Details

Principles of Inorganic Chemistry


Principles of Inorganic Chemistry


2. Aufl.

von: Brian W. Pfennig

126,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 31.12.2021
ISBN/EAN: 9781119650331
Sprache: englisch
Anzahl Seiten: 832

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>PRINCIPLES OF INORGANIC CHEMISTRY</b> <p><b>Discover the foundational <i>principles of inorganic chemistry </i>with this intuitively organized new edition of a celebrated textbook</b> <p>In the newly revised Second Edition of <i>Principles of Inorganic Chemistry</i>, experienced researcher and chemist Dr. Brian W. Pfennig delivers an accessible and engaging exploration of inorganic chemistry perfect for sophomore-level students. This redesigned book retains all of the rigor of the first edition but reorganizes it to assist readers with learning and retention. In-depth boxed sections include original mathematical derivations for more advanced students, while topics like atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams are all covered. <p>Readers will find many worked examples throughout the text, as well as numerous unanswered problems at varying levels of difficulty. Informative, colorful illustrations also help to highlight and explain the concepts discussed within. <p>The new edition includes an increased emphasis on the comparison of the strengths and weaknesses of different chemical models, the interconnectedness of valence bond theory and molecular orbital theory, as well as a more thorough discussion of the atoms in molecules topological model. <p>Readers will also find: <ul><li>A thorough introduction to and treatment of group theory, with an emphasis on its applications to chemical bonding and spectroscopy</li> <li>A comprehensive exploration of chemical bonding that compares and contrasts the traditional classification of ionic, covalent, and metallic bonding</li> <li>In-depth examinations of atomic and molecular orbitals and a nuanced discussion of the interrelationship between VBT, MOT, and band theory</li> <li>A section on the relationship between a molecule’s structure and bonding and its chemical reactivity</li></ul> <p>With its in-depth boxed discussions, this textbook is also ideal for senior undergraduate and first-year graduate students in inorganic chemistry, <i>Principles of Inorganic Chemistry</i> is a must-have resource for anyone seeking a principles-based approach with theoretical depth. Furthermore, it will be useful for students of physical chemistry, materials science, and chemical physics.
<p>Preface to the Second Edition xv</p> <p>Acknowledgments xvii</p> <p>About the Companion Website xix</p> <p><b>Chapter 1The Structure of Matter 1</b></p> <p>1.1 Science as an Art Form 1</p> <p>1.2 Atomism 5</p> <p>1.3 The Anatomy of an Atom 8</p> <p>1.4 The Periodic Table of the Elements 14</p> <p>1.5 The Nucleus 17</p> <p>1.6 Nuclear Reactions 20</p> <p>1.7 Radioactive Decay and the Band of Stability 23</p> <p>1.8 The Shell Model of the Nucleus 29</p> <p>1.9 The Origin of the Elements 32</p> <p>1.9.1 The Big Bang 32</p> <p>1.9.2 Big Bang Nucleosynthesis 32</p> <p>1.9.3 Stellar Nucleosynthesis 33</p> <p>1.9.4 The s-Process and the r-Process 37</p> <p>Exercises 39</p> <p>Bibliography 41</p> <p><b>Chapter 2The Structure of the Atom 43</b></p> <p>2.1 The Wave-Like Properties of Light 43</p> <p>2.2 The Electromagnetic Spectrum 44</p> <p>2.3 The Interference of Waves 45</p> <p>2.4 The Line Spectrum of Hydrogen 48</p> <p>2.5 Energy Levels in Atoms 51</p> <p>2.6 The Bohr Model of the Atom 54</p> <p>2.6.1 In-Depth: Derivation of the Bohr Model of the Atom 56</p> <p>2.7 The Wave-Like Properties of Matter 60</p> <p>2.8 Circular Standing Waves and the Quantization of Angular Momentum 62</p> <p>2.9 The Classical Wave Equation 64</p> <p>2.10 The Particle in a Box Model 65</p> <p>2.10.1 In-Depth: The Quantum Mechanical Behavior of Nanoparticles 67</p> <p>2.11 The Heisenberg Uncertainty Principle 68</p> <p>2.12 The Schrödinger Equation 70</p> <p>2.13 The Hydrogen Atom 74</p> <p>2.13.1 The Radial Wave Functions 76</p> <p>2.13.2 The Angular Wave Functions 79</p> <p>2.14 The Spin Quantum Number 83</p> <p>2.15 The Topological Atom 85</p> <p>2.15.1 In-Depth: Atomic Units 87</p> <p>Exercises 88</p> <p>Bibliography 90</p> <p><b>Chapter 3The Periodicity of the Elements 91</b></p> <p>3.1 Introduction 91</p> <p>3.2 Hydrogenic Orbitals in Polyelectronic Atoms 92</p> <p>3.2.1 In-Depth: The Helium Atom 94</p> <p>3.3 The Quantum Structure of the Periodic Table 95</p> <p>3.4 Electron Configurations 98</p> <p>3.5 Shielding and Effective Nuclear Charges 102</p> <p>3.6 Ionization Energy 104</p> <p>3.7 Electron Affinity 109</p> <p>3.8 Theoretical Radii 111</p> <p>3.8.1 In-Depth: How the Radius Affects Other Properties 114</p> <p>3.9 Polarizability 116</p> <p>3.10 The Metal–Nonmetal Staircase 118</p> <p>3.11 Global Hardness 120</p> <p>3.12 Electronegativity 121</p> <p>3.13 The Uniqueness Principle 124</p> <p>3.14 Diagonal Properties 125</p> <p>3.15 Relativistic Effects 126</p> <p>3.16 The Inert-Pair Effect 128</p> <p>Exercises 129</p> <p>Bibliography 131</p> <p><b>Chapter 4 An Introduction to Chemical Bonding 133</b></p> <p>4.1 The Definition of a Chemical Bond 133</p> <p>4.2 The Thermodynamic Driving Force for Bond Formation 134</p> <p>4.3 Lewis Structures and Formal Charges 138</p> <p>4.3.1 Rules for Drawing Lewis Structures 140</p> <p>4.4 Covalent Bond Lengths and Bond Dissociation Energies 143</p> <p>4.5 Resonance 144</p> <p>4.6 Electronegativity and Polar Covalent Bonding 147</p> <p>4.7 Types of Chemical Bonds—The Triangle of Bonding 148</p> <p>4.8 Atoms in Molecules 153</p> <p>Exercises 159</p> <p>Bibliography 160</p> <p><b>Chapter 5 Molecular Geometry 163</b></p> <p>5.1 X-Ray Crystallography and the Determination of Molecular Geometry 163</p> <p>5.2 Linnett’S Double Quartet Theory 165</p> <p>5.3 Valence-Shell Electron Pair Repulsion Theory 170</p> <p>5.3.1 Rules for Determining the Geometry of a Molecule Using VSEPD Theory 171</p> <p>5.4 The Ligand Close-Packing Model 183</p> <p>5.5 A Comparison of the VSEPR and LCP Models 187</p> <p>Exercises 188</p> <p>Bibliography 190</p> <p><b>Chapter 6 Symmetry and Spectroscopy 191</b></p> <p>6.1 Symmetry Elements and Symmetry Operations 191</p> <p>6.1.1 Identity, <i>E</i> 193</p> <p>6.1.2 Proper Rotation, C<i><sub>n</sub></i> 193</p> <p>6.1.3 Reflection, <i>σ</i> 195</p> <p>6.1.4 Inversion, <i>i</i> 196</p> <p>6.1.5 Improper Rotation, S<i><sub>n</sub></i> 196</p> <p>6.2 Symmetry Groups 199</p> <p>6.3 Molecular Point Groups 203</p> <p>6.3.1 In-Depth: Dipole Moments 208</p> <p>6.4 Representations of Symmetry Operations 210</p> <p>6.5 Character Tables 217</p> <p>6.5.1 Irreducible Representations and Characters 217</p> <p>6.5.2 Degenerate Representations 218</p> <p>6.5.3 Rules Regarding Irreducible Representations 219</p> <p>6.5.4 Conjugate Matrices and Classes 220</p> <p>6.5.5 Mulliken Symbols 222</p> <p>6.6 Direct Products 224</p> <p>6.7 Reducible Representations and the Great Orthogonality Theorem 229</p> <p>6.8 Molecular Spectroscopy and the Selection Rules 234</p> <p>6.8.1 Infrared Spectroscopy 236</p> <p>6.8.2 Raman Spectroscopy 240</p> <p>6.8.3 A Summary of the Selection Rules for Vibrational Spectroscopy 241</p> <p>6.8.4 In-Depth: Resonance Raman Spectroscopy 241</p> <p>6.9 Determining the Symmetries of the Normal Modes of Vibration 243</p> <p>6.10 Determining a Molecule’s Likely Geometry from Its Spectroscopy 249</p> <p>6.11 Generating Symmetry Coordinates Using the Projection Operator Method 252</p> <p>Exercises 263</p> <p>Bibliography 269</p> <p><b>Chapter 7 Structure and Bonding in Molecules 271</b></p> <p>7.1 Molecules as Unique Entities 271</p> <p>7.2 Valence Bond Theory 272</p> <p>7.2.1 Diatomic Molecules 272</p> <p>7.2.2 In-Depth: A Mathematical Treatment of VBT 273</p> <p>7.2.3 Polyatomic Atoms and Hybridization 275</p> <p>7.2.4 Variable Hybridization 281</p> <p>7.2.5 Bent’s Rule 283</p> <p>7.2.6 Hypervalent Molecules 286</p> <p>7.2.7 Sigma and pi Bonding 288</p> <p>7.2.8 Transition Metal Compounds 289</p> <p>7.2.9 Limitations of Valence Bond Theory 293</p> <p>7.3 Molecular Orbital Theory 293</p> <p>7.3.1 Homonuclear Diatomics 293</p> <p>7.3.2 In-Depth: A Mathematical Treatment of MOT 294</p> <p>7.3.3 Mixing 302</p> <p>7.3.4 Heteronuclear Diatomics 307</p> <p>7.3.5 The Covalent to Ionic Transition in MOT 310</p> <p>7.3.6 Polyatomic Molecules: H3<sup>−</sup> and H3<sup>+</sup> 312</p> <p><b> </b></p> <p>7.3.7 Correlation Diagrams and the Prediction of Molecular Geometry 316</p> <p>7.3.8 A Brief Introduction to the Jahn–Teller Effect 318</p> <p>7.3.9 AH<i><sub>n</sub></i> Molecules and Walsh Diagrams 320</p> <p>7.3.10 In-Depth: Pearson’s Symmetry Rules for Predicting the Structures of AH<i><sub>n</sub></i> Molecules 332</p> <p>7.3.11 Polyatomic Molecules Having <i>pi</i> Orbitals 334</p> <p>7.3.12 In-Depth: Pearson’s Symmetry Rules for Predicting the Structures of AX<i><sub>n </sub></i>Molecules 340</p> <p>7.3.13 <i>pi</i> Molecular Orbitals and Hückel Theory 342</p> <p>7.3.14 Combining VB Concepts into MO Diagrams 346</p> <p>7.3.15 Hypercoordinated Molecules 349</p> <p>7.3.16 MO Diagrams for Transition Metal Compounds 352</p> <p>7.3.17 Metal–Metal Bonding 356</p> <p>7.3.18 Three-Centered, Two-Electron Bonding in Diborane 358</p> <p>7.4 The Complementarity of VBT and MOT 363</p> <p>Exercises 365</p> <p>Bibliography 367</p> <p><b>Chapter 8 Structure and Bonding in Solids 369</b></p> <p>8.1 Crystal Structures 369</p> <p>8.1.1 The 14 Bravais Lattices 373</p> <p>8.1.2 Closest-Packed Structures 377</p> <p>8.1.3 The 32 Crystallographic Point Groups and 230 Space Groups 381</p> <p>8.1.4 The Determination of Crystal Structures 386</p> <p>8.1.5 The Bragg Diffraction Law 386</p> <p>8.1.6 Miller Planes and Indexing Powder Patterns 387</p> <p>8.1.7 In-Depth: Quasicrystals 392</p> <p>8.2 Metallic Bonding 393</p> <p>8.2.1 The Free Electron Model of Metallic Bonding 395</p> <p>8.2.2 Band Theory of Solids 399</p> <p>8.2.3 Conductivity in Solids 407</p> <p>8.2.4 In-Depth: the p–n Junction and n–p–n Bipolar Junction Transistor 418</p> <p>8.3 Ionic Bonding 421</p> <p>8.3.1 In-Depth: High-Temperature Superconductors 429</p> <p>8.3.2 Lattice Enthalpies and the Born–Haber Cycle 430</p> <p>8.3.3 Ionic Radii and Pauling’s Rules 436</p> <p>8.3.4 In-Depth: the Silicates 449</p> <p>8.3.5 Defects in Crystals 450</p> <p>8.4 Types of Crystalline Solids 453</p> <p>8.4.1 Intermediate Types of Bonding in Solids 457</p> <p>Exercises 465</p> <p>Bibliography 475</p> <p><b>Chapter 9 Chemical Structure and Reactivity 477</b></p> <p>9.1 Acid–Base Chemistry 478</p> <p>9.1.1 Definitions of Acids and Bases 478</p> <p>9.1.2 Measuring the Strengths of Acids and Bases 485</p> <p>9.1.3 Factors Affecting the Strengths of Acids and Bases 489</p> <p>9.1.4 Pearson’s Hard–Soft Acid–Base Theory 495</p> <p>9.1.5 The Relationship Between HSAB Theory and FMO Theory 497</p> <p>9.2 Redox Chemistry 499</p> <p>9.2.1 The Relationship Between Acid–Base and Redox Chemistry 499</p> <p>9.2.2 Rationalizing Trends in Standard Reduction Potentials 500</p> <p>9.2.3 Quantum Structure Property Relationships 505</p> <p>9.2.4 The Drago–Wayland Parameters 507</p> <p>9.3 A Generalized View of Chemical Reactivity 509</p> <p>Exercises 515</p> <p>Bibliography 519</p> <p><b>Chapter 10 Coordination Chemistry 521</b></p> <p>10.1 An Overview of Coordination Chemistry 522</p> <p>10.1.1 The Historical Development of Coordination Chemistry 523</p> <p>10.1.2 Types of Ligands and Proper Nomenclature 525</p> <p>10.1.3 Stability Constants 527</p> <p>10.1.4 Isomers 531</p> <p>10.1.5 Common Coordination Geometries 534</p> <p>10.1.6 In-Depth: Five-Coordinate Compounds 537</p> <p>10.1.7 The Shapes of the d-Orbitals 540</p> <p>10.2 Models of Bonding in Coordination Compounds 541</p> <p>10.2.1 Crystal Field Theory 541</p> <p>10.2.2 Ligand Field Theory 555</p> <p>10.2.3 Quantitative Measures of LF Strength 562</p> <p>10.3 Electronic Spectroscopy of Coordination Compounds 572</p> <p>10.3.1 Term Symbols 572</p> <p>10.3.2 Tanabe–Sugano Diagrams 578</p> <p>10.3.3 Electronic Absorptions and the Selection Rules 584</p> <p>10.3.4 Using Tanabe–Sugano Diagrams to Interpret or Predict Electronic Spectra 587</p> <p>10.3.5 The Effect of Reduced Symmetry on Electronic Transitions 593</p> <p>10.3.6 The Jahn–Teller Effect 594</p> <p>10.3.7 Charge Transfer Transitions 596</p> <p>10.3.8 Magnetic Properties of Coordination Compounds 598</p> <p>10.3.9 Diamagnetism 601</p> <p>10.3.10 Paramagnetism 602</p> <p>10.3.11 Antiferromagnetism 602</p> <p>10.3.12 Ferromagnetism 603</p> <p>10.3.13 Ferrimagnetism 604</p> <p>Exercises 605</p> <p>Bibliography 610</p> <p><b>Chapter 11 Reactions of Coordination Compounds 613</b></p> <p>11.1 An Introduction to Kinetics and Reaction Coordinate Diagrams 613</p> <p>11.1.1 Zero-Order Reactions 614</p> <p>11.1.2 First-Order Reactions (Irreversible) 615</p> <p>11.1.3 First-Order Reactions (Reversible and Coming to Equilibrium) 616</p> <p>11.1.4 Simple Second-Order Reactions (Irreversible) 617</p> <p>11.1.5 Complex Second-Order Reactions (Reversible and Coming to Equilibrium) 617</p> <p>11.1.6 Complex Second-Order Reactions (Irreversible) 618</p> <p>11.1.7 Pseudo First-Order Reactions 618</p> <p>11.1.8 Consecutive First-Order Reactions and the Steady-State Approximation 619</p> <p>11.1.9 Competing Mechanisms 619</p> <p>11.1.10 Summary of the Common Rate Laws 620</p> <p>11.1.11The Arrhenius Equation 620</p> <p>11.1.12 Activation Parameters 621</p> <p>11.2 Octahedral Substitution Reactions 623</p> <p>11.2.1 Associative (A) Mechanisms 624</p> <p>11.2.2 Interchange (I) Mechanisms 624</p> <p>11.2.3 Dissociative (D) Mechanisms 625</p> <p>11.2.4 Acid and Base Catalysis 628</p> <p>11.2.5 Ligand Field Activation Energies 629</p> <p>11.3 Square Planar Substitution Reactions 631</p> <p>11.3.1 The Trans Effect 635</p> <p>11.3.2 The Effects of the Leaving Group and the Nucleophile 637</p> <p>11.3.3 MOT and Square Planar Substitution 638</p> <p>11.4 Electron Transfer Reactions 640</p> <p>11.4.1 Outer-Sphere Electron Transfer 641</p> <p>11.4.2 The Franck–Condon Principle 641</p> <p>11.4.3 Marcus Theory 645</p> <p>11.4.4 Inner-Sphere Electron Transfer 648</p> <p>11.4.5 Mixed-Valence Compounds 652</p> <p>Exercises 655</p> <p>Bibliography 657</p> <p><b>Chapter 12 Organometallic Chemistry 659</b></p> <p>12.1 Introduction to Organometallic Chemistry 659</p> <p>12.2 Electron Counting and the 18-Electron Rule 660</p> <p>12.3 Carbonyl Ligands 663</p> <p>12.4 Nitrosyl Ligands 668</p> <p>12.5 Hydride and Dihydrogen Ligands 670</p> <p>12.6 Phosphine Ligands 672</p> <p>12.7 Ethylene and Related Ligands 674</p> <p>12.8 Cyclopentadiene and Related Ligands 678</p> <p>12.9 Carbenes, Carbynes, and Carbidos 682</p> <p>Exercises 684</p> <p>Bibliography 687</p> <p><b>Chapter 13 Reactions of Organometallic Compounds 689</b></p> <p>13.1 Some General Principles 689</p> <p>13.2 Organometallic Reactions Involving Changes at the Metal 690</p> <p>13.2.1 Ligand Substitution Reactions 690</p> <p>13.2.2 Oxidative Addition and Reductive Elimination 692</p> <p>13.3 Organometallic Reactions Involving Changes at the Ligand 705</p> <p>13.3.1 Insertion and Elimination Reactions 705</p> <p>13.3.2 Nucleophilic Attack on the Ligands 709</p> <p>13.3.3 Electrophilic Attack on the Ligands 710</p> <p>13.4 Metathesis Reactions 711</p> <p>13.4.1 π-Bond Metathesis 711</p> <p>13.4.2 Ziegler–Natta Polymerization of Alkenes 712</p> <p>13.4.3 σ-Bond Metathesis 713</p> <p>13.5 A Summary of Organometallic Reaction Mechanisms 714</p> <p>13.6 Organometallic Catalytic Cycles 714</p> <p>13.6.1 Catalytic Hydrogenation 716</p> <p>13.6.2 Hydroformylation 717</p> <p>13.6.3 The Wacker–Smidt Process 719</p> <p>13.6.4 The Monsanto Acetic Acid Process 720</p> <p>13.6.5 Palladium-Catalyzed Cross-Coupling Mechanisms 721</p> <p>13.7 The Isolobal Analogy and the Relationship to Main Group Chemistry 725</p> <p>13.8 Closing Remarks 728</p> <p>Exercises 729</p> <p>Bibliography 732</p> <p>Appendix: A Derivation of the Classical Wave Equation 733</p> <p>Bibliography 734</p> <p>Appendix: B Derivation of the Schrödinger Equation 735</p> <p>Appendix: C Postulates of Quantum Mechanics 739</p> <p>Bibliography 741</p> <p>Appendix: D Atomic Term Symbols and Spin–Orbit Coupling 743</p> <p>Extracting Term Symbols Using Russell–Saunders Coupling 744</p> <p>Extracting Term Symbols Using jj Coupling 747</p> <p>Correlation Between RS (LS) Coupling and jj Coupling 749</p> <p>Appendix: E Character Tables 751</p> <p>Bibliography 763</p> <p>Appendix: F Direct Product Tables 765</p> <p>Bibliography 769</p> <p>Appendix: G Reducing Representations by the Process of Diagonalization 771</p> <p>Appendix: H Correlation Tables 775</p> <p>Bibliography 781</p> <p>Appendix: I The Harmonic Oscillator Model 783</p> <p>Bibliography 786</p> <p>Appendix: J Molecular Term Symbols 787</p> <p>Bibliography 789</p> <p>Appendix: K The 230 Space Groups 791</p> <p>Bibliography 795</p> <p>Index 797</p>
<p><b>Brian W. Pfennig, PhD,</b> has 25 years of experience teaching advanced general chemistry, inorganic chemistry, and organometallic photochemistry at colleges including Franklin and Marshall, Haverford, Vassar, and Ursinus.</p>
<p><b>Discover the foundational <i>principles of inorganic chemistry </i>with this intuitively organized new edition of a celebrated textbook</b></p> <p>In the newly revised Second Edition of <i>Principles of Inorganic Chemistry</i>, experienced researcher and chemist Dr. Brian W. Pfennig delivers an accessible and engaging exploration of inorganic chemistry perfect for sophomore-level students. This redesigned book retains all of the rigor of the first edition but reorganizes it to assist readers with learning and retention. In-depth boxed sections include original mathematical derivations for more advanced students, while topics like atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams are all covered. <p>Readers will find many worked examples throughout the text, as well as numerous unanswered problems at varying levels of difficulty. Informative, colorful illustrations also help to highlight and explain the concepts discussed within. <p>The new edition includes an increased emphasis on the comparison of the strengths and weaknesses of different chemical models, the interconnectedness of valence bond theory and molecular orbital theory, as well as a more thorough discussion of the atoms in molecules topological model. <p>Readers will also find: <ul><li>A thorough introduction to and treatment of group theory, with an emphasis on its applications to chemical bonding and spectroscopy</li> <li>A comprehensive exploration of chemical bonding that compares and contrasts the traditional classification of ionic, covalent, and metallic bonding</li> <li>In-depth examinations of atomic and molecular orbitals and a nuanced discussion of the interrelationship between VBT, MOT, and band theory</li> <li>A section on the relationship between a molecule’s structure and bonding and its chemical reactivity</li></ul> <p>With its in-depth boxed discussions, this textbook is also ideal for senior undergraduate and first-year graduate students in inorganic chemistry, <i>Principles of Inorganic Chemistry</i> is a must-have resource for anyone seeking a principles-based approach with theoretical depth. Furthermore, it will be useful for students of physical chemistry, materials science, and chemical physics.

Diese Produkte könnten Sie auch interessieren:

Lanthanide and Actinide Chemistry
Lanthanide and Actinide Chemistry
von: Simon Cotton
PDF ebook
50,99 €
Mass Spectrometry of Inorganic and Organometallic Compounds
Mass Spectrometry of Inorganic and Organometallic Compounds
von: William Henderson, J. Scott McIndoe
PDF ebook
59,99 €
Neurodegenerative Diseases and Metal Ions, Volume 1
Neurodegenerative Diseases and Metal Ions, Volume 1
von: Astrid Sigel, Helmut Sigel, Roland K. O. Sigel
PDF ebook
228,99 €