Details

Design of Highway Bridges


Design of Highway Bridges

An LRFD Approach
4. Aufl.

von: Richard M. Barker, Jay A. Puckett

144,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.03.2021
ISBN/EAN: 9781119646334
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The latest in bridge design and analysis—revised to reflect the eighth edition of the AASHTO LRFD specifications</b></p> <p><i>Design of Highway Bridges: An LRFD Approach, 4th Edition</i>, offers up-to-date coverage of engineering fundamentals for the design of short- and medium-span bridges. Fully updated to incorporate the 8<sup>th</sup> Edition of the AASHTO Load and Resistance Factor Design Specifications, this invaluable resource offers civil engineering students and practitioners a a comprehensive introduction to the latest construction methods and materials in bridge design, including Accelerated Bridge Construction (ABC), ultra high-performance concrete (UHPC), and Practical 3D Rigorous Analysis. This updated Fourth Edition offers:</p> <ul> <li>Dozens of end-of-chapter worked problems and design examples based on the latest AASHTO LRFD Specifications.</li> <li>Access to a Solutions Manual and multiple bridge plans including cast-in-place, precast concrete, and steel multi-span available on the Instructor’s companion website</li> </ul> <p>From gaining base knowledge of the AASHTO LRFD specifications to detailed guidance on highway bridge design, <i>Design of Highway Bridges</i> is the one-stop reference for civil engineering students and a key study resource for those seeking engineering licensure through the Principles and Practice of Engineering (PE) exam.</p>
<p><b>Part I General Aspects of Bridge Design</b></p> <p><b>Chapter 1 Introduction To Bridge Engineering 3</b></p> <p>1.1 A Bridge Is the Key Element in a Transportation System 3</p> <p>1.2 Bridge Engineering in the United States 3</p> <p>1.2.1 Stone Arch Bridges 3</p> <p>1.2.2 Wooden Bridges 4</p> <p>1.2.3 Metal Truss Bridges 6</p> <p>1.2.4 Suspension Bridges 8</p> <p>1.2.5 Metal Arch Bridges 10</p> <p>1.2.6 Reinforced Concrete Bridges 12</p> <p>1.2.7 Girder Bridges 13</p> <p>1.2.8 Closing Remarks 14</p> <p>1.3 Bridge Engineer—Planner, Architect, Designer, Constructor, and Facility Manager 15</p> <p>References 15</p> <p>Problems 15</p> <p><b>Chapter 2 Specifications and Bridge Failures 17</b></p> <p>2.1 Bridge Specifications 17</p> <p>2.2 Implication of Bridge Failures on Practice 18</p> <p>2.2.1 Silver Bridge, Point Pleasant, West Virginia, December 15, 1967 18</p> <p>2.2.2 I-5 and I-210 Interchange, San Fernando, California, February 9, 1971 19</p> <p>2.2.3 Sunshine Skyway, Tampa Bay, Florida, May 9, 1980 21</p> <p>2.2.4 Mianus River Bridge, Greenwich, Connecticut, June 28, 1983 22</p> <p>2.2.5 Schoharie Creek Bridge, Amsterdam, New York, April 5, 1987 24</p> <p>2.2.6 Cypress Viaduct, Loma Prieta Earthquake, October 17, 1989 25</p> <p>2.2.7 I-35W Bridge, Minneapolis, Minnesota, August 1, 2007 26</p> <p>2.2.8 Failures during Construction 30</p> <p>2.2.9 Failures Continue and Current Data 30</p> <p>2.2.10 Evolving Bridge Engineering Practice 51</p> <p>References 51</p> <p>Problems 51</p> <p><b>Chapter 3 Bridge Aesthetics 53</b></p> <p>3.1 Introduction 53</p> <p>3.2 Nature of the Structural Design Process 53</p> <p>3.2.1 Description and Justification 53</p> <p>3.2.2 Public and Personal Knowledge 54</p> <p>3.2.3 Regulation 54</p> <p>3.2.4 Design Process 55</p> <p>3.3 Aesthetics in Bridge Design 56</p> <p>3.3.1 Definition of Aesthetics 56</p> <p>3.3.2 Qualities of Aesthetic Design 57</p> <p>3.3.3 Practical Guidelines for Medium- and Short-Span Bridges 67</p> <p>3.3.4 Computer Modeling 75</p> <p>3.3.5 Web References 79</p> <p>3.3.6 Closing Remarks on Aesthetics 79</p> <p>References 79</p> <p>Problems 80</p> <p><b>Chapter 4 Bridge Types and Selection 81</b></p> <p>4.1 Main Structure below the Deck Line 81</p> <p>4.2 Main Structure above the Deck Line 81</p> <p>4.3 Main Structure Coincides with the Deck Line 84</p> <p>4.4 Closing Remarks on Bridge Types 87</p> <p>4.5 Selection of Bridge Type 87</p> <p>4.5.1 Factors To Be Considered 87</p> <p>4.5.2 Bridge Types Used for Different Span Lengths 89</p> <p>4.5.3 Closing Remarks 92</p> <p>References 93</p> <p>Problems 93</p> <p><b>Chapter 5 Design Limit States 95</b></p> <p>5.1 Introduction 95</p> <p>5.2 Development of Design Procedures 95</p> <p>5.2.1 Allowable Stress Design 95</p> <p>5.2.2 Variability of Loads 96</p> <p>5.2.3 Shortcomings of Allowable Stress Design 96</p> <p>5.2.4 Load and Resistance Factor Design 97</p> <p>5.3 Design Limit States 97</p> <p>5.3.1 General 97</p> <p>5.3.2 Service Limit State 99</p> <p>5.3.3 Fatigue and Fracture Limit State 99</p> <p>5.3.4 Strength Limit State 100</p> <p>5.3.5 Extreme Event Limit State 101</p> <p>5.3.6 Construction Limit States 102</p> <p>5.4 Closing Remarks 102</p> <p>References 102</p> <p>Problems 103</p> <p><b>Chapter 6 Principles of Probabilistic Design 105</b></p> <p>6.1 Introduction 105</p> <p>6.1.1 Frequency Distribution and Mean Value 105</p> <p>6.1.2 Standard Deviation 105</p> <p>6.1.3 Probability Density Functions 106</p> <p>6.1.4 Bias Factor 107</p> <p>6.1.5 Coefficient of Variation 107</p> <p>6.1.6 Probability of Failure 108</p> <p>6.1.7 Safety Index <i>𝛽 </i>109</p> <p>6.2 Calibration of LRFD Code 111</p> <p>6.2.1 Overview of the Calibration Process 111</p> <p>6.2.2 Calibration Using Reliability Theory 111</p> <p>6.2.3 Calibration of Fitting with ASD 115</p> <p>6.3 Closing Remarks 116</p> <p>References 116</p> <p>Problems 116</p> <p><b>Chapter 7 Geometric Design Considerations 119</b></p> <p>7.1 Introduction to Geometric Roadway Considerations 119</p> <p>7.2 Roadway Widths 119</p> <p>7.3 Vertical Clearances 120</p> <p>7.4 Interchanges 120</p> <p>References 121</p> <p>Problem 121</p> <p><b>Part II Loads and Analysis</b></p> <p><b>Chapter 8 Loads 125</b></p> <p>8.1 Introduction 125</p> <p>8.2 Gravity Loads 125</p> <p>8.2.1 Permanent Loads 125</p> <p>8.2.2 Transient Loads 126</p> <p>8.3 Lateral Loads 138</p> <p>8.3.1 Fluid Forces 138</p> <p>8.3.2 Seismic Loads 141</p> <p>8.3.3 Ice Forces 145</p> <p>8.4 Forces Due to Deformations 150</p> <p>8.4.1 Temperature 150</p> <p>8.4.2 Creep and Shrinkage 152</p> <p>8.4.3 Settlement 152</p> <p>8.5 Collision Loads 152</p> <p>8.5.1 Vessel Collision 152</p> <p>8.5.2 Rail Collision 152</p> <p>8.5.3 Vehicle Collision 152</p> <p>8.6 Blast Loading 152</p> <p>8.7 Summary 153</p> <p>References 153</p> <p>Problems 154</p> <p><b>Chapter 9 Influence Functions and Girder-Line Analysis 155</b></p> <p>9.1 Introduction 155</p> <p>9.2 Definition 155</p> <p>9.3 Statically Determinate Beams 156</p> <p>9.3.1 Concentrated Loads 156</p> <p>9.3.2 Uniform Loads 158</p> <p>9.4 Muller–Breslau Principle 159</p> <p>9.4.1 Betti’s Theorem 159</p> <p>9.4.2 Theory of Muller–Breslau Principle 160</p> <p>9.4.3 Qualitative Influence Functions 161</p> <p>9.5 Statically Indeterminate Beams 161</p> <p>9.5.1 Integration of Influence Functions 164</p> <p>9.5.2 Relationship between Influence Functions 164</p> <p>9.5.3 Muller–Breslau Principle for End Moments 167</p> <p>9.5.4 Automation by Matrix Structural Analysis 168</p> <p>9.6 Normalized Influence Functions 170</p> <p>9.7 AASHTO Vehicle Loads 170</p> <p>9.8 Influence Surfaces 178</p> <p>9.9 Summary 179</p> <p>References 180</p> <p>Problems 180</p> <p><b>Chapter 10 System Analysis—Introduction 183</b></p> <p>10.1 Introduction 183</p> <p>10.2 Safety of Methods 185</p> <p>10.2.1 Equilibrium for Safe Design 185</p> <p>10.2.2 Stress Reversal and Residual Stress 187</p> <p>10.2.3 Repetitive Overloads 188</p> <p>10.2.4 Fatigue and Serviceability 191</p> <p>10.3 Summary 192</p> <p>References 192</p> <p>Problem 192</p> <p><b>Chapter 11 System Analysis—Gravity Loads 193</b></p> <p>11.1 Slab Girder Bridges 193</p> <p>11.2 Slab Bridges 215</p> <p>11.3 Slabs in Slab Girder Bridges 219</p> <p>11.4 Box Girder Bridges 228</p> <p>11.5 Closing Remarks 234</p> <p>References 234</p> <p>Problems 235</p> <p><b>Chapter 12 System Analysis—Lateral, Temperature, Shrinkage, and Prestress Loads 237</b></p> <p>12.1 Lateral Load Analysis 237</p> <p>12.1.1 Wind Loads 237</p> <p>12.1.2 Seismic Load Analysis 238</p> <p>12.2 Temperature, Shrinkage, and Prestress 240</p> <p>12.2.1 General 240</p> <p>12.2.2 Prestressing 241</p> <p>12.2.3 Temperature Effects 241</p> <p>12.2.4 Shrinkage and Creep 244</p> <p>12.3 Closing Remarks 244</p> <p>References 245</p> <p><b>Part III Concrete Bridges</b></p> <p><b>Chapter 13 Reinforced Concrete Material Response and Properties 249</b></p> <p>13.1 Introduction 249</p> <p>13.2 Reinforced and Prestressed Concrete Material Response 249</p> <p>13.3 Constituents of Fresh Concrete 250</p> <p>13.4 Properties of Hardened Concrete 252</p> <p>13.4.1 Short-Term Properties of Concrete 252</p> <p>13.4.2 Long-Term Properties of Concrete 257</p> <p>13.5 Properties of Steel Reinforcement 261</p> <p>13.5.1 Nonprestressed Steel Reinforcement 262</p> <p>13.5.2 Prestressing Steel 263</p> <p>References 265</p> <p>Problems 266</p> <p><b>Chapter 14 Behavior of Reinforced Concrete Members 267</b></p> <p>14.1 Limit States 267</p> <p>14.1.1 Service Limit State 267</p> <p>14.1.2 Fatigue Limit State 270</p> <p>14.1.3 Strength Limit State 273</p> <p>14.1.4 Extreme Event Limit State 274</p> <p>14.2 Flexural Strength of Reinforced Concrete Members 275</p> <p>14.2.1 Depth to Neutral Axis for Beams with Bonded Tendons 275</p> <p>14.2.2 Depth to Neutral Axis for Beams with Unbonded Tendons 277</p> <p>14.2.3 Nominal Flexural Strength 278</p> <p>14.2.4 Ductility, Maximum Tensile Reinforcement, and Resistance Factor Adjustment 280</p> <p>14.2.5 Minimum Tensile Reinforcement 283</p> <p>14.2.6 Loss of Prestress 283</p> <p>14.3 Shear Strength of Reinforced Concrete Members 288</p> <p>14.3.1 Variable-Angle Truss Model 289</p> <p>14.3.2 Modified Compression Field Theory 290</p> <p>14.3.3 Shear Design Using Modified Compression Field Theory 297</p> <p>14.4 Closing Remarks 305</p> <p>References 305</p> <p>Problems 306</p> <p><b>Chapter 15 Concrete Barrier Strength and Deck Design 307</b></p> <p>15.1 Concrete Barrier Strength 307</p> <p>15.1.1 Strength of Uniform Thickness Barrier Wall 307</p> <p>15.1.2 Strength of Variable Thickness Barrier Wall 309</p> <p>15.1.3 Crash Testing of Barriers 309</p> <p>15.2 Concrete Deck Design 309</p> <p>References 326</p> <p>Problems 326</p> <p><b>Chapter 16 Concrete Design Examples 327</b></p> <p>16.1 Solid Slab Bridge Design 327</p> <p>16.2 T-Beam Bridge Design 335</p> <p>16.3 Prestressed Girder Bridge 353</p> <p>References 371</p> <p><b>Part IV Steel Bridges</b></p> <p><b>Chapter 17 Steel Bridges 375</b></p> <p>17.1 Introduction 375</p> <p>17.2 Material Properties 375</p> <p>17.2.1 Steelmaking Process: Traditional 375</p> <p>17.2.2 Steelmaking Process: Mini Mills 376</p> <p>17.2.3 Steelmaking Process: Environmental Considerations 376</p> <p>17.2.4 Production of Finished Products 377</p> <p>17.2.5 Residual Stresses 377</p> <p>17.2.6 Heat Treatments 378</p> <p>17.2.7 Classification of Structural Steels 378</p> <p>17.2.8 Effects of Repeated Stress (Fatigue) 383</p> <p>17.2.9 Brittle Fracture Considerations 384</p> <p>17.3 Summary 386</p> <p>References 386</p> <p>Problem 386</p> <p><b>Chapter 18 Limit States and General Requirements 387</b></p> <p>18.1 Limit States 387</p> <p>18.1.1 Service Limit State 387</p> <p>18.1.2 Fatigue and Fracture Limit State 388</p> <p>18.1.3 Strength Limit States 399</p> <p>18.1.4 Extreme Event Limit State 399</p> <p>18.2 General Design Requirements 399</p> <p>18.2.1 Effective Length of Span 400</p> <p>18.2.2 Dead-Load Camber 400</p> <p>18.2.3 Minimum Thickness of Steel 400</p> <p>18.2.4 Diaphragms and Cross Frames 400</p> <p>18.2.5 Lateral Bracing 400</p> <p>References 401</p> <p>Problems 401</p> <p><b>Chapter 19 Steel Component Resistance 403</b></p> <p>19.1 Tensile Members 403</p> <p>19.1.1 Types of Connections 403</p> <p>19.1.2 Tensile Resistance—Specifications 403</p> <p>19.1.3 Strength of Connections for Tension Members 406</p> <p>19.2 Compression Members 406</p> <p>19.2.1 Column Stability—Behavior 406</p> <p>19.2.2 Inelastic Buckling—Behavior 408</p> <p>19.2.3 Compressive Resistance—Specifications 409</p> <p>19.2.4 Connections for Compression Members 412</p> <p>19.3 I-Sections in Flexure 412</p> <p>19.3.1 General 412</p> <p>19.3.2 Yield Moment and Plastic Moment 415</p> <p>19.3.3 Stability Related to Flexural Resistance 421</p> <p>19.3.4 Limit States 432</p> <p>19.3.5 Summary of I-Sections in Flexure 434</p> <p>19.3.6 Closing Remarks on I-Sections in Flexure 434</p> <p>19.4 Shear Resistance of I-Sections 438</p> <p>19.4.1 Beam Action Shear Resistance 438</p> <p>19.4.2 Tension Field Action Shear Resistance 440</p> <p>19.4.3 Combined Shear Resistance 442</p> <p>19.4.4 Shear Resistance of Unstiffened Webs 443</p> <p>19.5 Shear Connectors 444</p> <p>19.5.1 Fatigue Limit State for Stud Connectors 444</p> <p>19.5.2 Strength Limit State for Stud Connectors 445</p> <p>19.6 Stiffeners 449</p> <p>19.6.1 Transverse Intermediate Stiffeners 449</p> <p>19.6.2 Bearing Stiffeners 451</p> <p>References 453</p> <p>Problems 453</p> <p><b>Chapter 20 Steel Design Examples 455</b></p> <p>20.1 Noncomposite Rolled Steel Beam Bridge 455</p> <p>20.2 Composite Rolled Steel Beam Bridge 465</p> <p>20.3 Multiple-Span Composite Steel Plate Girder Beam Bridge 473</p> <p>20.3.1 Problem Statement Example 20.3 473</p> <p>References 509</p> <p>Appendix A Influence Functions For Deck Analysis 511</p> <p>Appendix B Transverse Deck Moments Per AASHTO Appendix A4 513</p> <p>Appendix C Metal Reinforcement Information 515</p> <p>Appendix D Refined Estimate of Time-Dependent Losses 517</p> <p>References 522</p> <p>Appendix E NCHRP 12-33 Project Team 523</p> <p>Task Groups 523</p> <p>Appendix F Live-Load Distribution—Rigid Method 525</p> <p>Index 527</p>
<p>The late <b>RICHARD M. BARKER, PhD, PE</b>, was Professor Emeritus of Civil and Environmental Engineering at Virginia Polytechnic Institute and State ­University. Dr. Barker spent more than fifty years as a structural designer, project engineer, researcher, and teacher.</p><p><b>JAY A. PUCKETT, PhD, PE</b>, is a Charles W. and Margre H. Durham Distinguished Professor and Director of The Durham School of Architectural Engineering and Construction at the University of Nebraska-Lincoln. Dr. ­Puckett is also an Emeritus Professor at the University of Wyoming and President of BridgeTech, Inc. in Laramie, WY, a consulting firm that specializes in software development for bridge engineering.</p>
<p><b>The latest in bridge design and analysis—revised to reflect the Eighth Edition of the AASHTO LRFD specifications</b></p><p><i>Design of Highway Bridges: An LRFD Approach, Fourth Edition</i>, offers up-to-date coverage of engineering fundamentals for the design of short- and medium-span bridges. Fully updated to incorporate the 8<sup>th</sup> Edition of the AASHTO Load and Resistance Factor Design Specifications, this invaluable resource offers civil engineering students and practitioners a comprehensive introduction to the latest construction methods and materials in bridge design, including Accelerated Bridge Construction (ABC), Ultra-High Performance Concrete (UHPC), and Practical 3D Rigorous Analysis. This updated Fourth Edition offers:</p><ul><li>Dozens of end-of-chapter worked problems and design examples based on the latest AASHTO LRFD Specifications.</li><li>Access to a Solutions Manual and multiple bridge plans including cast-in-place, precast concrete, and steel multi-span available on the Instructor’s companion website.</li></ul><p>From gaining base knowledge of the AASHTO LRFD specifications to detailed guidance on highway bridge design, <i>Design of Highway Bridges</i> is the one-stop reference for civil engineering students and a key study resource for those seeking engineering licensure through the Principles and Practice of Engineering (PE) exam.</p>

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €