p> <p>4.5.1 Flow Pass Arrangements 224</p> <p>4.5.2 Geometric Properties 226</p> <p>4.5.3 Friction Factor 231</p> <p>4.5.4 Nusselt Number 231</p> <p>4.5.5 Pressure Drops 231</p> <p>4.6 Pressure Drops in Compact Heat Exchangers 245</p> <p>4.6.1 Fundamentals of Core Pressure Drop 246</p> <p>4.6.2 Core Entrance and Exit Pressure Drops 248</p> <p>4.6.3 Contraction and Expansion Loss Coefficients 249</p> <p>4.6.3.1 Circular-Tube Core 250</p> <p>4.6.3.2 Square-Tube Core 251</p> <p>4.6.3.3 Flat-Tube Core 252</p> <p>4.6.3.4 Triangular-Tube Core 252</p> <p>4.7 Finned-Tube Heat Exchangers 257</p> <p>4.7.1 Geometrical Characteristics 258</p> <p>4.7.2 Flow Properties 259</p> <p>4.7.3 Thermal Properties 260</p> <p>4.7.4 Correlations for Circular Finned-Tube Geometry 260</p> <p>4.7.5 Pressure Drop 261</p> <p>4.7.6 Correlations for Louvered Plate-Fin Flat-Tube Geometry 263</p> <p>4.8 Plate-Fin Heat Exchangers 275</p> <p>4.8.1 Geometric Characteristics 275</p> <p>4.8.2 Correlations for Offset Strip Fin (OSF) Geometry 277</p> <p>4.9 Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers 297</p> <p>4.9.1 Geometric Characteristics 298</p> <p>4.9.2 Correlations for Louver Fin Geometry 300</p> <p>4.10 Plate-Finned Heat Pipe Heat Exchanger 314</p> <p>4.10.1 Geometric Characteristics 314</p> <p>4.10.2 Correlations for Plate-Finned Circular Tube Heat Exchanger 315</p> <p>4.10.3 Fin Efficiency 317</p> <p>4.10.4 Heat Pipes 318</p> <p>4.10.5 Analytical Model for Plate-Finned Heat Pipe Heat Exchanger 319</p> <p>Problems 320</p> <p>References 332</p> <p><b>5 Thermoelectric Design 335</b></p> <p>5.1 Introduction 335</p> <p>5.1.1 Thermoelectric Effect 337</p> <p>5.1.2 Seebeck Effect 337</p> <p>5.1.3 Peltier Effect 338</p> <p>5.1.4 Thomson Effect 338</p> <p>5.1.5 Thomson (or Kelvin) Relationships 339</p> <p>5.1.6 The Figure of Merit 339</p> <p>5.1.7 New Generation Thermoelectrics 339</p> <p>5.2 Thermoelectric Generators 341</p> <p>5.2.1 Ideal Equations 341</p> <p>5.2.2 Performance Parameters of a Thermoelectric Module 344</p> <p>5.2.3 Maximum Parameters for a Thermoelectric Module 345</p> <p>5.2.4 Normalized Parameters 345</p> <p>5.2.5 Effective Material Properties 351</p> <p>5.2.6 Comparison of Calculations with a Commercial Product 352</p> <p>5.2.7 Figure of Merit and Optimum Geometry 353</p> <p>5.3 Thermoelectric Coolers and Heat Pumps 354</p> <p>5.3.1 Ideal Equations 355</p> <p>5.3.2 Maximum Parameters 358</p> <p>5.3.3 Normalized Parameters for Thermoelectric Coolers 359</p> <p>5.3.4 Normalized Parameters for Thermoelectric Heat Pumps 363</p> <p>5.3.5 Effective Material Properties 371</p> <p>5.3.5.1 Comparison of Calculations with a Commercial Product 373</p> <p>5.4 Optimal Design 373</p> <p>5.4.1 Introduction 373</p> <p>5.4.2 Optimal Design for Thermoelectric Generators 374</p> <p>5.4.3 Optimal Design of Thermoelectric Coolers and Heat Pumps 383</p> <p>5.4.3.1 Thermoelectric Heat Pumps 387</p> <p>5.4.3.2 Heat Sinks Without Thermoelectric Cooler Module 388</p> <p>5.5 Thomson Effect, Exact Solution, and Compatibility Factor 398</p> <p>5.5.1 Thermodynamics of Thomson Effect 398</p> <p>5.5.1.1 Seebeck Effect 398</p> <p>5.5.1.2 Peltier Effect 399</p> <p>5.5.1.3 Thomson Effect 399</p> <p>5.5.1.4 Thomson (or Kelvin) Relationships 400</p> <p>5.5.2 Exact Solutions 402</p> <p>5.5.2.1 Equations for the Exact Solutions and the Ideal Equation 402</p> <p>5.5.2.2 Thermoelectric Generator 404</p> <p>5.5.2.3 Thermoelectric Coolers 405</p> <p>5.5.3 Compatibility Factor 407</p> <p>5.5.3.1 Reduced Current Density 407</p> <p>5.5.3.2 Heat Balance Equation 408</p> <p>5.5.3.3 Numerical Solution 408</p> <p>5.5.3.4 Infinitesimal Efficiency 409</p> <p>5.5.3.5 Reduced Efficiency 409</p> <p>5.5.3.6 Reduced Efficiency 409</p> <p>5.5.3.7 Compatibility Factor 409</p> <p>5.5.3.8 Segmented Thermoelements 410</p> <p>5.5.3.9 Thermoelectric Potential 410</p> <p>5.5.4 Thomson Effects 413</p> <p>5.5.4.1 Formulation of Basic Equations 413</p> <p>5.5.4.2 Numeric Solutions of Thomson Effect 416</p> <p>5.5.4.3 Comparison Between Thomson Effect and Ideal Equation 418</p> <p>5.6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 421</p> <p>5.6.1 Modeling and Validation 421</p> <p>5.6.1.1 Cancelation of Spreading Resistance with Thermal Contact Resistance 422</p> <p>5.6.1.2 Thermoelectric Coolers 423</p> <p>5.6.1.3 Thermoelectric Generators 423</p> <p>5.6.1.4 Validation of Model 423</p> <p>5.6.2 Micro and Macro Thermoelectric Coolers 425</p> <p>5.6.2.1 Effect of Leg Length 426</p> <p>5.6.2.2 Effect of Material on Ceramic Plate 426</p> <p>5.6.3 Micro and Macro Thermoelectric Generators 427</p> <p>5.6.3.1 Model and Verification for Macro TE Generators 427</p> <p>5.6.3.2 Effect of Load Resistance 428</p> <p>5.6.3.3 Effect of Leg Length and Ceramic Material 429</p> <p>5.7 Modeling of Thermoelectric Generators and Coolers with Heat Sinks 430</p> <p>5.7.1 Modeling of Thermoelectric Generators with Heat Sinks 430</p> <p>5.7.1.1 Modeling 430</p> <p>5.7.1.2 Heat Sink Area and Cross Flow Area for Heat Sinks 433</p> <p>5.7.1.3 Mass Flow Rates 433</p> <p>5.7.1.4 Convection Heat Transfer Coefficients 434</p> <p>5.7.1.5 Single-Fin Efficiencies 434</p> <p>5.7.1.6 Overall Fin Efficiencies 435</p> <p>5.7.1.7 Thermal Resistances of Heat Sink and Aluminum Block 435</p> <p>5.7.1.8 Effective Material Properties 436</p> <p>5.7.1.9 Comparison of Model and Measurements 437</p> <p>5.7.1.10 Optimal Design of Heat Sink 437</p> <p>5.7.1.11 Optimal Design of Thermoelectric Module 438</p> <p>5.7.2 Plate-Fin Heat Sinks 438</p> <p>5.7.2.1 Nusselt Number for Air 439</p> <p>5.7.2.2 Turbulent Flow for Gases and Liquids 440</p> <p>5.7.2.3 Optimal Design of Heat Sink 441</p> <p>5.7.2.4 Single-Fin Efficiency 441</p> <p>5.7.2.5 Overall Fin Efficiency 442</p> <p>5.7.3 Modeling of Thermoelectric Coolers with Heat Sinks 442</p> <p>5.7.3.1 Modeling 442</p> <p>5.7.3.2 Heat Sink Area and Cross Flow Area for Heat Sinks 445</p> <p>5.7.3.3 Mass Flow Rates 445</p> <p>5.7.3.4 Convection Heat Transfer Coefficients 446</p> <p>5.7.3.5 Single-Fin Efficiencies 446</p> <p>5.7.3.6 Overall Fin Efficiencies 446</p> <p>5.7.3.7 Thermal Resistances of Heat Sink and Aluminum Block 447</p> <p>5.7.3.8 Effective Material Properties 447</p> <p>5.7.3.9 Comparison of Model and Measurements 448</p> <p>5.7.3.10 Conclusions 449</p> <p>5.8 Applications 449</p> <p>5.8.1 Exhaust Waste Heat Recovery 449</p> <p>5.8.1.1 Recent Studies 449</p> <p>5.8.1.2 Modeling of Module Tests 452</p> <p>5.8.1.3 Modeling of TEG 455</p> <p>5.8.1.4 New Design of TEG 462</p> <p>5.8.2 Solar Thermoelectric Generators (STEGs) 466</p> <p>5.8.2.1 Recent Studies 466</p> <p>5.8.2.2 Modeling of a STEG 467</p> <p>5.8.2.3 Optimal Design of STEG (Dimensional Analysis) 473</p> <p>5.8.2.4 New Design of STEG 475</p> <p>5.8.3 Automotive Thermoelectric Air Conditioner (TEAC) 479</p> <p>5.8.3.1 Recent Studies 479</p> <p>5.8.3.2 Modeling of Air-to-Air TEAC 480</p> <p>5.8.3.3 Optimal Design of TEAC 487</p> <p>5.8.3.4 New Design of TEAC 490</p> <p>Problems 493</p> <p>Computer Assignment 496</p> <p>Projects 504</p> <p>Computer Assignments 504</p> <p>Computer Projects 504</p> <p>References 505</p> <p><b>6 Thermoelectric Materials 509</b></p> <p>6.1 Crystal Structure 509</p> <p>6.1.1 Atomic Mass 509</p> <p>6.1.1.1 Avogadro’s Number 509</p> <p>6.1.2 Unit Cells of a Crystal 510</p> <p>6.1.2.1 Bravais Lattices 511</p> <p>6.1.3 Crystal Planes 515</p> <p>6.2 Physics of Electrons 517</p> <p>6.2.1 Quantum Mechanics 517</p> <p>6.2.1.1 Electromagnetic Wave 517</p> <p>6.2.1.2 Atomic Structure 519</p> <p>6.2.1.3 Bohr’s Model 520</p> <p>6.2.1.4 Line Spectra 521</p> <p>6.2.1.5 De Broglie Wave 522</p> <p>6.2.1.6 Heisenberg Uncertainty Principle 523</p> <p>6.2.1.7 Schrödinger Equation 524</p> <p>6.2.1.8 A Particle in a One-Dimensional Box 524</p> <p>6.2.1.9 Quantum Numbers 527</p> <p>6.2.1.10 Electron Configurations 528</p> <p>6.2.2 Band Theory and Doping 530</p> <p>6.2.2.1 Covalent Bonding 530</p> <p>6.2.2.2 Energy Band 531</p> <p>6.2.2.3 Pseudo-Potential Well 532</p> <p>6.2.2.4 Doping, Donors, and Acceptors 532</p> <p>6.3 Density of States, Fermi Energy, and Energy Bands 534</p> <p>6.3.1 Current and Energy Transport 534</p> <p>6.3.2 Electron Density of States 535</p> <p>6.3.2.1 Dispersion Relation 535</p> <p>6.3.2.2 Effective Mass 535</p> <p>6.3.2.3 Density of States 536</p> <p>6.3.3 Fermi–Dirac Distribution 538</p> <p>6.3.4 Electron Concentration 538</p> <p>6.3.5 Fermi Energy in Metals 539</p> <p>6.3.6 Fermi Energy in Semiconductors 541</p> <p>6.3.7 Energy Bands 543</p> <p>6.3.7.1 Multiple Bands 544</p> <p>6.3.7.2 Direct and Indirect Semiconductors 545</p> <p>6.3.7.3 Periodic Potential (Kronig–Penney Model) 545</p> <p>6.4 Thermoelectric Transport Properties for Electrons 549</p> <p>6.4.1 Boltzmann Transport Equation 549</p> <p>6.4.2 Simple Model of Metals 552</p> <p>6.4.2.1 Electric Current Density 552</p> <p>6.4.2.2 Electrical Conductivity 552</p> <p>6.4.2.3 Seebeck Coefficient 553</p> <p>6.4.2.4 Electronic Thermal Conductivity 555</p> <p>6.4.3 Power-Law Model for Metals and Semiconductors 556</p> <p>6.4.3.1 Equipartition Principle 556</p> <p>6.4.3.2 Parabolic Single-Band Model 557</p> <p>6.4.4 Electron Relaxation Time 563</p> <p>6.4.4.1 Acoustic–Phonon Scattering 563</p> <p>6.4.4.2 Polar Optical Phonon Scattering 564</p> <p>6.4.4.3 Ionized Impurity Scattering 564</p> <p>6.4.4.4 Total Electron Relaxation Time 565</p> <p>6.4.5 Multiband Effects 566</p> <p>6.4.6 Nonparabolicity 567</p> <p>6.4.6.1 Nonparabolic Density of States 567</p> <p>6.5 Phonons 569</p> <p>6.5.1 Crystal Vibration 569</p> <p>6.5.1.1 One Atom in a Primitive Cell 569</p> <p>6.5.1.2 Two Atoms in a Unit Cell 571</p> <p>6.5.2 Specific Heat 573</p> <p>6.5.2.1 Internal Energy 573</p> <p>6.5.2.2 Debye Model 575</p> <p>6.5.3 Lattice Thermal Conductivity 580</p> <p>6.5.3.1 Klemens–Callaway Model 580</p> <p>6.5.3.2 Umklapp Processes 582</p> <p>6.5.3.3 Callaway Model 583</p> <p>6.5.3.4 Phonon Relaxation Times 584</p> <p>6.6 Low-Dimensional Nanostructures 587</p> <p>6.6.1 Low-Dimensional Systems 588</p> <p>6.6.1.1 Quantum Well (2D) 588</p> <p>6.6.1.2 Quantum Wires (1D) 592</p> <p>6.6.1.3 Quantum Dots (0D) 595</p> <p>6.6.1.4 Thermoelectric Transport Properties of Quantum Wells 595</p> <p>6.6.1.5 Thermoelectric Transport Properties of Quantum Wires 597</p> <p>6.6.1.6 Proof-of-Principle Studies 598</p> <p>6.6.1.7 Size Effects of Quantum Well on Lattice Thermal Conductivity 600</p> <p>6.7 Generic Model of Bulk Silicon and Nanowires 602</p> <p>6.7.1 Electron Density of States for Bulk and Nanowires 603</p> <p>6.7.1.1 Density of States 603</p> <p>6.7.2 Carrier Concentrations for Two-Band Model 603</p> <p>6.7.2.1 Bulk 603</p> <p>6.7.2.2 Nanowires 604</p> <p>6.7.2.3 Bipolar Effect and Fermi Energy 604</p> <p>6.7.3 Electron Transport Properties for Bulk and Nanowires 604</p> <p>6.7.3.1 Electrical Conductivity 604</p> <p>6.7.3.2 Seebeck Coefficient 605</p> <p>6.7.3.3 Electronic Thermal Conductivity 605</p> <p>6.7.4 Electron Scattering Mechanisms 605</p> <p>6.7.4.1 Acoustic-Phonon Scattering 605</p> <p>6.7.4.2 Ionized Impurity Scattering 606</p> <p>6.7.4.3 Screening Effect 606</p> <p>6.7.4.4 Polar Optical Phonon Scattering 606</p> <p>6.7.4.5 Total Electron Relaxation Time 607</p> <p>6.7.5 Lattice Thermal Conductivity 607</p> <p>6.7.6 Phonon Relaxation Time 607</p> <p>6.7.7 Input Data for Bulk Si and Nanowires 608</p> <p>6.7.8 Bulk Si 608</p> <p>6.7.8.1 Fermi Energy 609</p> <p>6.7.8.2 Electron Mobility 610</p> <p>6.7.8.3 Thermoelectric Transport Properties 610</p> <p>6.7.8.4 Dimensionless Figure of Merit 610</p> <p>6.7.9 Si Nanowires 611</p> <p>6.7.9.1 Fermi Energy and Carrier Concentration 611</p> <p>6.7.9.2 Electron Mobility 612</p> <p>6.7.9.3 Thermoelectric Transport Properties for Si Nanowires 612</p> <p>6.7.9.4 Dimensionless Figure of Merit 614</p> <p>6.7.9.5 Effect of Size for Nanowires 614</p> <p>6.7.9.6 Critical Nanowire Diameter 615</p> <p>6.7.9.7 Phonon Properties for Si Nanowires 616</p> <p>6.8 Theoretical Model of Thermoelectric Transport Properties 617</p> <p>6.8.1 Introduction 618</p> <p>6.8.2 Theoretical Equations 619</p> <p>6.8.2.1 Carrier Transport Properties 619</p> <p>6.8.2.2 Scattering Mechanisms for Electron Relaxation Times 621</p> <p>6.8.2.3 Lattice Thermal Conductivity 624</p> <p>6.8.2.4 Phonon Relaxation Times 625</p> <p>6.8.2.5 Phonon Density of States and Specific Heat 626</p> <p>6.8.2.6 Dimensionless Figure of Merit 627</p> <p>6.8.3 Results and Discussion 627</p> <p>6.8.3.1 Electron or Hole Scattering Mechanisms 627</p> <p>6.8.4 Summary 647</p> <p>Problems 649</p> <p>References 657</p> <p><b>7 Solar Cells 667</b></p> <p>7.1 Introduction 667</p> <p>7.1.1 Operation of Solar Cells 669</p> <p>7.1.2 Solar Cells and Technology 671</p> <p>7.1.3 Solar Irradiance 672</p> <p>7.1.4 Air Mass 672</p> <p>7.1.5 Nature of Light 674</p> <p>7.2 Quantum Mechanics 675</p> <p>7.2.1 Atomic Structure 677</p> <p>7.2.2 Bohr’s Model 677</p> <p>7.2.3 Line Spectra 679</p> <p>7.2.4 De Broglie Wave 680</p> <p>7.2.5 Heisenberg Uncertainty Principle 681</p> <p>7.2.6 Schrödinger Equation 682</p> <p>7.2.7 A Free Particle in a 1D Box 682</p> <p>7.2.8 Quantum Numbers 685</p> <p>7.2.9 Electron Configurations 686</p> <p>7.2.10 Van der Waals Forces 688</p> <p>7.2.11 Covalent Bonding 689</p> <p>7.2.12 Energy Band 690</p> <p>7.2.13 Pseudo-Potential Well 691</p> <p>7.3 Density of States 691</p> <p>7.3.1 Number of States 691</p> <p>7.3.2 Effective Mass 692</p> <p>7.4 Equilibrium Intrinsic Carrier Concentration 693</p> <p>7.4.1 Fermi Function 693</p> <p>7.4.2 Nondegenerate Semiconductor 693</p> <p>7.4.3 Equilibrium Electron and Hole Concentrations 694</p> <p>7.4.4 Intrinsic Semiconductors 696</p> <p>7.4.5 Intrinsic Carrier Concentration, N I 696</p> <p>7.4.6 Intrinsic Fermi Energy 698</p> <p>7.4.7 Alternative Expression for n 0 and p 0 698</p> <p>7.5 Extrinsic Semiconductors in Thermal Equilibrium 699</p> <p>7.5.1 Doping, Donors, and Acceptors 699</p> <p>7.5.2 Extrinsic Carrier Concentration in Equilibrium 700</p> <p>7.5.3 Built-in Voltage 702</p> <p>7.5.4 Principle of Detailed Balance 703</p> <p>7.5.5 Majority and Minority Carriers in Equilibrium 703</p> <p>7.6 Generation and Recombination 704</p> <p>7.6.1 Direct and Indirect Band Gap Semiconductors 704</p> <p>7.6.2 Absorption Coefficient 705</p> <p>7.6.3 Photogeneration 707</p> <p>7.7 Recombination 707</p> <p>7.7.1 Recombination Mechanisms 707</p> <p>7.7.2 Band Energy Diagram Under Nonequilibrium Conditions 709</p> <p>7.7.2.1 Back Surface Field (BSF) 710</p> <p>7.7.3 Low-Level Injection 710</p> <p>7.7.3.1 Low-Level Injection 711</p> <p>7.7.4 Band-to-Band Recombination 712</p> <p>7.7.5 Trap-Assisted (SRH) Recombination 713</p> <p>7.7.6 Simplified Expression of the SRH Recombination Rate 714</p> <p>7.7.7 Auger Recombination 715</p> <p>7.7.8 Total Recombination Rate 716</p> <p>7.8 Carrier Transport 716</p> <p>7.8.1 Drift 717</p> <p>7.8.2 Carrier Mobility 717</p> <p>7.8.3 Diffusion 718</p> <p>7.8.4 Total Current Densities 719</p> <p>7.8.5 Einstein Relationship 719</p> <p>7.8.6 Semiconductor Equations 720</p> <p>7.8.7 Minority-Carrier Diffusion Equations 720</p> <p>7.8.8 p–n Junction 721</p> <p>7.8.9 Calculation of Depletion Width 723</p> <p>7.8.10 Energy Band Diagram with a Reference Point 725</p> <p>7.8.11 Quasi-Fermi Energy Levels 725</p> <p>7.9 Minority Carrier Transport 726</p> <p>7.9.1 Boundary Conditions 726</p> <p>7.9.2 Minority Carrier Lifetimes 728</p> <p>7.9.3 Minority Carrier Diffusion Lengths 728</p> <p>7.9.4 Minority Carrier Diffusion Equation for Holes 729</p> <p>7.9.5 Minority Carrier Diffusion Equation for Electrons 732</p> <p>7.10 Characteristics of Solar Cells 735</p> <p>7.10.1 Current Density 735</p> <p>7.10.2 Current–Voltage Characteristics 740</p> <p>7.10.3 Figures of Merit 742</p> <p>7.10.4 Effect of Minority Electron Lifetime on Efficiency 744</p> <p>7.10.5 Effect of Minority Hole Lifetime on Efficiency 746</p> <p>7.10.6 Effect of Back Surface Recombination Velocity on Efficiency 746</p> <p>7.10.7 Effect of Base Width on Efficiency 747</p> <p>7.10.8 Effect of Emitter Width W N on Efficiency 748</p> <p>7.10.9 Effect of Acceptor Concentration on Efficiency 750</p> <p>7.10.10 Effect of Donor Concentration on Efficiency 752</p> <p>7.10.11 Band Gap Energy with Temperature 752</p> <p>7.10.12 Effect of Temperature on Efficiency 753</p> <p>7.11 Additional Topics 754</p> <p>7.11.1 Parasitic Resistance Effects (Ohmic Losses) 754</p> <p>7.11.2 Quantum Efficiency 757</p> <p>7.11.3 Ideal Solar Cell Efficiency 758</p> <p>7.12 Modeling 763</p> <p>7.12.1 Modeling for a Silicon Solar Cell 763</p> <p>7.12.2 Comparison of the Solar Cell Model with a Commercial Product 776</p> <p>7.13 Design of a Solar Cell 779</p> <p>7.13.1 Solar Cell Geometry with Surface Recombination Velocities 779</p> <p>7.13.2 Donor and Acceptor Concentrations 780</p> <p>7.13.3 Minority Carrier Diffusion Lifetimes 780</p> <p>7.13.4 Grid Spacing 781</p> <p>7.13.5 Antireflection, Light Trapping, and Passivation 784</p> <p>Problems 785</p> <p>References 789</p> <p><b>Appendix A Thermophysical Properties 791</b></p> <p>References 834</p> <p><b>Appendix B 837</b></p> <p>B.1 Optimal Dimensionless Parameters for TEGs with ZT ∞2 = 1 (See Figure B.1 at the end of tables) 837</p> <p>B.2 Optimal Dimensionless Parameters for TECS With ZT ∞2 = 1 (See Figure B.2 at the end of tables) 837</p> <p><b>Appendix C Pipe Dimensions 847</b></p> <p><b>Appendix D Periodic Table 849</b></p> <p><b>Appendix E Thermoelectric Properties 857</b></p> <p>E.1 Bismuth Telluride P-Type 858</p> <p>E.2 Bismuth Telluride N-Type 859</p> <p>E.3 Lead Telluride P-Type 859</p> <p>E.4 Silicon Germanium N-Type 860</p> <p>E.5 Skutterudites N-Type 861</p> <p>E.6 Zintl Compound N-Type 861</p> <p>References 862</p> <p><b>Appendix F Fermi Integral 863</b></p> <p><b>Appendix G Hall Factor 867</b></p> <p>References 869</p> <p><b>Appendix H Curve Fitting of Working Fluids 871</b></p> <p>H.1 Curve Fit for Working Fluids Chosen 871</p> <p>H.2 Curve Fitting for Working Fluid Properties Chosen 872</p> <p>H.2.1 MathCad Format 872</p> <p><b>Appendix L Tutorial for MathCAD 875</b></p> <p>L.1 Tutorial Problem for MathCAD 875</p> <p><b>Appendix M Conversion Factors 879</b></p> <p>Index 881</p>
<p><b>HoSung Lee, </b><b>PhD</b> at the University of Michigan, Ann Arbor in 1993, is a Professor in the department of Mechanical and Aerospace Engineering at Western Michigan University, USA. His other areas of research include optimal design of thermoelectric generators and coolers and thermoelectric materials.</p>
<p><b>Discover a new window to thermal engineering and thermodynamics through the study of thermal design</b></p> <p>Thermal engineering is a specialized sub-discipline of mechanical engineering that focuses on the movement and transfer of heat energy between two mediums or altered into other forms of energy. Thermal engineers must have a strong knowledge of thermodynamics and the processes that convert generated energy from thermal sources into chemical, mechanical, or electrical energy — as such, thermal engineers can be employed in many industries, particularly in automotive manufacturing, commercial construction, and the HVAC industry. As part of their job, thermal engineers often have to improve a current system to make it more efficient, and so must be aware of a wide array of variables and familiar with a broad sweep of systems to ensure the work they do is economically viable. <p>In this significantly updated new edition, <i>Thermal Design</i> details the physical mechanisms of standard thermal devices while integrating essential formulas and detailed derivations to give a practical understanding of the field to students. The textbook examines the design of thermal devices through mathematical modeling, graphical optimization, and occasionally computational-fluid-dynamic (CFD) simulation. Moreover, it presents information on significant thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems — all of which are increasingly important and fundamental to numerous fields such as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space. <p>Readers of the Second Edition of <i>Thermal Design</i> will also find: <ul><li>A new chapter on thermoelectrics that reflects the latest modern technology that has recently been developed</li> <li>More problems and examples to help clarify points throughout the book</li> <li>A range of appendices, including new additions, that include more specifics on topicscovered in the book, tutorials for applications, and computational work</li> <li>A solutions manual provided on a companion website</li></ul> <p><i>Thermal Design</i> is a useful reference for engineers and researchers in me chanical engineering, as well as senior undergraduate and graduate students in mechanical engineering.

Diese Produkte könnten Sie auch interessieren:

Computational Acoustics
Computational Acoustics
von: David R. Bergman
EPUB ebook
116,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €