Details

Antenna and Sensor Technologies in Modern Medical Applications


Antenna and Sensor Technologies in Modern Medical Applications


IEEE Press 1. Aufl.

von: Yahya Rahmat-Samii, Erdem Topsakal

134,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.02.2021
ISBN/EAN: 9781119683292
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to the theory and recent development in the medical use of antenna technology</b></p> <p><i>Antenna and Sensor Technologies in Modern Medical Applications</i> offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies.</p> <p>The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book:</p> <ul> <li>Covers recent developments in wireless medical telemetry</li> <li>Reviews the theory and design of in vitro/in vivo testing</li> <li>Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication</li> <li>Includes a chapter with an annotated list of the most comprehensive and important references in the field</li> </ul> <p>Written for students of engineering and antenna and sensor engineers, <i>Antenna and Sensor Technologies in Modern Medical Applications</i> is an essential guide to understanding human body interaction with antennas and sensors.</p>
<p>List of Contributors xvii</p> <p><b>1 Introduction </b><b>1<br /></b><i>Yahya Rahmat-Samii and Erdem Topsakal</i></p> <p><b>2 Ultraflexible Electrotextile Magnetic Resonance Imaging (MRI) Radio-Frequency Coils </b><b>11<br /></b><i>Daisong Zhang and Yahya Rahmat-Samii</i></p> <p>2.1 Introduction to MRI and the Basic Antenna Considerations 11</p> <p>2.2 Motivations, Challenges, and Strategies for MRI RF Coil Design 15</p> <p>2.2.1 Design Motivations and Challenges for MRI RF Coils 15</p> <p>2.2.2 Design Strategies and Roadmap of MRI RF Coils 18</p> <p>2.3 Selection, Fabrication, and Characterization of Electrotextiles for RF Coils 20</p> <p>2.3.1 Selection and Fabrication of Flexible Material Candidate 20</p> <p>2.3.2 Characterization of Electrotextiles 22</p> <p>2.4 Design of Single-Element Flexible RF Coil 26</p> <p>2.4.1 RF Coil Element Design with a Rigid Material 26</p> <p>2.4.2 RF Coil Element Design with Electrotextile Cloth 30</p> <p>2.4.3 RF Coil Element Design with Tunable Circuitry 31</p> <p>2.5 Design of Flexible RF Coil Array and System Integration with MRI Scanner 31</p> <p>2.5.1 RF Coil Array Design and Characterization 32</p> <p>2.5.2 RF Coil Array System Integration with MRI Scanner 33</p> <p>2.6 Characterization of RF Coil Array 34</p> <p>2.6.1 Characterization of RF Coil Array System with Phantom 35</p> <p>2.6.2 Characterization of RF Coil Array System with Cadaver 38</p> <p>2.7 Conclusion 38</p> <p>References 38</p> <p><b>3 Wearable Sensors for Motion Capture </b><b>43<br /></b><i>Vigyanshu Mishra and Asimina Kiourti</i></p> <p>3.1 Introduction 43</p> <p>3.2 The Promise of Motion Capture 45</p> <p>3.2.1 Healthcare 45</p> <p>3.2.2 Sports 47</p> <p>3.2.3 Human–Machine Interfaces 47</p> <p>3.2.4 Animation/Movies 48</p> <p>3.2.5 Biomedical Research 48</p> <p>3.3 Motion Capture in Contrived Settings 49</p> <p>3.3.1 Camera-Based Motion Capture Laboratory 49</p> <p>3.3.2 Electromagnetics-Based Sensors 52</p> <p>3.3.2.1 RADAR Based 52</p> <p>3.3.2.2 Wi-Fi Based 55</p> <p>3.3.2.3 RFID Based 57</p> <p>3.3.3 Magnetic Motion Capture System 59</p> <p>3.3.4 Imaging Methods 60</p> <p>3.3.5 Additional Sensors/Tools 60</p> <p>3.3.5.1 Goniometers 61</p> <p>3.3.5.2 Force Plates 62</p> <p>3.4 Wearable Motion Capture (Noncontrived Settings) 63</p> <p>3.4.1 Inertial Measurement Units (IMUs) 63</p> <p>3.4.2 Bending/Deformation Sensors 65</p> <p>3.4.2.1 Strain Based 65</p> <p>3.4.2.2 Fiber Optics Based 68</p> <p>3.4.3 Time-of-Flight (TOF) Sensors 70</p> <p>3.4.3.1 Acoustic Based 70</p> <p>3.4.3.2 Radio Based 71</p> <p>3.4.4 Received Signal Strength-based Sensors 73</p> <p>3.4.4.1 Antenna Based 73</p> <p>3.4.4.2 Magnetoinductive Sensors/Electrically Small Loop Antennas 74</p> <p>3.5 Conclusion 78</p> <p>References 82</p> <p><b>4 Antennas and Wireless Power Transfer for Brain-Implantable Sensors </b><b>91<br /></b><i>Leena Ukkonen, Lauri Sydänheimo, Toni Björninen and Shubin Ma</i></p> <p>4.1 Introduction 91</p> <p>4.2 Implantable Antennas for Wireless Biomedical Devices 92</p> <p>4.3 Wireless Power Transfer Techniques for Implantable Devices 95</p> <p>4.3.1 Inductive Power Transfer 95</p> <p>4.3.2 Ultrasonic Power Transfer 97</p> <p>4.3.3 Near-Field Capacitive Power Transfer 98</p> <p>4.3.4 Far-Field Power Transfer 99</p> <p>4.3.5 Computing the Fundamental Performance Indicators of Near-Field WPT Systems Using Two-Port Network Approach 100</p> <p>4.4 Human Body Models for Implantable Antenna Development 107</p> <p>4.4.1 Comparison of Human Head Phantoms with Different Complexities for Intracranial Implantable Antenna Development 110</p> <p>4.5 Wirelessly Powered Intracranial Pressure Sensing System Integrating Near- and Far-Field Antennas 115</p> <p>4.5.1 Far-Field Antenna for Data Transmission 116</p> <p>4.5.2 Antenna for Near-Field Wireless Power Transfer 120</p> <p>4.6 Far-Field RFID Antennas for Intracranial Wireless Communication 123</p> <p>4.6.1 Split Ring Resonator-Based Spatially Distributed Implantable Antenna System 123</p> <p>4.6.2 LC-Tank-Based Miniature Implantable RFID Antenna 127</p> <p>4.6.3 Antenna Prototype and Wireless Measurement 132</p> <p>4.7 Conclusion 135</p> <p>References 136</p> <p><b>5 In Vitro and In Vivo Testing of Implantable Antennas </b><b>145<br /></b><i>Ryan B. Green, Mary V. Smith and Erdem Topsakal</i></p> <p>5.1 Introduction 145</p> <p>5.2 Antenna Materials 146</p> <p>5.2.1 Biocompatibility 146</p> <p>5.2.2 Miniaturization 149</p> <p>5.2.3 Biocompatible Conductors and Thin Films 150</p> <p>5.2.4 Ports and Cables 153</p> <p>5.3 Bench Top Testing 154</p> <p>5.3.1 Ex Vivo Tissues 154</p> <p>5.3.2 In Vitro Gels 154</p> <p>5.3.2.1 Mixture and Characterization of Skin-Mimicking Material 156</p> <p>5.3.2.2 Mixture and Characterization of Adipose-Mimicking Material 164</p> <p>5.3.2.3 Mixture and Characterization of Muscle-Mimicking Material 166</p> <p>5.4 In Vivo Testing 171</p> <p>5.4.1 Different Animal Models for Different Frequency Bands 174</p> <p>5.4.2 Dielectric Mismatch 177</p> <p>5.4.3 Practical Testing Concerns 181</p> <p>5.5 Conclusion 182</p> <p>Acknowledgment 183</p> <p>References 183</p> <p><b>6 Wireless Localization for a Capsule Endoscopy: Techniques and Solutions </b><b>191<br /></b><i>Yongxin Guo and Guoliang Shao</i></p> <p>6.1 Introduction 191</p> <p>6.1.1 Visual-based Localization Method 194</p> <p>6.1.2 Radio-frequency Localization 196</p> <p>6.1.3 Microwave Imaging 198</p> <p>6.1.4 Magnetic Localization 199</p> <p>6.2 Static Magnetic Localization 201</p> <p>6.2.1 Model of the Target Magnet 202</p> <p>6.2.2 Noise Cancellation and Sensor Calibration 205</p> <p>6.2.3 Solving the Inverse Problem 207</p> <p>6.2.4 Sensors Distribution 212</p> <p>6.2.5 Conclusion of the Static Magnetic Localization 215</p> <p>6.3 Modulated Magnetic Localization 215</p> <p>6.3.1 Static Field Modulation 215</p> <p>6.3.2 Inductive-based Magnetic Localization 216</p> <p>6.4 Conclusion 225</p> <p>References 227</p> <p><b>7 Study on Channel Characteristics and Performance of Liver-Implanted Wireless Communications </b><b>235<br /></b><i>Pongphan Leelatien, Koichi Ito and Kazuyuki Saito</i></p> <p>7.1 Introduction 235</p> <p>7.2 Study of In-Body Communications at Liver Area Using Simplified Multilayer Phantoms 238</p> <p>7.2.1 UWB Antenna 239</p> <p>7.2.2 Measurement Setup 239</p> <p>7.2.3 Simulation Setup 239</p> <p>7.2.4 Experimental and Numerical Results 243</p> <p>7.2.4.1 <i>S</i>11 and <i>S</i>22 Results 243</p> <p>7.2.4.2 <i>S</i>21 Results 244</p> <p>7.3 Numerical Study of Liver-Implanted Channel Characteristics Using Digital Human Models 244</p> <p>7.3.1 Simulation Setup 245</p> <p>7.3.2 Return Loss Results 246</p> <p>7.3.3 <i>S</i>21 Results 248</p> <p>7.3.4 Path Loss Results 250</p> <p>7.4 The Influence of Antenna Misalignment 252</p> <p>7.4.1 Simulation Setup 252</p> <p>7.4.2 Study Results and Analysis 252</p> <p>7.5 Channel Characteristics for the In- to Off-Body Scenario 256</p> <p>7.5.1 Simulation Setup 256</p> <p>7.5.2 Return Loss Results 257</p> <p>7.5.3 Path Loss Results for the In- to Off-Body Scenario 258</p> <p>7.6 System Performance Evaluation 260</p> <p>7.6.1 Link Budget Evaluation and Analysis 260</p> <p>7.6.1.1 In- to On-Body Scenario 262</p> <p>7.6.1.2 In- to Off-Body Scenario 263</p> <p>7.7 Electromagnetic Compatibility Evaluations 263</p> <p>7.7.1 Analysis 265</p> <p>7.7.2 SAR Results 265</p> <p>7.8 Conclusions 268</p> <p>References 270</p> <p><b>8 High-Efficiency Multicoil Wireless Power and Data Transfer for Biomedical Implants and Neuroprosthetics </b><b>277<br /></b><i>Manjunath Machnoor and Gianluca Lazzi</i></p> <p>8.1 Introduction 277</p> <p>8.2 Multicoil System to Achieve Efficient Power Transfer 279</p> <p>8.2.1 Two-Coil WPT Systems 280</p> <p>8.2.2 Conventional Three-Coil WPT System 284</p> <p>8.2.3 Performance of the Two- and Three-Coil Systems as a Function of RX Coil Size 286</p> <p>8.2.4 Description of the Proposed Three-Coil System 287</p> <p>8.2.5 Efficient Use of Implanted Wire of the Coil in a Small RX Three-Coil System 292</p> <p>8.2.5.1 Circuit Technique Description 292</p> <p>8.2.5.2 Testing the Technique: Comparison 1 292</p> <p>8.2.6 Reducing Power Dissipation in the Implanted RX 293</p> <p>8.2.6.1 Circuit Technique Description 293</p> <p>8.2.6.2 Testing the Technique: Comparison 2 295</p> <p>8.2.7 Design Procedure and the Advantages of the Proposed Three-Coil System Over the Conventional Three-Coil System Design 298</p> <p>8.2.7.1 Design Procedure 298</p> <p>8.2.7.2 Tolerance to Load Changes 299</p> <p>8.2.7.3 Advantage 2: Reducing Currents in the Secondary Coil 301</p> <p>8.2.7.4 <i>K</i>12 and <i>C</i>m for Optimization of System Performance: Layout Design Advantages 302</p> <p>8.2.7.5 Effects of Tissue and Tissue Parameters on the Power Delivery 303</p> <p>8.2.8 Experiments: Measurements and Results 304</p> <p>8.3 Justifying the Advantages of Using Multicoil WPT Systems for Data Transfer 306</p> <p>8.4 Conclusion 312</p> <p>References 313</p> <p><b>9 Wireless Drug Delivery Devices </b><b>319<br /></b><i>Yang Hao, Ahsan Noor Khan, Alexey Ermakov and Gleb Sukhorukov</i></p> <p>9.1 Introduction 319</p> <p>9.2 Active and Passive Drug Delivery Devices 320</p> <p>9.3 Capsule-Mediated Active Drug Delivery Process 320</p> <p>9.4 Transdermal and Implantable Devices 322</p> <p>9.5 Micro- and Nanoscale Devices 322</p> <p>9.6 Packaging and Integration of Components 323</p> <p>9.7 Materials for Drug Delivery Devices 324</p> <p>9.8 Organ-Specific Drug Delivery Devices 324</p> <p>9.9 Wireless Communication for Drug Delivery Devices 325</p> <p>9.9.1 Microchips-Mediated Drug Delivery Devices 326</p> <p>9.9.2 Micropumps and Microvalves-Mediated Drug Delivery Devices 328</p> <p>9.9.3 Microrobots-Mediated Drug Delivery 331</p> <p>9.9.4 Material-Mediated Drug Delivery 332</p> <p>9.10 Carrier Types for Drug Delivery 335</p> <p>References 338</p> <p><b>10 Minimally Invasive Microwave Ablation Antennas </b><b>345<br /></b><i>Hung Luyen, Yahya Mohtashami, James F. Sawicki, Susan C. Hagness and Nader Behdad</i></p> <p>10.1 Introduction 345</p> <p>10.1.1 Overview of Microwave Ablation Therapy 345</p> <p>10.1.2 Historical Development and Current Landscape of Research on MWA Antennas 347</p> <p>10.1.3 Impact of Frequency on MWA Performance 352</p> <p>10.1.4 Focus of this Chapter 353</p> <p>10.2 Toward Length Reduction for Ablation Antennas: Demonstration of Higher Frequency Microwave Ablation 354</p> <p>10.2.1 Electromagnetic Evaluation of Microwave Ablation Antennas Operating in the 1.9–18-GHz Range 354</p> <p>10.2.2 Performance of Higher Frequency Microwave Ablation in the Presence of Perfusion 355</p> <p>10.3 Reduced-Diameter, Balun-Equipped Microwave Ablation Antenna Designs 359</p> <p>10.3.1 Antennas with Conventional Coaxial Baluns Implemented on Air-Filled Coax Sections 361</p> <p>10.3.2 Coax-Fed Antenna with a Tapered Slot Balun 364</p> <p>10.4 Balun-Free Microwave Ablation Antenna Designs 367</p> <p>10.4.1 High-Input Impedance Helical Monopole with an Integrated Impedance-Matching Section 368</p> <p>10.4.2 Low-Input Impedance Helical Dipole Design 373</p> <p>10.5 Toward More Flexibility and Customization in Microwave Ablation Treatment 377</p> <p>10.5.1 Ex Vivo Performance of a Flexible Microwave Ablation Antenna 377</p> <p>10.5.2 Hybrid Slot/Monopole Antenna with Directional Heating Patterns 380</p> <p>10.5.3 Non-Coaxial-Based Microwave Ablation Antennas with Symmetric and Asymmetric Heating Patterns 383</p> <p>10.6 Conclusions 387</p> <p>References 389</p> <p><b>11 Inkjet-/3D-/4D-Printed Nanotechnology-Enabled Radar, Sensing, and RFID Modules for Internet of Things, “Smart Skin,” and “Zero Power” Medical Applications </b><b>399<br /></b><i>Manos M. Tentzeris, Aline Eid, Tong-Hong Lin, Jimmy G.D. Hester, Yepu Cui, Ajibayo Adeyeye, Bijan Tehrani and Syed A. Nauroze</i></p> <p>11.1 Introduction 399</p> <p>11.2 Batteryless “Green” Powering Schemes for Perpetual Wearables 400</p> <p>11.2.1 Wearable Rectennas Compatible with Legacy Wireless Networks 401</p> <p>11.2.2 New Opportunities for Power Harvesting from 5G Cellular Networks 402</p> <p>11.2.2.1 28-GHz Rotman Lens-Based Energy-Harvesting System 402</p> <p>11.2.2.2 Integration of W-Band Zero-Bias Diode for Harvesting Applications 404</p> <p>11.3 Additive Manufacturing Technologies for Low-Cost, Compact, and Wearable System 406</p> <p>11.3.1 Wireless System Packaging for On-Body Devices 406</p> <p>11.3.2 Energy-Autonomous System-on-Package Designs 407</p> <p>11.4 Energy-Autonomous Communications for On-Body Sensing Networks 409</p> <p>11.4.1 Energy-Autonomous Long-Range Wearable Sensor Networks 409</p> <p>11.4.2 Radar and Backscatter Communications 414</p> <p>11.4.2.1 FMCW Radar-Enabled Localizable Millimeter-Wave RFID 415</p> <p>11.4.3 Flexible and Deployable 4D Origami-Inspired “Smart Walls” for EMI Shielding and Communication Applications 416</p> <p>11.5 Low-Power Sensors for Wearable Wireless Sensing Systems 422</p> <p>11.5.1 Carbon-Nanomaterials-Based Fully Inkjet-Printed Gas Sensors 422</p> <p>11.5.2 Energy-Autonomous Micropump System for Wearable and IoT Microfluidic Sensing Devices 425</p> <p>11.5.3 Fully Inkjet-Printed Encodable Flexible Microfluidic Chipless RFID Sensor 428</p> <p>11.6 Conclusion 431</p> <p>References 431</p> <p><b>12 High-Density Electronic Integration for Wearable Sensing </b><b>435<br /></b><i>Shubhendu Bhardwaj, Raj Pulugurtha and John L. Volakis</i></p> <p>12.1 Introduction 435</p> <p>12.2 Brief Comparison of Flexible Conductor Technologies 435</p> <p>12.3 Review and History of E-Fiber-Based RF Technology 437</p> <p>12.4 Fabrication of Conductive Flexile E-Fiber Surfaces and Loss Performance 438</p> <p>12.5 Antennas Using Embroidery-Based Conductive Surfaces 441</p> <p>12.5.1 Patch Antenna for Wireless Power Transfer and Harvesting 442</p> <p>12.5.2 Body-Worn Antenna for Wireless Communication 443</p> <p>12.6 Circuits and Systems Using Embroidery-Based Conductive Surfaces 445</p> <p>12.6.1 Far-Field Radio-Frequency Power Collection System on Clothing 445</p> <p>12.6.2 Near-Zone Power Collection Using Fabric-Integrated Antennas 448</p> <p>12.7 Voltage-Controlled Oscillator for Wound-Sensing Applications 449</p> <p>12.8 High-Density Integration 451</p> <p>12.8.1 Interconnect Features on Laminate Substrates 451</p> <p>12.8.2 Interconnects on Flex Substrates 454</p> <p>12.8.3 Device Assembly 455</p> <p>12.8.4 3D Packaging 457</p> <p>12.8.5 Applications of High-Density Packaging in RF and Sensing 459</p> <p>12.8.6 High-Density RF Flex Packaging 461</p> <p>12.8.7 Hybrid Flex Sensor-Processing-Communication Systems 462</p> <p>References 462</p> <p><b>13 Coupling-Independent Sensing Systems with Fully Passive Sensors </b><b>469<br /></b><i>Siavash Kananian, George Alexopoulos and Ada Poon</i></p> <p>13.1 Introduction 469</p> <p>13.2 Forced vs. Self-Oscillating Near-Field Readout 475</p> <p>13.3 Readout Techniques 477</p> <p>13.3.1 Forced Oscillation Techniques with Nonresonant Primary 477</p> <p>13.3.2 Forced Oscillation Techniques with Resonant Primary 486</p> <p>13.3.3 Self-Oscillating Techniques 498</p> <p>13.4 Comparison of the State of the Art 507</p> <p>13.5 Conclusion 516</p> <p>References 517</p> <p><b>14 Wireless and Wearable Biomarker Analysis </b><b>523<br /></b><i>Shuyu Lin, Bo Wang, Ryan Shih and Sam Emaminejad</i></p> <p>14.1 Introduction 523</p> <p>14.2 Sweat-Based Biomarkers 524</p> <p>14.2.1 Metabolites 524</p> <p>14.2.2 Electrolytes 525</p> <p>14.2.3 Steroids 525</p> <p>14.2.4 Proteins 526</p> <p>14.2.5 Xenobiotics 526</p> <p>14.3 Wearable Chemical Sensing Interfaces 527</p> <p>14.3.1 Electroenzymatic Sensors 528</p> <p>14.3.2 Ion-selective Sensing Interfaces 530</p> <p>14.3.3 Bioaffinity-based Sensors 531</p> <p>14.3.4 Synthetic Receptor-based Chemical Sensors 532</p> <p>14.3.5 Recognition Element-free Sensors 533</p> <p>14.4 Biofluid Accessibility 533</p> <p>14.5 Microfluidic Interfaces 534</p> <p>14.5.1 Types of Microfluidic Interfaces 535</p> <p>14.5.2 Biofluid Manipulation in Microfluidic Interfaces 536</p> <p>14.6 Electronic and Wireless Integration 538</p> <p>References 539</p> <p>Appendix A Antennas and Sensors for Medical Applications: A Representative Literature Review 547<br /><i>Lingnan Song and Yahya Rahmat-Samii</i></p> <p>Index 585 </p>
<p><b>YAHYA RAHMAT-SAMII, P<small>H</small>D,</b> is a Distinguished Professor, holder of the Northrop-Grumman Chair in Electromagnetics at the University of California, Los Angeles, member of the US National Academy of Engineering, Fellow of the IEEE, URSI, ACES, AMTA and EMA, recipient of the IEEE Electromagetnics Award and Third Millennium Medal, UCLA Distinguished Teaching Award, URSI Booker Gold Medal and Ellis Island Medal of Honor. <p><b>ERDEM TOPSAKAL, P<small>H</small>D,</b> is a tenured full Professor and Electrical and Computer Engineering Department Chair at Virginia Commonwealth University, Richmond, Virginia.
<p><b>A guide to the theory and recent development in the medical use of antenna and sensor technologies</b> <p><i>Antenna and Sensor Technologies in Modern Medical Applications</i> offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna and sensor technologies. Edited by two experts in the field, the book presents with full-color illustrations the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. <p>The authors review the integrated devices that include various types of sensors and antennas that are either body worn or implanted. The design and fabrication concepts are outlined in detail to provide the reader with step-by-step guidance in designing and testing such sensors and antennas for medical applications. The book includes applications ranging from therapeutic to imaging to drug delivery, and much more. In particular, this important book: <ul> <li>Covers recent developments in wireless medical telemetry</li> <li>Reviews the theory and design of in vitro/in vivo testing</li> <li>Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication</li> <li>Includes a chapter with an annotated list of the most comprehensive and important references in the field</li> </ul> <p>Written for students of electrical, bio, and medical engineering and for practitioners and researchers dealing with antennas and sensors. This book is an essential guide to understanding the most recent developments of human body interaction with antennas and sensors in modern medical applications.

Diese Produkte könnten Sie auch interessieren:

Classification, Parameter Estimation and State Estimation
Classification, Parameter Estimation and State Estimation
von: Bangjun Lei, Guangzhu Xu, Ming Feng, Yaobin Zou, Ferdinand van der Heijden, Dick de Ridder, David M. J. Tax
PDF ebook
101,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €