Details

Electrospun Materials and Their Allied Applications


Electrospun Materials and Their Allied Applications


1. Aufl.

von: Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.04.2020
ISBN/EAN: 9781119655138
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The aim of this book is to explore the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials. The book includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems. It focuses on the many application areas for electrospun materials such as energy storage and harvesting, catalysis, biomedical including gene delivery and tissue engineering, separation, adsorption and water treatment technologies, packaging. The book emphasizes the enhanced sustainable properties of electrospun materials, with the challenges and future developments being discussed in detail. The chapters are written by top-class researchers and experts from throughout the world.</p>
<p>Preface xv</p> <p><b>1 Electrospinning Fabrication Strategies: From Conventional to Advanced Approaches 1<br /></b><i>J.R. Dias, Alexandra I. F. Alves, Carolina A. Marzia-Ferreira and Nuno M. Alves</i></p> <p>1.1 Introduction 2</p> <p>1.2 Conventional Fabrication Approaches 3</p> <p>1.2.1 Randomly Oriented Fiber Meshes 3</p> <p>1.2.2 Aligned Fiber Meshes 8</p> <p>1.2.3 Fibers With Core/Shell Structure 14</p> <p>1.3 Advanced Fabrication Approaches 19</p> <p>1.3.1 Melt Electrospinning 19</p> <p>1.3.2 Near Field Electrospinning 22</p> <p>1.3.3 Electroblowing 23</p> <p>1.3.4 Hybrid Structures 25</p> <p>1.3.5 Cell Electrospinning 30</p> <p>1.3.6 <i>In Situ </i>Electrospinning 33</p> <p>1.4 Conclusions and Future Perspectives 36</p> <p>Acknowledgments 37</p> <p>References 37</p> <p><b>2 History, Basics, and Parameters of Electrospinning Technique 53<br /></b><i>Aysel Kantürk Figen</i></p> <p>2.1 Definitions 53</p> <p>2.2 Milestone of Electrospinning Technique 54</p> <p>2.3 Setup and Configuration of Electrospinning Technique 56</p> <p>2.4 Parameters 59</p> <p>2.4.1 Polymer Solutions 59</p> <p>2.4.2 Spin Parameters 62</p> <p>2.4.3 Environmental Parameters 63</p> <p>2.5 Concluding Remarks 64</p> <p>References 65</p> <p><b>3 Physical Characterization of Electrospun Fibers 71<br /></b><i>Anushka Purabgola and Balasubramanian Kandasubramanian</i></p> <p>3.1 Introduction 72</p> <p>3.2 Characterization Techniques 76</p> <p>3.2.1 Scanning Electron Microscopy (SEM) 76</p> <p>3.2.2 Field Emission Scanning Electron Microscopy (FESEM) 77</p> <p>3.2.3 Transmission Electron Microscopy (TEM) 79</p> <p>3.2.4 High-Resolution TEM (HRTEM) 80</p> <p>3.2.5 Atomic Force Microscopy (AFM) 81</p> <p>3.2.6 X-Ray Diffraction (XRD) 83</p> <p>3.2.7 Nanoindentation 84</p> <p>3.2.8 Differential Scanning Calorimetry (DSC) 85</p> <p>3.2.9 Thermalgravimetric Analysis (TGA) 85</p> <p>3.3 Physical Characterization of Electrospun Fibers 87</p> <p>3.3.1 Electrospun Polymer Nanofibers 87</p> <p>3.3.1.1 Polyacrylonitrile (PAN) Nanofiber 87</p> <p>3.3.1.2 Polyvinylidene Fluoride (PVDF) Fibrous Nanofibers 91</p> <p>3.3.1.3 Polydodecylthiophene (PDT) Core–Polyethylene Oxide (PEO) Shell Polymer Nanofiber 92</p> <p>3.3.1.4 Polymethylmethacrylate (PMMA) Nanofiber 92</p> <p>3.3.2 Electrospun Metal (Oxide) Nanofiber 94</p> <p>3.3.2.1 Polyvinyl Alcohol (PVA)/Nickel Acetate 95</p> <p>3.3.2.2 Polyvinyl Pyrrolidone (PVP)/TiO2 Nanofibers 96</p> <p>3.3.2.3 Polyethylene Oxide/Polyvinylpyrrolidone–Iron Oxide Nanofiber 96</p> <p>3.3.3 Electrospun Nanocomposite Nanofibers 97</p> <p>3.3.3.1 TiO2/SiO2/C (TSC) Nanofibers 98</p> <p>3.3.3.2 Polyvinylidene Fluoride (PVDF)/ZnO Nanocomposite Nanofiber 100</p> <p>3.3.3.3 Polyvinyl Alcohol (PVA)/Cellulose Nanocrystals Composite Nanofibers 101</p> <p>3.3.4 Electrospun Carbon Nanofibers (CNFs) 104</p> <p>3.3.4.1 Polyacrylonitrile (PAN)/N-Doped CNFs 104</p> <p>3.3.4.2 Lignan-Derived CNFs/PAN 104</p> <p>3.3.4.3 Poly(L-Laticide-Co- -Caprolactone) (PLCL)/MWCNTs Nanofibers 105</p> <p>3.4 Conclusion 108</p> <p>References 109</p> <p><b>4 Application of Electrospun Materials in Catalysis 113<br /></b><i>Bilge Coşkuner Filiz</i></p> <p>4.1 Introduction 113</p> <p>4.2 Type of Catalysts 115</p> <p>4.2.1 Catalyst Supports 115</p> <p>4.2.2 Template for Catalytic Nanotubes 116</p> <p>4.2.3 Metal Oxide Catalysts 117</p> <p>4.3 Catalytic Applications 117</p> <p>4.3.1 Energy Field 118</p> <p>4.3.1.1 Oxidation Reactions 118</p> <p>4.3.1.2 Reduction Reactions 119</p> <p>4.3.1.3 Hydrogen Generation Reactions 120</p> <p>4.3.2 Environment Field 121</p> <p>4.3.2.1 Oxidation Reactions 121</p> <p>4.3.2.2 Reduction Reactions 122</p> <p>4.3.2.3 Degradation Reactions 122</p> <p>4.4 Conclusion 124</p> <p>References 125</p> <p><b>5 Application of Electrospun Materials in Packaging Industry 131<br /></b><i>Samson Rwahwire, Catherine Namuga and Nibikora Ildephonse</i></p> <p>5.1 Packaging Industry 131</p> <p>5.2 Electrospinning 132</p> <p>5.3 Nanofibers 135</p> <p>5.4 Biopolymers 135</p> <p>5.4.1 Nanoencapsulation 135</p> <p>5.4.2 Methods of Encapsulation Application in Food Packaging 139</p> <p>5.4.3 Drying 140</p> <p>5.4.4 Nano-Enabled Packaging Solutions 140</p> <p>5.4.5 Food Packaging 141</p> <p>5.4.6 Active Food Packaging 142</p> <p>5.5 Future Perspectives 144</p> <p>References 145</p> <p><b>6 Application of Electrospun Materials in Water Treatment 151<br /></b><i>Shivani Rastogi and Balasubramanian Kandasubramanian</i></p> <p>6.1 Introduction 152</p> <p>6.2 Heavy Metal Ion Removal From Wastewater 154</p> <p>6.2.1 Cellulose/Camphor Soot Nanofibers 157</p> <p>6.2.2 Spider-Web Textured Electrospun Graphene Composite Fibers 158</p> <p>6.2.3 Resorcinol–Formaldehyde Nanofibers 161</p> <p>6.2.4 Ion-Imprinted Chitosan/1-Butyl-3-Methylimidazolium Tetrafluoroborate Fibers 162</p> <p>6.2.5 Molecular Imprinted Camphor Soot Functionalized PAN Nanofibers 164</p> <p>6.2.6 Iron Functionalized Chitosan Electrospun NFs (ICS-ENF) 166</p> <p>6.2.7 Cellulose/Organically Modified Montmorillonite 166</p> <p>6.3 Dye Removal From Wastewater 167</p> <p>6.3.1 Zein Nanofibers 167</p> <p>6.3.2 β-Cyclodextrin Based Nanofibers 169</p> <p>6.3.3 3-Mercapto Propionic Acid Coated Fe3O4 NP Immobilized Amidoximated Polyacrylonitrile 171</p> <p>6.3.4 Functionalized Polyacrylonitrile Membrane 171</p> <p>6.4 Oil–Water Separation 172</p> <p>6.4.1 Wettable Cotton-Based Janus Bio Fabric (PLA/Functionalized Organoclay) 172</p> <p>6.4.2 Camphor Soot Immobilized Fluoroelastomer Membrane 174</p> <p>6.4.3 Polycaprolactone/Beeswax Membrane 174</p> <p>6.5 Microbe Elimination From Wastewater 176</p> <p>6.5.1 β-Cyclodextrin/Cellulose Acetate Embedded Ag and Ag/Fe Nanoparticles 176</p> <p>6.5.2 Silver Coated Polyacrylonitrile (PAN) Membrane 177</p> <p>6.6 Antibiotic Removal From Wastewater 178</p> <p>6.7 Conclusion 180</p> <p>References 180</p> <p><b>7 Application of Electrospun Materials in Oil–Water Separations 185<br /></b><i>T.C. Mokhena, M.J. John, M.J. Mochane and P.C. Tsipa</i></p> <p>7.1 Introduction 185</p> <p>7.2 Oil Spill Clean-Up 187</p> <p>7.2.1 Hydrophobic–Oleophilic Polymer Nanofiber 187</p> <p>7.2.2 Blends 191</p> <p>7.2.3 Composites 194</p> <p>7.3 Separation Membranes 195</p> <p>7.4 Thin-Film Composite (TFC) Membranes 202</p> <p>7.5 Three Dimensional (3D) Nanofibrous Membranes 203</p> <p>7.6 Smart Membranes 204</p> <p>7.7 Conclusions and Future Trends 208</p> <p>Acknowledgments 209</p> <p>References 209</p> <p><b>8 Application of Electrospun Materials in Industrial Applications 215<br /></b><i>Anisa Andleeb and Muhammad Yar</i></p> <p>8.1 Introduction 216</p> <p>8.2 Technology Transfer From Research Laboratories to Industries 218</p> <p>8.3 Industrial Applications of Electrospun Materials 220</p> <p>8.3.1 Biomedical Materials 221</p> <p>8.3.2 Defense and Security 227</p> <p>8.3.3 Textile Industry 227</p> <p>8.3.4 Catalyst 228</p> <p>8.3.5 Energy Harvest 229</p> <p>8.3.6 Filtration 230</p> <p>8.3.7 Sensor Applications 232</p> <p>8.3.8 Food 234</p> <p>8.4 Current and Future Developments 236</p> <p>References 237</p> <p><b>9 Antimicrobial Electrospun Materials 243<br /></b><i>Samson Afewerki, Guillermo U. Ruiz-Esparza and Anderson O. Lobo</i></p> <p>9.1 Introduction 244</p> <p>9.1.1 Electrospinning Technology 244</p> <p>9.1.2 Antimicrobial Materials 246</p> <p>9.1.3 Antimicrobial Electrospun Materials 246</p> <p>9.1.4 Conclusions and Future Directions 254</p> <p>Acknowledgments 255</p> <p>References 255</p> <p><b>10 Application of Electrospun Materials in Gene Delivery 265<br /></b><i>GSN Koteswara Rao, Mallesh Kurakula and Khushwant S. Yadav</i></p> <p>10.1 Introduction 266</p> <p>10.2 Gene Therapy 266</p> <p>10.3 Cellular Uptake of Nonviral Gene Delivery 268</p> <p>10.4 Vectors 269</p> <p>10.4.1 Viral Vectors 269</p> <p>10.4.2 Nonviral Vectors 270</p> <p>10.4.3 Delivery of Genes through Vectors 271</p> <p>10.5 Nanofibers/Scaffolds 273</p> <p>10.6 Electrospinning 275</p> <p>10.6.1 Steps Involved in the Electrospinning Process 276</p> <p>10.6.2 Types of Electrospinning 279</p> <p>10.7 Characterization 281</p> <p>10.8 Applications of Electrospun Materials 282</p> <p>10.8.1 Electrospun Materials in Gene Delivery 282</p> <p>10.8.1.1 Tissue Engineering 282</p> <p>10.8.1.2 Regenerative Medicine 284</p> <p>10.8.1.3 Vascular Grafts 284</p> <p>10.8.1.4 Bone Regeneration 285</p> <p>10.8.1.5 Diabetic Ulcer Treatment 286</p> <p>10.8.1.6 Cancer Treatment 287</p> <p>10.8.1.7 Blood Vessel Regeneration 287</p> <p>10.8.1.8 Wound Management 288</p> <p>10.8.1.9 Carrier for Genetic Material Loaded Nanoparticles 288</p> <p>10.8.1.10 Myocardial Infarction Treatment 288</p> <p>10.8.1.11 Stem Cell-Based Therapy 289</p> <p>10.8.1.12 Gene Silencing 289</p> <p>10.8.1.13 Controlled Release of Gene 290</p> <p>10.8.1.14 DNA Delivery 290</p> <p>10.8.2 Electrospun Materials in Drug Delivery 291</p> <p>10.8.2.1 Antibiotics and Various Antibacterial Agents 292</p> <p>10.8.2.2 Anticancer Drugs 292</p> <p>10.8.2.3 Cancer Diagnosis 292</p> <p>10.8.2.4 Wound Management 293</p> <p>10.8.2.5 Tissue Engineering 293</p> <p>10.8.2.6 Bone Tissue Engineering 293</p> <p>10.8.2.7 Dental Growth 294</p> <p>10.8.2.8 Therapeutic Delivery Systems 294</p> <p>10.8.3 Electrospun Materials in Miscellaneous Applications 294</p> <p>10.9 Future Scope and Challenges 296</p> <p>10.10 Conclusion 296</p> <p>References 297</p> <p><b>11 Application of Electrospun Materials in Bioinspired Systems 307<br /></b><i>Anca Filimon, Adina Maria Dobos, Oana Dumbrava and Adriana Popa</i></p> <p>11.1 Introduction 308</p> <p>11.2 Composite Materials Based on Cellulosic Nanofibers 309</p> <p>11.2.1 Processing of Cellulose-Based Materials 310</p> <p>11.2.2 Structure–Property–Biological Activity Relationship 310</p> <p>11.2.2.1 Biosensors Based on Cellulosic Fibers 310</p> <p>11.2.2.2 Delivery Systems and Controlled Release of Drugs 312</p> <p>11.2.2.3 Wound Dressing 316</p> <p>11.2.2.4 Tissue Engineering 317</p> <p>11.3 Chitosan Nanofibrous Scaffolds 322</p> <p>11.3.1 Overview on Obtained Chitosan From Bio-Waste Source 322</p> <p>11.3.2 Specific Applications of Chitosan Nanofibers in Bio Inspired Systems 325</p> <p>11.3.2.1 Wound Dressing 325</p> <p>11.3.2.2 Drug Delivery 329</p> <p>11.3.2.3 Tissue Engineering 330</p> <p>11.3.2.4 Antibacterial Activity 336</p> <p>11.4 Conclusions 339</p> <p>References 339</p> <p><b>12 Smart Electrospun Materials 351<br /></b><i>Gaurav Sharma, Shivani Rastogi and Balasubramanian Kandasubramanian</i></p> <p>12.1 Introduction 352</p> <p>12.2 Smart Electrospun Materials in Biomedical Applications 354</p> <p>12.2.1 Tissue Engineering 354</p> <p>12.2.2 Controlled Drug Delivery 355</p> <p>12.2.3 Wound Healing 356</p> <p>12.3 Smart Electrospun Materials for Environmental Remediation 357</p> <p>12.3.1 Water Pollution Control 357</p> <p>12.3.2 Air Pollution Control 359</p> <p>12.3.3 Noise Pollution Control 360</p> <p>12.4 Smart Electrospun Materials in Electronics 361</p> <p>12.4.1 Solar Cell 361</p> <p>12.4.2 Energy Harvesters 362</p> <p>12.4.3 Shape-Memory Polymers 363</p> <p>12.4.4 Batteries and Supercapacitors 364</p> <p>12.4.5 Sensors, Transistors, and Diodes 366</p> <p>12.5 Smart Electrospun Materials in Textiles 368</p> <p>12.5.1 Biomedical Parameter Regulation 368</p> <p>12.5.2 Protection from Environment Threat 369</p> <p>12.5.3 Energy Harvesters in Textiles 370</p> <p>12.5.4 Smart Textile Project 370</p> <p>12.6 Smart Electrospun Materials in Food Packaging 371</p> <p>12.7 Conclusion 372</p> <p>References 373</p> <p><b>13 Advances in Electrospinning Technique in the Manufacturing Process of Nanofibrous Materials 379<br /></b><i>Karine Cappuccio de Castro, Josiel Martins Costa and Lucia Helena Innocentini Mei</i></p> <p>13.1 Introduction 380</p> <p>13.2 Process 380</p> <p>13.3 Important Parameters 382</p> <p>13.3.1 Effects of the Applied Tension 382</p> <p>13.3.2 Effects of Solution Eject Rate 382</p> <p>13.3.3 Effects of Needle-to-Collector Distance and Needle Diameter 384</p> <p>13.3.4 Effects of Solution Concentration and Viscosity 384</p> <p>13.3.5 Effects of Solution Conductivity 385</p> <p>13.3.6 Solvent Effects 385</p> <p>13.3.7 Effects of Surface Tension 385</p> <p>13.3.8 Humidity and Temperature Effects 386</p> <p>13.4 Recent Advances in the Technique 386</p> <p>13.4.1 Electrospinning Coaxial 386</p> <p>13.4.2 Electrospinning Triaxial 387</p> <p>13.4.3 Multiple Needle Electrospinning 387</p> <p>13.4.4 Electroblowing 387</p> <p>13.4.5 Magnetic Electrospinning 388</p> <p>13.4.6 Centrifugal Electrospinning 388</p> <p>13.4.7 Needleless Electrospinning 388</p> <p>13.5 Coaxial Electrospinning as an Excellent Process for Hollow Fiber and Drug Delivery Device Production 389</p> <p>13.6 Applications 390</p> <p>13.7 Conclusions and Future Perspectives 393</p> <p>References 393</p> <p><b>14 Application of Electrospun Materials in Filtration and Sorbents 401<br /></b><i>T.S. Motsoeneg, T.E. Mokoena, T.C. Mokhena and M.J. Mochane</i></p> <p>14.1 Introduction 402</p> <p>14.2 Morphology of Sorbents With Concomitant Sorption Capacity 403</p> <p>14.3 Mechanistic Overview in Purification During Filtration 406</p> <p>14.4 Conclusion and Future Prospects 410</p> <p>References 411</p> <p><b>15 Application of Electrospun Materials in Batteries 415<br /></b><i>Subhash B. Kondawar and Monali V. Bhute</i></p> <p>15.1 Introduction 416</p> <p>15.2 Electrospun Nanofibers as Anodes 418</p> <p>15.2.1 Carbon Nanofibers as Anode 418</p> <p>15.2.2 Metal Oxide Nanofibers as Anode 419</p> <p>15.3 Electrospun Nanofibers as Cathode 423</p> <p>15.3.1 Lithium Metal Oxide Nanofibers as Cathode 423</p> <p>15.3.2 Transition Metal Oxides Nanofibers as Cathode 424</p> <p>15.4 Electrospun Nanofibers as Separator 425</p> <p>15.4.1 Polymer Nanofibers as Separator 426</p> <p>15.4.2 Polymer–Inorganic Nanofiber Separators 430</p> <p>15.5 Conclusions and Outlook 432</p> <p>References 433</p> <p><b>16 State-of-the-Art and Future Electrospun Technology 441<br /></b><i>Prasansha Rastogi and Balasubramanian Kandasubramanian</i></p> <p>16.1 Introduction 442</p> <p>16.2 Some General Smart Applications of Electrospun Membranes 445</p> <p>16.3 Stimuli Responsive or Shape Memory Electrospun Membranes 454</p> <p>16.4 Conclusion 473</p> <p>Acknowledgment 474</p> <p>References 474</p> <p><b>17 Antimicrobial Electrospun Materials 483<br /></b><i>Rushikesh S. Ambekar and Balasubramanian Kandasubramanian</i></p> <p>17.1 Introduction 484</p> <p>17.2 Drug-Loaded Polymer Nanofibers 485</p> <p>17.3 Drug-Loaded Biodegradable Polymer Nanofibers 485</p> <p>17.4 Drug-Loaded Non-Biodegradable Polymer Nanofibers 501</p> <p>17.5 Conclusion and Future Scope 507</p> <p>References 508</p> <p>Index 515</p>
<p><b>Inamuddin, PhD</b>, is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Rajender Boddula, PdD</b>, is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored twenty book chapters. <p><b>Mohd Imran Ahamed</b> received his Ph.D on the topic "Synthesis and characterization of inorganic-organic composite heavy metals selective cation-exchangers and their analytical applications", from Aligarh Muslim University, India in 2019. He has published several research and review articles in SCI journals. His research focusses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning. <p><b>Abdullah M. Asiri</b> is the Head of the Chemistry Department at King Abdulaziz University and the founder and Director of the Center of Excellence for Advanced Materials Research (CEAMR). He is the Editor-in-Chief of the King Abdulaziz University <i>Journal of Science</i>. He has received numerous awards, including the first prize for distinction in science from the Saudi Chemical Society in 2012. He holds multiple patents, has authored ten books and more than one thousand publications in international journals.
<p><b>This comprehensive book explores the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials.</b> <p>There are numerous innovative and fundamental science motivations to create one-dimensional/three-dimensional nanofiber materials, and much research attention has been given to them over the recent past. This book provides a comprehensive overview of electrospun nanofiber materials and looks at the history, fundamentals, significant parameters, design fabrication strategies, suitable precursors and solvent control parameters of electrospun fibres. It includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems, and so on. The electrospun materials have applications in areas such as energy storage, catalysis, biomedical, separation, adsorption, and water treatment technologies. The book emphasizes the enhanced sustainable properties of electrospun materials, with the current and future challenges being discussed in detail. The 17 chapters are written by top-class researchers and experts from throughout the world. <p><b>Audience</b> <p>This book will be very useful for researchers, scientists and engineers in polymer chemistry, electrospinning engineering, fibres technology, materials science and materials designers who need to consider the morphological design of materials for versatile applications.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €