Details

Biopharmaceutics


Biopharmaceutics

From Fundamentals to Industrial Practice
Advances in Pharmaceutical Technology 1. Aufl.

von: Hannah Batchelor

100,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.12.2021
ISBN/EAN: 9781119678373
Sprache: englisch
Anzahl Seiten: 320

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Explore the latest research in biopharmaceutics from leading contributors in the field </b></p> <p>In <i>Biopharmaceutics - From Fundamentals to Industrial Practice</i>, distinguished Scientists from the UK's Academy of Pharmaceutical Sciences Biopharmaceutica Focus Group deliver a comprehensive examination of the tools used within the field of biopharmaceutics and their applications to drug development. This edited volume is an indispensable tool for anyone seeking to better understand the field of biopharmaceutics as it rapidly develops and evolves. </p> <p>Beginning with an expansive introduction to the basics of biopharmaceutics and the context that underpins the field, the included resources go on to discuss how biopharmaceutics are integrated into product development within the pharmaceutical industry. Explorations of how the regulatory aspects of biopharmaceutics function, as well as the impact of physiology and anatomy on the rate and extent of drug absorption, follow. </p> <p>Readers will find insightful discussions of physiologically based modeling as a valuable asset in the biopharmaceutics toolkit and how to apply the principles of the field to special populations. The book goes on to discuss: </p> <ul> <li>Thorough introductions to biopharmaceutics, basic pharmacokinetics, and biopharmaceutics measures </li> <li>Comprehensive explorations of solubility, permeability, and dissolution </li> <li>Practical discussions of the use of biopharmaceutics to inform candidate drug selection and optimization, as well as biopharmaceutics tools for rational formulation design </li> <li>In-depth examinations of biopharmaceutics classification systems and regulatory biopharmaceutics, as well as regulatory biopharmaceutics and the impact of anatomy and physiology  </li> </ul> <p>Perfect for professionals working in the pharmaceutical and biopharmaceutical industries, <i>Biopharmaceutics - From Fundamentals to Industrial Practice</i> is an incisive and up-to-date resource on the practical, pharmaceutical applications of the field.  </p> <p> </p>
<p><br /> List of Contributors xv</p> <p>Foreword xvii</p> <p><b>1 An Introduction to Biopharmaceutics 1<br /> </b><i>Hannah Batchelor</i></p> <p>1.1 Introduction 1</p> <p>1.2 History of Biopharmaceutics 1</p> <p>1.3 Key Concepts and Definitions Used Within Biopharmaceutics 3</p> <p>1.4 The Role of Biopharmaceutics in Drug Development 6</p> <p>1.5 Conclusions 8</p> <p>References 8</p> <p><b>2 Basic Pharmacokinetics 9<br /> </b><i>Hamid A. Merchant</i></p> <p>2.1 Introduction 9</p> <p>2.2 What is ‘Pharmacokinetics’? 9</p> <p>2.3 Pharmacokinetic Profile 10</p> <p>2.4 Bioavailability 12</p> <p>2.5 Drug Distribution 14</p> <p>2.6 Volume of Distribution 15</p> <p>2.7 Elimination 17</p> <p>2.7.1 Metabolism 17</p> <p>2.7.2 Excretion 17</p> <p>2.8 Elimination Half- Life (t ½) 19</p> <p>2.9 Elimination Rate Constant 19</p> <p>2.9.1 Clearance 21</p> <p>2.10 Area Under the Curve (AUC) 22</p> <p>2.11 Bioequivalence 22</p> <p>2.12 Steady State 23</p> <p>2.13 Compartmental Concepts in Pharmacokinetics 25</p> <p>2.14 Concept of Linearity in Pharmacokinetics 27</p> <p>2.15 Conclusions 28</p> <p>Further Reading 29</p> <p><b>3 Introduction to Biopharmaceutics Measures 31<br /> </b><i>Hannah Batchelor and Pavel Gershkovich</i></p> <p>3.1 Introduction 31</p> <p>3.2 Solubility 31</p> <p>3.3 Dissolution 33</p> <p>3.4 Permeability 34</p> <p>3.5 Absorptive Flux 35</p> <p>3.6 Lipinsky’s Rule of 5 36</p> <p>3.6.1 Molecular Weight 36</p> <p>3.6.2 Lipophilicity 36</p> <p>3.6.3 Hydrogen Bond Donors/Acceptors 37</p> <p>References 37</p> <p><b>4 Solubility 39<br /> </b><i>Hannah Batchelor</i></p> <p>4.1 Definition of Solubility 39</p> <p>4.2 The Importance of Solubility in Biopharmaceutics 39</p> <p>4.3 What Level of Solubility Is Required? 40</p> <p>4.4 Solubility- Limited Absorption 41</p> <p>4.5 Methods to Assess Solubility 41</p> <p>4.6 Brief Overview of Forces Involved in Solubility 42</p> <p>4.6.1 van der Waals Interactions 42</p> <p>4.6.2 Hydrogen Bonding 42</p> <p>4.6.3 Ionic Interactions 43</p> <p>4.7 Solid- State Properties and Solubility 43</p> <p>4. 8 pH and Drug Solubility 43</p> <p>4.9 Solvents 44</p> <p>4.9.1 Biorelevant Solubility 45</p> <p>4.9.2 Buffer System – Phosphate vs Bicarbonate 46</p> <p>4.9.3 Solubilisation by Surfactants 46</p> <p>4.9.4 Solubilisation During Digestion 47</p> <p>4.9.5 Excipients and Solubility 47</p> <p>4.10 Risk of Precipitation 48</p> <p>4.11 Solubility and Link to Lipophilicity 49</p> <p>4.12 Conclusions 49</p> <p>References 49</p> <p><b>5 Permeability 51<br /> </b><i>Chris Roe and Vanessa Zann</i></p> <p>5.1 Introduction 51</p> <p>5.2 Enzymes, Gut Wall Metabolism, Tissue Permeability and Transporters 52</p> <p>5.2.1 Enzymes 52</p> <p>5.2.2 Drug Transporters 54</p> <p>5.2.3 Efflux Transporters 55</p> <p>5.2.4 Transporters of Greatest Relevance to Oral Biopharmaceutics 56</p> <p>5.2.5 Regulatory Overview of Transporter Effects on Biopharmaceutics 58</p> <p>5.2.6 Regional Expression and Polymorphism of Intestinal Transporters and Impact of Drug Variability 59</p> <p>5.3 Applications and Limitations of Characterisation and Predictive Tools for Permeability Assessment 59</p> <p>5.3.1 In Silico Tools: Predictive Models for Permeability 60</p> <p>5.3.2 In Vitro Tools 60</p> <p>5.3.2.1 Pampa 60</p> <p>5.3.2.2 Cell Lines 61</p> <p>5.3.3 Ex Vivo Tools 63</p> <p>5.3.3.1 Ussing Chambers 63</p> <p>5.3.3.2 Everted Intestinal Sac/Ring 65</p> <p>5.3.4 In Situ Tools 66</p> <p>5.3.4.1 Closed- Loop Intestinal Perfusion 66</p> <p>5.3.4.2 Single- Pass Intestinal Perfusion 67</p> <p>5.3.4.3 Intestinal Perfusion with Venous Sampling 67</p> <p>5.3.4.4 Vascularly Perfused Intestinal Models 68</p> <p>5.4 In Vivo Tools 68</p> <p>5.5 Conclusion 69</p> <p>References 69</p> <p><b>6 Dissolution 73<br /> </b><i>Hannah Batchelor and James Butler</i></p> <p>6.1 Introduction 73</p> <p>6.2 Purpose of Dissolution Testing 73</p> <p>6.2.1 Dissolution Versus Solubility 74</p> <p>6.3 History of Dissolution Testing 75</p> <p>6.4 Compendial (Pharmacopeial) Dissolution Apparatus 76</p> <p>6.4.1 USP1 and 2 Apparatus 76</p> <p>6.4.2 USP3 Apparatus 78</p> <p>6.4.3 USP4 Apparatus 79</p> <p>6.4.4 USP5 Apparatus 80</p> <p>6.4.5 USP6 Apparatus 80</p> <p>6.4.6 USP7 Apparatus 80</p> <p>6.4.7 Intrinsic Dissolution Rate (IDR) Apparatus 80</p> <p>6.4.8 Micro- dissolution Apparatus 81</p> <p>6.5 Dissolution Media Selection 81</p> <p>6.5.1 Biphasic Dissolution Media 82</p> <p>6.6 Dissolution Agitation Rates 82</p> <p>6.7 Reporting Dissolution Data 83</p> <p>6.8 In Vitro In Vivo Relationships and Correlations (IVIVR/IVIVC) 84</p> <p>6.8.1 Convolution and Deconvolution of Dissolution Data 85</p> <p>6.9 Evolution of Biorelevant Dissolution Testing 86</p> <p>6.9.1 Biorelevant Dissolution Media 86</p> <p>6.9.2 Dissolution Testing to Mimic GI Transit 90</p> <p>6.9.3 Dissolution Testing to Mimic Motility/Hydrodynamic Conditions 92</p> <p>6.9.4 Dissolution Testing to Incorporate Permeability 93</p> <p>6.10 Conclusions 93</p> <p>References 94</p> <p><b>7 Biopharmaceutics to Inform Candidate Drug Selection and Optimisation 99<br /> </b><i>Linette Ruston</i></p> <p>7.1 Introduction 99</p> <p>7.2 Oral Product Design Considerations During Early Development 100</p> <p>7.3 Biopharmaceutics in Drug Discovery 101</p> <p>7.3.1 Pre- Clinical Studies 102</p> <p>7.4 Biopharmaceutics Assessment 103</p> <p>7.4.1 Solubility 103</p> <p>7.4.2 Permeability 104</p> <p>7.4.3 Dissolution 104</p> <p>7.4.4 Biopharmaceutics Classification System 104</p> <p>7.4.5 Lipophilicity 104</p> <p>7.4.6 pK a 105</p> <p>7.4.7 Molecular Size 105</p> <p>7.4.8 Crystallinity 105</p> <p>7.4.9 In Vivo Pre-Clinical Studies 106</p> <p>7.4.10 In Silico Modelling 106</p> <p>7.4.11 Human Absorption/Dose Prediction 106</p> <p>7.5 Output of Biopharmaceutics Assessment 107</p> <p>7.5.1 New Modalities/Complex Delivery Systems Within Early Development 107</p> <p>7.6 Influence/Optimise/Design Properties to Inform Formulation Development 108</p> <p>7.6.1 Fraction Absorbed Classification System 110</p> <p>7.7 Conclusion 110</p> <p>References 110</p> <p><b>8 Biopharmaceutics Tools for Rational Formulation Design 113<br /> </b><i>Panagiota Zarmpi, Mark McAllister, James Butler and Nikoletta Fotaki</i></p> <p>8.1 Introduction 113</p> <p>8.2 Formulation Development to Optimise Drug Bioavailability 115</p> <p>8.3 Traditional Formulation Strategies 115</p> <p>8.3.1 Decision Making for Conventional or Enabling Formulations 115</p> <p>8.4 Decision Trees to Guide Formulation Development 115</p> <p>8.4.1 Decision Trees Based on Biopharmaceutics Classification System (BCS) 115</p> <p>8.4.2 Decision Trees Based on Developability Classification System (DCS) 117</p> <p>8.4.3 Expanded Decision Trees 120</p> <p>8.5 Computational Tools to Guide Formulation Strategies 120</p> <p>8.5.1 Statistical Tools 120</p> <p>8.5.2 Physiologically Based Pharmacokinetic/Biopharmaceutics Models 121</p> <p>8.6 Decision- Making for Optimising Enabling Formulations 122</p> <p>8.7 Decision Trees for Enabled Formulations 123</p> <p>8.7.1 Statistical Tools 124</p> <p>8.7.2 Physiologically Based Pharmacokinetic/Biopharmaceutics Models 124</p> <p>8.8 System- Based Formulation Strategies 125</p> <p>8.8.1 Quality by Design 125</p> <p>8.8.2 Tools to Identify Quality Target Product Profile 125</p> <p>8.9 Biopharmaceutics Risk Assessment Roadmap (BioRAM) 126</p> <p>8.9.1 Tools to Identify Quality Target Product Profile 126</p> <p>8.10 Conclusions 129</p> <p>References 131</p> <p><b>9 Biopharmaceutic Classification System 135<br /> </b><i>Hannah Batchelor and Talia Flanagan</i></p> <p>9.1 Description and History of the BCS 135</p> <p>9.2 BCS- Based Criteria for Solubility, Dissolution and Permeability 135</p> <p>9.3 BCS- Based Biowaivers 137</p> <p>9.4 Regulatory Development of BCS- Based Biowaivers 138</p> <p>9.5 International Harmonisation of BCS- Based Biowaiver Criteria – ICH M 9 138</p> <p>9.5.1 Application of BCS- Based Biowaivers 139</p> <p>9.5.1.1 Drug Product Type 140</p> <p>9.5.1.2 Composition 140</p> <p>9.5.1.3 Dissolution Similarity 141</p> <p>9.6 BCS as a Development Tool 141</p> <p>9.6.1 Candidate Selection 142</p> <p>9.6.2 Solid Form Selection 142</p> <p>9.6.3 Product Development 142</p> <p>9.7 Beyond the BCS 143</p> <p>9.7.1 Biopharmaceutic Drug Disposition Classification System (bddcs) 143</p> <p>9.7.2 Developability Classification System 144</p> <p>9.7.3 Fraction Absorbed Classification System 144</p> <p>9.7.4 BCS Applied to Special Populations 144</p> <p>9.8 Conclusions 145</p> <p>References 145</p> <p><b>10 Regulatory Biopharmaceutics 147<br /> </b><i>Shanoo Budhdeo, Paul A. Dickinson and Talia Flanagan</i></p> <p>10.1 Introduction 147</p> <p>10.2 Clinical Bioequivalence Studies 148</p> <p>10.3 Design of Clinical Bioequivalence (BE) Studies 150</p> <p>10.4 Implication of Bioequivalence Metrics 151</p> <p>10.5 Bioequivalence Regulatory Guidelines 152</p> <p>10.6 Biowaivers 153</p> <p>10.7 Biopharmaceutics in Quality by Design 153</p> <p>10.8 Control of Drug Product and Clinically Relevant Specifications 155</p> <p>10.9 Establishing Clinically Relevant Dissolution Methods and Specifications 156</p> <p>10.10 Application of In Silico Physiologically Based Biopharmaceutics Modelling (PBBM) to Develop Clinically Relevant Specifications 159</p> <p>10.11 Additional Considerations for Establishing Dissolution Methods and Specifications 159</p> <p>10.12 Common Technical Document (CTD) 160</p> <p>10.13 Other Routes of Administration and Locally Acting Drug Products 161</p> <p>10.14 Conclusion 162</p> <p>References 162</p> <p><b>11 Impact of Anatomy and Physiology 165<br /> </b><i>Francesca K. H. Gavins, Christine M. Madla, Sarah J. Trenfield, Laura E. McCoubrey, Abdul W. Basit and Mark McAllister</i></p> <p>11.1 Introduction 165</p> <p>11.2 Influence of GI Conditions on Pharmacokinetic Studies 166</p> <p>11.3 The Stomach 167</p> <p>11.3.1 Gastric Anatomy 167</p> <p>11.3.2 Gastric Motility and Mixing 168</p> <p>11.3.3 Gastric Emptying 169</p> <p>11.3.3.1 Gastric Fed State 170</p> <p>11.3.4 Gastric Fluid Volume 170</p> <p>11.3.5 Gastric Temperature 171</p> <p>11.3.6 Gastric Fluid Composition 171</p> <p>11.3.6.1 Gastric pH 171</p> <p>11.3.6.2 Gastric Bile Salt Composition and Concentration 172</p> <p>11.4 Small Intestine 172</p> <p>11.4.1 Small Intestinal Anatomy 172</p> <p>11.4.2 Small Intestinal Motility and Mixing 174</p> <p>11.4.3 Small Intestinal Transit Time 174</p> <p>11.4.4 Small Intestinal Volume 174</p> <p>11.4.5 Small Intestinal Fluid Composition 175</p> <p>11.4.5.1 Small Intestinal pH 176</p> <p>11.4.5.2 Small Intestinal Buffer Capacity 176</p> <p>11.4.5.3 Small Intestinal Surface Tension 176</p> <p>11.4.5.4 Small Intestinal Osmolality 176</p> <p>11.4.5.5 Bile Salt Composition and Concentration 177</p> <p>11.5 The Colon/Large Intestine 177</p> <p>11.5.1 Large Intestine Anatomy 178</p> <p>11.5.2 Large Intestinal Motility and Mixing 178</p> <p>11.5.3 Large Intestinal Transit Time 179</p> <p>11.5.4 Large Intestinal Volume 179</p> <p>11.5.5 Large Intestinal Fluid Composition 179</p> <p>11.5.5.1 Large Intestinal pH 179</p> <p>11.5.5.2 Large Intestinal Buffer Capacity 180</p> <p>11.5.5.3 Large Intestinal Surface Tension 180</p> <p>11.5.5.4 Large Intestinal Osmolality 180</p> <p>11.5.5.5 Bile Salt Composition and Concentration 180</p> <p>11.5.6 Impact of Microbiome on Oral Drug Delivery 181</p> <p>11.6 Conclusions 182</p> <p>References 182</p> <p><b>12 Integrating Biopharmaceutics to Predict Oral Absorption Using PBPK Modelling 189<br /> </b><i>Konstantinos Stamatopoulos</i></p> <p>12.1 Introduction 189</p> <p>12.2 Mechanistic Models 190</p> <p>12.3 Solubility Inputs 192</p> <p>12.4 Dissolution Inputs 196</p> <p>12.4.1 Fluid Dynamics and Dissolution 198</p> <p>12.5 Permeability Inputs 198</p> <p>12.6 Incorporation of Modelling and Simulation into Drug Development 200</p> <p>12.6.1 Understanding the Effect of Formulation Modifications on Drug Pharmacokinetics 200</p> <p>12.6.2 Model Verification/Validation 201</p> <p>12.6.3 Using Modelling to Understand Bioequivalence 201</p> <p>12.7 Conclusions 202</p> <p>References 202</p> <p><b>13 Special Populations 205<br /> </b><i>Christine M. Madla, Francesca K. H. Gavins, Sarah J. Trenfield and Abdul W. Basit</i></p> <p>13.1 Introduction 205</p> <p>13.2 Sex Differences in the Gastrointestinal Tract and Its Effect on Oral Drug Performance 206</p> <p>13.3 Ethnic Differences in the Gastrointestinal Tract 208</p> <p>13.4 Impact of Diet on Gastrointestinal Physiology 209</p> <p>13.5 Pregnancy and Its Effect on Gastrointestinal Physiology 211</p> <p>13.6 The Implication of Disease States on Gastrointestinal Physiology and Its Effect on Oral Drug Performance 212</p> <p>13.7 Diseases that Affect the Gastrointestinal Tract 212</p> <p>13.7.1 Irritable Bowel Syndrome 212</p> <p>13.7.2 Inflammatory Bowel Disease 213</p> <p>13.7.3 Celiac Disease 215</p> <p>13.8 Infections in the Gastrointestinal Tract 216</p> <p>13.8.1 Helicobacter pylori Infection 216</p> <p>13.9 Systemic Diseases that Alter GI Physiology and Function 216</p> <p>13.9.1 Cystic Fibrosis 217</p> <p>13.9.2 Parkinson’s Disease 218</p> <p>13.9.3 Diabetes 219</p> <p>13.9.4 HIV Infection 221</p> <p>13.10 Age- related Influences on Gastrointestinal Tract Physiology and Function 222</p> <p>13.10.1 Gastrointestinal Physiology and Function in Paediatrics 222</p> <p>13.10.2 Gastrointestinal Physiology and Function in Geriatrics 224</p> <p>13.11 Conclusion 226</p> <p>References 226</p> <p><b>14 Inhalation Biopharmaceutics 239<br /> </b><i>Precious Akhuemokhan, Magda Swedrowska, and Ben Forbes</i></p> <p>14.1 Introduction 239</p> <p>14.2 Structure of the Lungs 240</p> <p>14.2.1 Basic Anatomy 240</p> <p>14.2.2 Epithelial Lining Fluid 241</p> <p>14.2.3 Epithelium 241</p> <p>14.3 Molecules, Inhalation Devices, Formulations 241</p> <p>14.3.1 Inhaled Molecules 241</p> <p>14.3.2 Inhalation Devices 242</p> <p>14.3.2.1 Nebulisers 242</p> <p>14.3.2.2 Pressurised Metered- Dose Inhalers 243</p> <p>14.3.2.3 Dry Powder Inhalers 243</p> <p>14.3.2.4 ‘Soft Mist’ Inhalers 243</p> <p>14.3.3 Inhaled Medicine Formulation 243</p> <p>14.4 Inhaled Drug Delivery and Models for Studying Inhalation Biopharmaceutics 244</p> <p>14.4.1 Dosimetry and Deposition 244</p> <p>14.4.2 Mucociliary Clearance 245</p> <p>14.4.3 Dissolution 246</p> <p>14.4.4 Lung Permeability, Absorption and Retention 247</p> <p>14.4.5 Metabolism 248</p> <p>14.4.6 Non- Clinical Inhalation Studies 248</p> <p>14.4.7 Mechanistic Computer Modelling 249</p> <p>14.5 Bioequivalence and an Inhalation Bioclassification System 249</p> <p>14.6 Conclusion 249</p> <p>References 250</p> <p><b>15 Biopharmaceutics of Injectable Formulations 253<br /> </b><i>Wang Wang Lee and Claire M. Patterson</i></p> <p>15.1 Introduction 253</p> <p>15.2 Subcutaneous Physiology and Absorption Mechanisms 256</p> <p>15.2.1 Physiology 256</p> <p>15.2.2 Absorption Mechanisms 257</p> <p>15.3 Intramuscular Physiology and Absorption Mechanisms 258</p> <p>15.3.1 Physiology 258</p> <p>15.3.2 Absorption Mechanisms 259</p> <p>15.4 In Vitro Performance and IVIVC 259</p> <p>15.4.1 In Silico Models 261</p> <p>15.4.2 Preclinical Models 261</p> <p>15.5 Bioequivalence of Injectable Formulations 261</p> <p>15.6 Summary 262</p> <p>References 262</p> <p><b>16 Biopharmaceutics of Topical and Transdermal Formulations 265<br /> </b><i>Hannah Batchelor</i></p> <p>16.1 Introduction 265</p> <p>16.2 Skin Structure 266</p> <p>16.2.1 Transport of Drugs Through Skin 267</p> <p>16.2.2 Skin Metabolism 267</p> <p>16.3 Active Pharmaceutical Ingredient Properties 267</p> <p>16.4 Topical and Transdermal Dosage Forms 267</p> <p>16.5 Measurement of In Vitro Drug Release 268</p> <p>16.5.1 Diffusion Cells 268</p> <p>16.5.2 Compendial Dissolution Apparatus 269</p> <p>16.6 Measurement of Skin Permeation 269</p> <p>16.6.1 Tape- Stripping ‘Dermatopharmacokinetics’ (DPK) 270</p> <p>16.6.2 Confocal Laser Scanning Microscopy (CLSM) 270</p> <p>16.6.3 Diffusion Cells Using Biorelevant Membranes to Model Permeation 270</p> <p>16.6.3.1 Alternative Skin Substrates Used for Permeability Studies 270</p> <p>16.6.4 Dermal Microdialysis 271</p> <p>16.6.5 Skin Biopsy 271</p> <p>16.6.6 In Silico Models of Dermal Absorption 271</p> <p>16.6.7 Pre- Clinical Models 272</p> <p>16.7 Bioequivalence Testing of Topical/Transdermal Products 273</p> <p>16.8 Conclusions 274</p> <p>References 274</p> <p><b>17 Impact of the Microbiome on Oral Biopharmaceutics 277<br /> </b><i>Laura E. McCoubrey, Hannah Batchelor, Abdul W. Basit, Simon Gaisford and Mine Orlu</i></p> <p>17.1 Introduction 277</p> <p>17.2 Microbiome Distribution in the GI Tract 278</p> <p>17.3 Key Causes of Microbiome Variability 280</p> <p>17.4 Microbiome Influence on Key GI Parameters 281</p> <p>17.4.1 pH 281</p> <p>17.4.2 Bile Acid Concentration and Composition 281</p> <p>17.4.3 Drug Transporters 283</p> <p>17.4.4 Motility 283</p> <p>17.4.5 Hepatic Drug Metabolism 283</p> <p>17.4.6 Epithelial Permeability 284</p> <p>17.5 Enzymatic Degradation of Drugs by GI Microbiota 284</p> <p>17.6 Exploitation of the GI Microbiome for Drug Delivery 285</p> <p>17.7 Models of the GI Microbiome 285</p> <p>17.7.1 In Vitro Models 285</p> <p>17.7.2 In Silico Models 289</p> <p>17.8 Conclusion 289</p> <p>References 290<br /> Index 297</p>
<p><b>Edited by</b></p> <p><b>Hannah Batchelor,</b> Strathclyde Institute of Pharmacy and Biomedical Sciences.
<p><b>Biopharmaceutics</b></p> <p><b>Explore the latest research in biopharmaceutics from leading contributors in the field</b> <p>In<i> Biopharmaceutics: From Fundamentals to Industrial Practice, </i>distinguished scientists from the UK’s Academy of Pharmaceutical Sciences Biopharmaceutics Focus Group deliver a comprehensive examination of the tools used within the field of biopharmaceutics and their applications to drug development. This edited volume is an indispensable tool for anyone seeking to better understand the field of biopharmaceutics as it rapidly develops and evolves. <p>Beginning with an expansive introduction to the basics of biopharmaceutics and the context that underpins the field, the included resources go on to discuss how biopharmaceutics are integrated into product development within the pharmaceutical industry. Explorations of how the regulatory aspects of biopharmaceutics function, as well as the impact of physiology and anatomy on the rate and extent of drug absorption, follow. <p>Readers will find insightful discussions of physiologically based modeling as a valuable asset in the biopharmaceutics toolkit and how to apply the principles of the field to special populations. The book goes on to discuss: <ul><li>Thorough introductions to biopharmaceutics, basic pharmacokinetics, and biopharmaceutics measures</li> <li>Comprehensive explorations of solubility, permeability, and dissolution</li> <li>Practical discussions of the use of biopharmaceutics to inform candidate drug selection and optimization, as well as biopharmaceutics tools for rational formulation design</li> <li>In-depth examinations of biopharmaceutics classification systems and regulatory biopharmaceutics, as well as regulatory biopharmaceutics and the impact of anatomy and physiology</li></ul> <p>Perfect for professionals working in the pharmaceutical and biopharmaceutical industries, <i>Biopharmaceutics: From Fundamentals to Industrial Practice</i> is an incisive and up-to-date resource on the practical, pharmaceutical applications of the field.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €