Details

Layered 2D Materials and Their Allied Applications


Layered 2D Materials and Their Allied Applications


1. Aufl.

von: Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.05.2020
ISBN/EAN: 9781119655213
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications.<br /><br />The following topics are discussed in the book’s fifteen chapters:<br /><br />• The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them.<br /><br />• 2D black phosphorus (BP) and its practical application in various fields.<br /><br />• Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing.<br /><br />• The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation.<br /><br />• 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures.<br /><br />• The structure and applications of 2D perovskites.<br /><br />• The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed.<br /><br />• The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification.<br /><br />• The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites.<br /><br />• The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications.<br /><br />• The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc.<br /><br />• The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method.<br /><br />• The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques.<br /><br />• The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction.<br /><br />• The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.
<p>Preface xv</p> <p><b>1 2D Metal-Organic Frameworks 1<br /></b><i>Fengxian Cao, Jian Chen, Qixun Xia and Xinglai Zhang</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis Approaches 2</p> <p>1.2.1 Selection of Synthetic Raw Materials 3</p> <p>1.2.2 Solvent Volatility Method 4</p> <p>1.2.3 Diffusion Method 4</p> <p>1.2.3.1 Gas Phase Diffusion 4</p> <p>1.2.3.2 Liquid Phase Diffusion 4</p> <p>1.2.4 Sol-Gel Method 5</p> <p>1.2.5 Hydrothermal/Solvothermal Synthesis Method 6</p> <p>1.2.6 Stripping Method 6</p> <p>1.2.7 Microwave Synthesis Method 8</p> <p>1.2.8 Self-Assembly 9</p> <p>1.2.9 Special Interface Synthesis Method 9</p> <p>1.2.10 Surfactant-Assisted Synthesis Method 10</p> <p>1.2.11 Ultrasonic Synthesis 10</p> <p>1.3 Structures, Properties, and Applications 11</p> <p>1.3.1 Structure and Properties of MOFs 11</p> <p>1.3.2 Application in Biomedicine 12</p> <p>1.3.3 Application in Gas Storage 12</p> <p>1.3.4 Application in Sensors 13</p> <p>1.3.5 Application in Chemical Separation 13</p> <p>1.3.6 Application in Catalysis 14</p> <p>1.3.7 Application in Gas Adsorption 14</p> <p>1.4 Summary and Outlook 15</p> <p>Acknowledgements 16</p> <p>References 16</p> <p><b>2 2D Black Phosphorus 21<br /></b><i>Chenguang Duan, Hui Qiao, Zongyut Huang and Xiang Qi</i></p> <p>2.1 Introduction 22</p> <p>2.2 The Research on Black Phosphorus 23</p> <p>2.2.1 The Structure and Properties 23</p> <p>2.2.1.1 The Structure of Black Phosphorus 25</p> <p>2.2.1.2 The Properties of Black Phosphorus 25</p> <p>2.2.2 Preparation Methods 26</p> <p>2.2.2.1 Mechanical Exfoliation 28</p> <p>2.2.2.2 Liquid-Phase Exfoliation 28</p> <p>2.2.3 Antioxidant 30</p> <p>2.2.3.1 Degradation Mechanism 30</p> <p>2.2.3.2 Adding Protective Layer 31</p> <p>2.2.3.3 Chemical Modification 31</p> <p>2.2.3.4 Doping 33</p> <p>2.3 Applications of Black Phosphorus 33</p> <p>2.3.1 Electronic and Optoelectronic 34</p> <p>2.3.1.1 Field-Effect Transistors 34</p> <p>2.3.1.2 Photodetector 35</p> <p>2.3.2 Energy Storage and Conversion 36</p> <p>2.3.2.1 Catalysis 36</p> <p>2.3.2.2 Batteries 37</p> <p>2.3.2.3 Supercapacitor 38</p> <p>2.3.3 Biomedical 39</p> <p>2.4 Conclusion and Outlook 40</p> <p>Acknowledgements 41</p> <p>References 41</p> <p><b>3 2D Metal Carbides 47<br /></b><i>Peiran Hou, Xinxin Fu, Qixun Xia and Zhengpeng Yang</i></p> <p>3.1 Introduction 47</p> <p>3.2 Synthesis Approaches 48</p> <p>3.2.1 Ti<sub>3</sub>C<sub>2</sub> Synthesis 48</p> <p>3.2.2 V<sub>2</sub>C Synthesis 50</p> <p>3.2.3 Ti<sub>2</sub>C Synthesis 50</p> <p>3.2.4 Mo<sub>2</sub>C Synthesis 51</p> <p>3.3 Structures, Properties, and Applications 52</p> <p>3.3.1 Structures and Properties of 2D Metal Carbides 52</p> <p>3.3.1.1 Structures and Properties of Ti<sub>3</sub>C<sub>2</sub> 52</p> <p>3.3.1.2 Structural Properties of Ti<sub>2</sub>C 53</p> <p>3.3.1.3 Structural Properties of Mo<sub>2</sub>C 53</p> <p>3.3.1.4 Structural Properties of V<sub>2</sub>C 54</p> <p>3.3.2 Carbide Materials in Energy Storage Applications 55</p> <p>3.3.2.1 Ti<sub>3</sub>C<sub>2</sub> 56</p> <p>3.3.2.2 Ti<sub>2</sub>C 57</p> <p>3.3.2.3 V<sub>2</sub>C 58</p> <p>3.3.2.4 Mo<sub>2</sub>C 58</p> <p>3.3.3 Metal Carbide Materials in Catalysis Applications 60</p> <p>3.3.3.1 Ti<sub>3</sub>C<sub>2</sub> 60</p> <p>3.3.3.2 V<sub>2</sub>C 61</p> <p>3.3.3.3 Mo<sub>2</sub>C 62</p> <p>3.3.4 Metal Carbide Materials in Environmental Management Applications 63</p> <p>3.3.4.1 Ti<sub>3</sub>C<sub>2</sub> in Environmental Management Applications 63</p> <p>3.3.4.2 Ti<sub>2</sub>C in Environmental Management Applications 64</p> <p>3.3.4.3 V<sub>2</sub>C in Environmental Management Applications 64</p> <p>3.3.4.4 Mo<sub>2</sub>C in Environmental Management Applications 65</p> <p>3.3.5 Carbide Materials in Biomedicine Applications 66</p> <p>3.3.5.1 Ti<sub>3</sub>C<sub>2</sub> in Biomedicine Applications 66</p> <p>3.3.5.2 Ti<sub>2</sub>C in Biomedicine Applications 66</p> <p>3.3.5.3 V<sub>2</sub>C in Biomedicine Applications 68</p> <p>3.3.5.4 Mo<sub>2</sub>C in Biomedicine Applications 68</p> <p>3.3.6 Carbide Materials in Gas Sensing Applications 69</p> <p>3.3.6.1 Ti<sub>3</sub>C<sub>2</sub> in Gas Sensing Applications 69</p> <p>3.3.6.2 Ti<sub>2</sub>C in Gas Sensing Applications 69</p> <p>3.3.6.3 V<sub>2</sub>C in Gas Sensing Applications 70</p> <p>3.3.6.4 Mo<sub>2</sub>C in Gas Sensing Applications 71</p> <p>3.4 Summary and Outlook 72</p> <p>Acknowledgements 72</p> <p>References 73</p> <p><b>4 2D Carbon Materials as Photocatalysts 79<br /></b><i>Amel Boudjemaa</i></p> <p>4.1 Introduction 79</p> <p>4.2 Carbon Nanostructured-Based Materials 80</p> <p>4.2.1 Forms of Carbon 80</p> <p>4.2.2 Synthesis of Carbon Nanostructured-Based Materials 80</p> <p>4.3 Photo-Degradation of Organic Pollutants 81</p> <p>4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C<sub>3</sub>N<sub>4</sub>) 81</p> <p>4.3.1.1 Graphene-Based Materials 82</p> <p>4.3.1.2 Graphene Nitride (g-C<sub>3</sub>N<sub>4</sub>) 84</p> <p>4.3.2 Carbon Dots (CDs) 87</p> <p>4.3.3 Carbon Spheres (CSs) 87</p> <p>4.4 Carbon-Based Materials for Hydrogen Production 88</p> <p>4.5 Carbon-Based Materials for CO<sub>2</sub> Reduction 90</p> <p>References 90</p> <p><b>5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS<sub>2</sub> and MXene 103<br /></b><i>Sarika Pal, Narendra Pal, Y.K. Prajapati and J.P. Saini</i></p> <p>5.1 Introduction 104</p> <p>5.2 Proposed SPR Sensor, Design Considerations, and Modeling 107</p> <p>5.2.1 SPR Sensor and Its Sensing Principle 107</p> <p>5.2.2 Design Consideration 108</p> <p>5.2.2.1 Layer 1: Prism for Light Coupling 108</p> <p>5.2.2.2 Layer 2: Metal Layer 109</p> <p>5.2.2.3 Layer 3: BlueP/MoS<sub>2</sub> Layer 110</p> <p>5.2.2.4 Layer 4: MXene (Ti<sub>3</sub>C<sub>2</sub>Tx) Layer as BRE for Biosensing 110</p> <p>5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) 110</p> <p>5.2.3 Proposed Sensor Modeling 110</p> <p>5.3 Results Discussion 112</p> <p>5.3.1 Role of Monolayer BlueP/MoS<sub>2</sub> and MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) and Its Comparison With Conventional SPR 112</p> <p>5.3.2 Influence of Varying Heterostructure Layers for Proposed Design 114</p> <p>5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design 115</p> <p>5.4 Conclusion 125</p> <p>References 125</p> <p><b>6 2D Perovskite Materials and Their Device Applications 131<br /></b><i>B. Venkata Shiva Reddy, K. Srinivas, N. Suresh Kumar, S. Ramesh, K. Chandra Babu Naidu, Prasun Banerjee, Ramyakrishna Pothu and Rajender Boddula</i></p> <p>6.1 Introduction 131</p> <p>6.2 Structure 134</p> <p>6.2.1 Crystal Structure 134</p> <p>6.2.2 Electronic Structure of 2D Perovskites 134</p> <p>6.2.3 Structure of Photovoltaic Cell 135</p> <p>6.3 Discussion and Applications 136</p> <p>6.4 Conclusion 139</p> <p>References 139</p> <p><b>7 Introduction and Significant Parameters for Layered Materials 141<br /></b><i>Umbreen Rasheed, Fayyaz Hussain, Muhammad Imran, R.M. Arif Khalil and Sungjun Kim</i></p> <p>7.1 Graphene 143</p> <p>7.2 Phosphorene 147</p> <p>7.3 Silicene 148</p> <p>7.4 ZnO 150</p> <p>7.5 Transition Metal Dichalcogenides (TMDCs) 151</p> <p>7.6 Germanene and Stanene 152</p> <p>7.7 Heterostructures 153</p> <p>References 156</p> <p><b>8 Increment in Photocatalytic Activity of g-C<sub>3</sub>N<sub>4</sub> Coupled Sulphides and Oxides for Environmental Remediation 159<br /></b><i>Pankaj Raizada, Abhinadan Kumar and Pardeep Singh</i></p> <p>8.1 Introduction 160</p> <p>8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation 163</p> <p>8.2.1 GCN and MoS<sub>2</sub>-Based Photocatalysts 163</p> <p>8.2.2 GCN and CdS-Based Heterojunctions 168</p> <p>8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts 171</p> <p>8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation 173</p> <p>8.3.1 GCN and MoO<sub>3</sub>-Based Heterojunctions 177</p> <p>8.3.2 GCN and Fe<sub>2</sub>O<sub>3</sub>-Based Heterojunctions 179</p> <p>8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts 180</p> <p>8.4 Conclusions and Outlook 181</p> <p>References 181</p> <p><b>9 2D Zeolites 193<br /></b><i>Moumita Sardar, Manisha Maharana, Madhumita Manna and Sujit Sen</i></p> <p>9.1 Introduction 193</p> <p>9.1.1 What is 2D Zeolite? 195</p> <p>9.1.2 Advancement in Zeolites to 2D Zeolite 196</p> <p>9.2 Synthetic Method 197</p> <p>9.2.1 Bottom-Up Method 197</p> <p>9.2.2 Top-Down Method 198</p> <p>9.2.3 Support-Assisted Method 199</p> <p>9.2.4 Post-Synthesis Modification of 2D Zeolites 200</p> <p>9.3 Properties 200</p> <p>9.4 Applications 203</p> <p>9.4.1 Petro-Chemistry 203</p> <p>9.4.2 Biomass Conversion 203</p> <p>9.4.2.1 Pyrolysis of Solid Biomass 203</p> <p>9.4.2.2 Condensation Reactions 204</p> <p>9.4.2.3 Isomerization 204</p> <p>9.4.2.4 Dehydration Reactions 204</p> <p>9.4.3 Oxidation Reactions 205</p> <p>9.4.4 Fine Chemical Synthesis 206</p> <p>9.4.5 Organometallics 206</p> <p>9.5 Conclusion 206</p> <p>References 207</p> <p><b>10 2D Hollow Nanomaterials 211<br /></b><i>S.S. Athira, V. Akhil, X. Joseph , J. Ashtami and P.V. Mohanan</i></p> <p>10.1 Introduction 212</p> <p>10.2 Structural Aspects of HNMs 213</p> <p>10.3 Synthetic Approaches 214</p> <p>10.3.1 Template-Based Strategies 215</p> <p>10.3.1.1 Hard Templating 215</p> <p>10.3.1.2 Soft Templating 217</p> <p>10.3.2 Self-Templating Strategies 218</p> <p>10.3.2.1 Surface Protected Etching 219</p> <p>10.3.2.2 Ostwald Ripening 219</p> <p>10.3.2.3 Kirkendall Effect 219</p> <p>10.3.2.4 Galvanic Replacement 220</p> <p>10.4 Medical Applications of HNMs 220</p> <p>10.4.1 Imaging and Diagnosis Applications 221</p> <p>10.4.2 Applications of Nanotube Arrays 222</p> <p>10.4.2.1 Pharmacy and Medicine 224</p> <p>10.4.2.2 Cancer Therapy 224</p> <p>10.4.2.3 Immuno and Hyperthermia Therapy 226</p> <p>10.4.2.4 Infection Therapy and Gene Therapy 226</p> <p>10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics 227</p> <p>10.4.4 Applications in Regenerative Medicine 227</p> <p>10.4.5 Anti-Neurodegenerative Applications 228</p> <p>10.4.6 Photothermal Therapy 229</p> <p>10.4.7 Biosensors 230</p> <p>10.5 Non-Medical Applications of HNMs 231</p> <p>10.5.1 Catalytic Micro or Nanoreactors 231</p> <p>10.5.2 Energy Storage 232</p> <p>10.5.2.1 Lithium Ion Battery 232</p> <p>10.5.2.2 Supercapacitor 232</p> <p>10.5.3 Nanosensors 233</p> <p>10.5.4 Wastewater Treatment 234</p> <p>10.6 Toxicity of 2D HNMs 234</p> <p>10.7 Future Challenges 237</p> <p>10.8 Conclusion 239</p> <p>Acknowledgement 240</p> <p>References 240</p> <p><b>11 2D Layered Double Hydroxides 249<br /></b><i>J. Ashtami, X. Joseph, V. Akhil , S.S. Athira and P.V. Mohanan</i></p> <p>11.1 Introduction 250</p> <p>11.2 Structural Aspects 251</p> <p>11.3 Synthesis of LDHs 252</p> <p>11.3.1 Co-Precipitation Method 253</p> <p>11.3.2 Urea Hydrolysis 254</p> <p>11.3.3 Ion-Exchange Method 254</p> <p>11.3.4 Reconstruction Method 254</p> <p>11.3.5 Hydrothermal Method 255</p> <p>11.3.6 Sol-Gel Method 255</p> <p>11.4 Nonmedical Applications of LDH 255</p> <p>11.4.1 Adsorbent 255</p> <p>11.4.2 Catalyst 257</p> <p>11.4.3 Sensors 260</p> <p>11.4.4 Electrode 261</p> <p>11.4.5 Polymer Additive 261</p> <p>11.4.6 Anion Scavenger 262</p> <p>11.4.7 Flame Retardant 263</p> <p>11.5 Biomedical Applications 263</p> <p>11.5.1 Biosensors 263</p> <p>11.5.2 Scaffolds 265</p> <p>11.5.3 Anti-Microbial Agents 266</p> <p>11.5.4 Drug Delivery 267</p> <p>11.5.5 Imaging 269</p> <p>11.5.6 Protein Purification 269</p> <p>11.5.7 Gene Delivery 270</p> <p>11.6 Toxicity 272</p> <p>11.7 Conclusion 273</p> <p>Acknowledgement 274</p> <p>References 274</p> <p><b>12 Experimental Techniques for Layered Materials 283<br /></b><i>Tariq Munir, Arslan Mahmood, Muhammad Imran, Muhammad Kashif, Amjad Sohail, Zeeshan Yaqoob, Aleena Manzoor and Fahad Shafiq</i></p> <p>12.1 Introduction 284</p> <p>12.2 Methods for Synthesis of Graphene Layered Materials 285</p> <p>12.3 Selection of a Suitable Metallic Substrate 287</p> <p>12.4 Graphene Synthesis by HFTCVD 287</p> <p>12.5 Graphene Transfer 289</p> <p>12.6 Characterization Techniques 291</p> <p>12.6.1 X-Ray Diffraction Technique 291</p> <p>12.6.2 Field Emission Scanning Electron Microscopy (FESEM) 292</p> <p>12.6.3 Transmission Electron Microscopy (TEM) 293</p> <p>12.6.4 Fourier Transform Infrared Radiation (FTIR) 294</p> <p>12.6.5 UV-Visible Spectroscopy 295</p> <p>12.6.6 Raman Spectroscopy 295</p> <p>12.6.7 Low Energy Electron Microscopy (LEEM) 296</p> <p>12.7 Potential Applications of Graphene and Derived Materials 297</p> <p>12.8 Conclusion 298</p> <p>Acknowledgement 298</p> <p>References 299</p> <p><b>13 Two-Dimensional Hexagonal Boron Nitride and Borophenes 303<br /></b><i>Atif Suhail and Indranil Lahiri</i></p> <p>13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction 304</p> <p>13.2 Properties of 2D h-BN 305</p> <p>13.2.1 Structural Properties 305</p> <p>13.2.2 Electronic and Dielectric Properties 306</p> <p>13.2.3 Optical Properties 307</p> <p>13.3 Synthesis Methods of 2D h-BN 308</p> <p>13.3.1 Mechanical Exfoliation 309</p> <p>13.3.2 Liquid Exfoliation 310</p> <p>13.3.3 Chemical Vapor Deposition (CVD) 310</p> <p>13.3.3.1 Synthesis Parameters 312</p> <p>13.3.3.2 Growth Mechanism 313</p> <p>13.3.3.3 Transfer of 2D h-BN Onto Other Substrates 314</p> <p>13.3.4 Physical Vapor Deposition Method (PVD) 315</p> <p>13.3.5 Surface Segregation Method 316</p> <p>13.4 Application of 2D h-BN 317</p> <p>13.4.1 2D h-BN in Electronic Manufacturing 318</p> <p>13.4.2 2D h-BN as a Filler in Polymer Composites 319</p> <p>13.4.3 2D h-BN as a Protective Barrier 320</p> <p>13.4.4 2D h-BN in Optoelectronics 321</p> <p>13.5 Borophene 323</p> <p>13.5.1 Theoretical Investigation and Experimental Synthesis 324</p> <p>13.5.2 Properties and Application of Borophene 326</p> <p>13.5.2.1 Electronic Properties of Borophene 326</p> <p>13.5.2.2 Chemical Properties 326</p> <p>13.5.3 Potential Applications of Borophene 328</p> <p>References 328</p> <p><b>14 Transition-Metal Dichalcogenides for Photoelectrochemical Hydrogen Evolution Reaction 337<br /></b><i>Rozan Mohamad Yunus, Mohd Nur Ikhmal Salehmin and Nurul Nabila Rosman</i></p> <p>14.1 Introduction 337</p> <p>14.2 TMDC-Based Photoactive Materials for HER 339</p> <p>14.2.1 MoS<sub>2</sub> 339</p> <p>14.2.2 MoSe<sub>2</sub> 341</p> <p>14.2.3 WS<sub>2</sub> 341</p> <p>14.2.4 CoSe<sub>2</sub> 342</p> <p>14.2.5 FeS<sub>2</sub> 343</p> <p>14.2.6 NiSe<sub>2</sub> 344</p> <p>14.3 TMDCs Fabrication Methods 345</p> <p>14.3.1 Hydrothermal 345</p> <p>14.3.2 Chemical Vapor Deposition/Vapor Phase Growth Process 346</p> <p>14.3.3 Metal-Organic Chemical Vapor Deposition (MOCVD) 347</p> <p>14.3.4 Atomic Layer Deposition (ALD) 348</p> <p>14.4 Current Photocatalytic Activity Performance 350</p> <p>14.5 Summary and Perspective 351</p> <p>References 352</p> <p><b>15 State-of-the-Art and Perspective of Layered Materials 363<br /></b><i>Tariq Munir, Muhammad Kashif, Aamir Shahzad, Nadeem Nasir, Muhammad Imran, Nabeel Anjum and Arslan Mahmood</i></p> <p>15.1 Introduction 363</p> <p>15.2 State-of-the-Art and Future Perspective 364</p> <p>15.2.1 Electronic Devices 365</p> <p>15.2.2 Optoelectronic Devices 369</p> <p>15.2.3 Energy Storage Devices 372</p> <p>15.3 Conclusion 374</p> <p>References 374</p> <p>Index 379</p>
<p><b>Inamuddin, PhD</b>, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Rajender Boddula, PhD</b>, is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored twenty book chapters. <p><b>Mohd Imran Ahamed</b> received his Ph.D on the topic "Synthesis and characterization of inorganic-organic composite heavy metals selective cation-exchangers and their analytical applications", from Aligarh Muslim University, India in 2019. He has published several research and review articles in SCI journals. His research focusses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. <p><b>Abdullah M. Asiri</b> is the Head of the Chemistry Department at King Abdulaziz University and the founder and Director of the Center of Excellence for Advanced Materials Research (CEAMR). He is the Editor-in-Chief of the King Abdulaziz University <i>Journal of Science</i>. He has received numerous awards, including the first prize for distinction in science from the Saudi Chemical Society in 2012. He holds multiple patents, has authored ten books and more than one thousand publications in international journals.
<p><b><i>Layered 2D Advanced Materials and Their Allied Applications</i></b><b> is a comprehensive exploration of 2DLMs including fabrication and characterization methods and provides the fundamentals, challenges as well as future development on their practical applications.</b> <p>Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical, and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. <p>The following topics are discussed in the book's 15 chapters written by subject-matter experts: <ul><li>2D metal-organic frameworks and techniques to synthesize them.</li> <li>2D black phosphorus (BP).</li> <li>Synthesis methods of MXenes.</li> <li>The carbon-based materials and the photocatalytic process using visible light irradiation.</li> <li>2D materials like graphene in layered form and their heterostructures.</li> <li>The structure and applications of 2D perovskites.</li> <li>The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides.</li> <li>The coupling of graphitic carbon nitride with various metal sulfides and oxides for water purification.</li> <li>2D zeolites.</li> <li>2D hollow nanostructures.</li> <li>2D layered double hydroxides (LDHs).</li> <li>The synthesis of graphene-based 2D layered materials</li> <li>2D h-BN and borophene.</li> <li>Transition metal dichalcogenides (TMDC).</li> <li>2D layered materials and electronic, biosensing, optoelectronic, and energy storage applications.</li></ul> <p><b>Audience</b> <p>Research scholars, faculty members, engineers and professionals in materials science working in a wide range of biomedical, electronic, energy and environmental applications.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €