Details

Handbook of Aggregation-Induced Emission, Volume 3


Handbook of Aggregation-Induced Emission, Volume 3

Emerging Applications
1. Aufl.

von: Youhong Tang, Ben Zhong Tang

201,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 06.04.2022
ISBN/EAN: 9781119643029
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The third volume of the ultimate reference on the science and applications of aggregation-induced emission </b></p> <p><i>The Handbook of Aggregation-Induced Emission</i> explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. </p> <p>In <i>Volume 3: Emerging Applications,</i> the editors address the applications of AIEgens in several fields, including bio-imaging, fluorescent molecular switches, electrochromic materials, regenerative medicine, detection of organic volatile contaminants, hydrogels, and organogels. Topics covered include:  </p> <ul> <li>AIE-active emitters and their applications in OLEDs, and circularly polarized luminescence of aggregation-induced emission materials </li> <li>AIE polymer films for optical sensing and energy harvesting, aggregation-induced electrochemiluminescence, and mechanoluminescence materials with aggregation-induced emission </li> <li>Dynamic super-resolution fluorescence imaging based on photoswitchable fluorescent spiropyran </li> <li>Visualization of polymer microstructures </li> <li>Self-assembly of micelle and vesicles </li> <li>New strategies for biosensing and cell imaging </li> </ul> <p>Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences. </p>
<p>List of Contributors xv</p> <p>Preface xxi</p> <p>Preface to Volume 3: Applications xxiii</p> <p><b>1 AIE-active Emitters and Their Applications in OLEDs </b><b>1<br /></b><i>Qiang Wei, Jiasen Zhang, and Ziyi Ge</i></p> <p>1.1 Introduction 1</p> <p>1.2 Conventional Aggregation-induced Emissive Emitters 4</p> <p>1.2.1 Blue Aggregation-induced Emissive Emitters 4</p> <p>1.2.2 Green Aggregation-induced Emissive Emitters 7</p> <p>1.2.3 Red Aggregation-induced Emissive Emitters 8</p> <p>1.2.4 Aggregation-induced Emission-active Emitters-Based White OLED 9</p> <p>1.3 High Exciton Utilizing Efficient Aggregation-induced Emissive Materials 13</p> <p>1.3.1 Aggregation-induced Phosphorescent Emissive Emitters 13</p> <p>1.3.2 Aggregation-induced Delayed Fluorescent Emitters 14</p> <p>1.3.3 Hybridized Local and Charge Transfer Materials Aggregation-induced Emissive Emitters 15</p> <p>1.4 Conclusion and Outlook 16</p> <p>References 18</p> <p><b>2 Circularly Polarized Luminescence of Aggregation-induced Emission Materials </b><b>27<br /></b><i>Fuwei Gan, Chengshuo Shen, and Huibin Qiu</i></p> <p>2.1 Introduction of Circularly Polarized Luminescence 27</p> <p>2.2 Small Organic Molecules 28</p> <p>2.3 Macrocycles and Cages 33</p> <p>2.4 Metal Complexes and Clusters 35</p> <p>2.5 Supramolecular Systems 37</p> <p>2.6 Polymers 46</p> <p>2.7 Liquid Crystals 50</p> <p>2.8 Conclusions and Outlook 51</p> <p>References 53</p> <p><b>3 AIE Polymer Films for Optical Sensing and Energy Harvesting </b><b>57<br /></b><i>Andrea Pucci</i></p> <p>3.1 Introduction 57</p> <p>3.2 Working Mechanism of AIEgens 59</p> <p>3.3 AIE-doped Polymer Films for Optical Sensing 61</p> <p>3.3.1 Mechanochromic AIE-doped Polymer Films 61</p> <p>3.3.2 Thermochromic AIE-doped Polymer Films 65</p> <p>3.3.3 Vapochromic AIE-doped Polymer Films 67</p> <p>3.4 AIE-doped Polymer Films for Energy Harvesting 70</p> <p>3.5 Conclusions 72</p> <p>References 73</p> <p><b>4 Aggregation-induced Electrochemiluminescence </b><b>79<br /></b><i>Serena Carrara</i></p> <p>4.1 Introduction: From Electrochemiluminescence to AI-ECL 79</p> <p>4.1.1 Mechanisms of AI-ECL 81</p> <p>4.2 Classification and Properties of AI-ECL luminophores 85</p> <p>4.2.1 Metal Transition Complexes 85</p> <p>4.2.2 Polymers and Polymeric Nanoaggregates 87</p> <p>4.2.3 Organic Molecules 90</p> <p>4.2.4 Hybrid and Functional Materials 93</p> <p>4.3 Applications and Outlooks 95</p> <p>References 98</p> <p><b>5 Mechanoluminescence Materials with Aggregation-induced Emission </b><b>105<br /></b><i>Zhiyong Yang, Juan Zhao, Eethamukkala Ubba, Zhan Yang, Yi Zhang, and Zhenguo Chi</i></p> <p>5.1 Introduction 105</p> <p>5.2 Mechanoluminescence of Organic Molecules Not Mentioned AIE 107</p> <p>5.3 ML–AIE Materials 117</p> <p>5.4 Summary and Outlook 132</p> <p>References 133</p> <p><b>6 Dynamic Super-resolution Fluorescence Imaging Based on Photo-switchable Fluorescent Spiropyran </b><b>139<br /></b><i>Cheng Fan, Chong Li, and Ming-Qiang Zhu</i></p> <p>6.1 Introduction 139</p> <p>6.2 Materials and Methods 141</p> <p>6.2.1 Materials 141</p> <p>6.2.2 The Preparation of PSt-<i>b</i>-PEO Block Copolymer Micelles 141</p> <p>6.2.3 Super-resolution Microscope 141</p> <p>6.2.4 Super-resolution Imaging 141</p> <p>6.3 Super-resolution Imaging of Block Copolymer Self-assembly 141</p> <p>6.4 Optimization of Spatial Resolution 144</p> <p>6.5 Temporal Resolution 145</p> <p>6.6 Dynamic Super-resolution Imaging 147</p> <p>6.7 Conclusion and Prospection 147</p> <p>References 149</p> <p><b>7 Visualization of Polymer Microstructures </b><b>151<br /></b><i>Shunjie Liu, Yuanyuan Li, Ting Han, Jacky W. Y. Lam, and Ben Zhong Tang</i></p> <p>7.1 Introduction 151</p> <p>7.2 Synthetic Polymers 152</p> <p>7.2.1 Polymer Self-assembly 152</p> <p>7.2.2 Polymerization Reaction 154</p> <p>7.2.3 Physical Process Visualization 155</p> <p>7.2.3.1 Glass Transition Temperature 155</p> <p>7.2.3.2 Solubility Parameter 157</p> <p>7.2.3.3 Crystallization 158</p> <p>7.2.3.4 Microphase Separation 158</p> <p>7.2.4 Stimuli Response 161</p> <p>7.2.4.1 Heat Response 161</p> <p>7.2.4.2 Humidity Response 162</p> <p>7.2.4.3 Other Response 164</p> <p>7.3 Biological Polymers 164</p> <p>7.3.1 DNA Synthesis 165</p> <p>7.3.2 DNA Sequence 165</p> <p>7.3.3 Protein Conformation 168</p> <p>7.3.4 Protein Fibrillation 169</p> <p>7.3.5 Other Process 171</p> <p>7.4 Summary and Perspective 172</p> <p>References 173</p> <p><b>8 Self-assembly of Aggregation-induced Emission Molecules into Micelles and Vesicles with Advantageous Applications </b><b>179<br /></b><i>Jinwan Qi, Jianbin Huang, and Yun Yan</i></p> <p>8.1 General Background of Micelles and Vesicles 179</p> <p>8.2 AIE Micelles 180</p> <p>8.2.1 General Strategies Leading to AIE Micelles 180</p> <p>8.2.1.1 Incorporating Tetraphenylethylene (TPE) Unit into Single-Chained Surfactants 180</p> <p>8.2.1.2 Incorporating Tetraphenylethylene (TPE) Unit into Gemini Surfactants 182</p> <p>8.2.1.3 Incorporating Platinum Complex into Amphiphiles 182</p> <p>8.2.1.4 Polymeric AIE Micelles 183</p> <p>8.2.1.5 Coassembled AIE Micelles 188</p> <p>8.2.2 Applications of AIE Micelles 190</p> <p>8.2.2.1 Untargeted Bioimaging 191</p> <p>8.2.2.2 Targeted Bioprobing 192</p> <p>8.2.2.3 Micellar Theranostics 193</p> <p>8.2.2.4 Sensing 197</p> <p>8.2.2.5 Visualization of Physical Chemistry Process 199</p> <p>8.3 AIE Vesicles 203</p> <p>8.3.1 AIE Vesicles Based on Synthetic Amphiphiles 203</p> <p>8.3.1.1 Synthetic Ionic Amphiphiles 203</p> <p>8.3.1.2 Synthetic Nonionic AIE Amphiphiles 203</p> <p>8.3.1.3 Synthetic Nonamphiphilic AIE Molecules 205</p> <p>8.3.2 Supramolecular AIE Vesicles 206</p> <p>8.3.2.1 AIE Vesicles Directed by Host–Guest Chemistry 208</p> <p>8.3.2.2 AIE Vesicles Based on Electrostatic Interactions 209</p> <p>8.3.2.3 AIE Vesicles Based on Coordination Interactions 209</p> <p>8.3.3 Applications of AIE Vesicles 210</p> <p>8.3.3.1 Cell Models 210</p> <p>8.3.3.2 Bioimaging 211</p> <p>8.3.3.3 Theranostics 212</p> <p>8.3.3.4 Light-harvesting 214</p> <p>8.3.3.5 Other Applications 216</p> <p>8.4 Summary and Outlooks 217</p> <p>References 217</p> <p><b>9 Vortex Fluidics-mediated Fluorescent Hydrogels with Aggregation-induced Emission Characteristics </b><b>221<br /></b><i>Javad Tavakoli and Youhong Tang</i></p> <p>9.1 Introduction 221</p> <p>9.2 Tunning the Size and Property of AIEgens, a New Approach to Create FL Hydrogels with Superior Properties 222</p> <p>9.3 AIEgens for Characterization of Hydrogels 231</p> <p>9.4 Conclusion 238</p> <p>References 238</p> <p><b>10 Design and Preparation of Stimuli-responsive AIE Fluorescent Polymers-based Probes for Cells Imaging </b><b>243<br /></b><i>Juan Qiao and Li Qi</i></p> <p>10.1 Introduction 243</p> <p>10.2 Design and Preparation Strategies for AIE–SRP Probes 246</p> <p>10.2.1 Mechanism of AIE–SRP Probes 246</p> <p>10.2.2 Stimuli-Responsive Polymers 247</p> <p>10.2.2.1 Thermal-Sensitive Polymers 247</p> <p>10.2.2.2 pH-Sensitive Polymers 247</p> <p>10.2.2.3 Photo-Sensitive polymers 247</p> <p>10.2.2.4 Protein-Sensitive Polymers 248</p> <p>10.2.3 AIE Dyes 249</p> <p>10.2.4 Combination of Stimuli-Sensitive Polymer and AIE Dyes 251</p> <p>10.2.4.1 Chemical Synthesis 251</p> <p>10.2.4.2 Physical Blending 256</p> <p>10.3 Application of AIE–SRP Probes 257</p> <p>10.3.1 Thermal-Sensitive Application 257</p> <p>10.3.2 pH-Sensitive Application 259</p> <p>10.3.3 Photo-Sensitive Application 260</p> <p>10.3.4 Protein-Sensitive Application 260</p> <p>10.3.5 MultiSensitive Application 260</p> <p>10.4 Summary and Prospect 262</p> <p>References 263</p> <p><b>11 AIE: New Strategies for Cell Imaging and Biosensing </b><b>269<br /></b><i>Tracey Luu, Bicheng Yao, and Yuning Hong</i></p> <p>11.1 Introduction 269</p> <p>11.2 Cellular Imaging 271</p> <p>11.2.1 Cytoplasma Membrane Imaging 272</p> <p>11.2.2 Mitochondria Imaging 273</p> <p>11.2.3 Lysosome Imaging 275</p> <p>11.2.4 Lipid Droplet Imaging 276</p> <p>11.2.5 Nucleus Imaging 277</p> <p>11.3 Biosensing 278</p> <p>11.3.1 Ions 279</p> <p>11.3.2 Lipids and Carbohydrates 281</p> <p>11.3.3 Amino Acids, Proteins, and Enzymes 283</p> <p>11.3.4 Nucleic Acids and Pathogens 286</p> <p>11.4 Conclusion 289</p> <p>References 289</p> <p><b>12 AIE-based Systems for Imaging and Image-guided Killing of Pathogens </b><b>297<br /></b><i>Jiangman Sun, Fang Hu, Yongjie Ma, Yufeng Li, Guan Wang, and Xinggui Gu</i></p> <p>12.1 Introduction 297</p> <p>12.2 Bacteria Imaging Based on AIEgens 298</p> <p>12.2.1 Broad-spectrum Bacterial Imaging and Identification 299</p> <p>12.2.2 Gram Positive and Gram Negative Bacteria Distinguishing 299</p> <p>12.2.3 Long-term Bacterial Tracking 303</p> <p>12.2.4 Live and Dead Bacteria Discrimination Based on AIEgens 304</p> <p>12.3 Bacteria-targeted Imaging and Ablation Based on AIEgens 305</p> <p>12.3.1 Surfactant-structure Based AIEgens for Bacterial Elimination 305</p> <p>12.3.2 Photodynamic Therapy for Bacterial Elimination 309</p> <p>12.3.2.1 Vancomycin-bacteria Interaction Mediated Photodynamic <i>Ablation </i>309</p> <p>12.3.2.2 Positive-charged AIE PS for Bacteria Ablation 311</p> <p>12.3.2.3 Metabolic Labeling-mediated Imaging and Photodynamic Ablation 313</p> <p>12.3.3 AIEgen with Antimicrobial Agents for Bacteria Elimination 315</p> <p>12.3.4 Biodegradable Biocides for Bacteria Elimination 315</p> <p>12.4 Bacterial Susceptibility Evaluation and Antibiotics Screening 315</p> <p>12.5 Sensors for Bacterial Detection Based on AIEgens 317</p> <p>12.5.1 Fluorescent Sensor Arrays 317</p> <p>12.5.2 Biosensors Constructed by Electrospun Fibers 319</p> <p>12.5.3 Micromotors for Bacterial Detection 320</p> <p>12.6 Conclusions and Perspectives 321</p> <p>References 321</p> <p><b>13 AIEgen-based Trackers for Cancer Research and Regenerative Medicine </b><b>329<br /></b><i>Chen Zhang and Kai Li</i></p> <p>13.1 Introduction 329</p> <p>13.2 AIEgens for Long-term Cancer Cell Tracking 330</p> <p>13.2.1 AIEgen-based Long-term Cell Trackers with Emission in the Visible Range 330</p> <p>13.2.2 AIEgen-based Long-term Cell Trackers with Near-infrared (NIR) Emission 334</p> <p>13.2.3 AIEgen-based Long-term Cell Trackers with Multiphoton Absorption 335</p> <p>13.2.4 AIEgen-based Hybrid or Multifunctional Systems for Cell Tracking 336</p> <p>13.3 AIEgens for Stem Cell-based Regenerative Medicine and Regeneration-related Process 338</p> <p>13.3.1 AIEgen-based Trackers for Adipose-derived Stem Cells 338</p> <p>13.3.2 AIEgen-based Trackers for Bone Marrow Stem Cells 340</p> <p>13.3.3 AIEgen-based Trackers for Embryo-related Cells 342</p> <p>13.3.4 AIEgens for Monitoring Biological Process in Regenerative Medicine 345</p> <p>13.3.5 AIEgen-based Nanocomplexes in Regenerative Medicine 346</p> <p>13.4 Conclusion 347</p> <p>References 350</p> <p><b>14 AIE-active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics </b><b>355<br /></b><i>Jianguo Wang and Guoyu Jiang</i></p> <p>14.1 Introduction 355</p> <p>14.2 AIE-active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics 356</p> <p>14.2.1 AIE-active Fluorescence Probes for Alkaline Phosphatase 356</p> <p>14.2.2 AIE-active Fluorescence Probes for Caspases 358</p> <p>14.2.3 AIE-active Fluorescence Probes for Cathepsin B 361</p> <p>14.2.4 AIE-active Fluorescence Probes for β-Galactosidase 363</p> <p>14.2.5 AIE-active Fluorescence Probes for γ-Glutamyltranspeptidase 365</p> <p>14.2.6 AIE-active Fluorescence Probes for Reductases 366</p> <p>14.2.6.1 AIE-active Fluorescence Probes for AzoR 366</p> <p>14.2.6.2 AIE-active Fluorescence Probes for NQO1 369</p> <p>14.2.6.3 AIE-active Fluorescence Probes for NTR 369</p> <p>14.2.6.4 AIE-active Fluorescence Probes for CYP450 Reductase 371</p> <p>14.2.7 AIE-active Fluorescence Probes for Chymase 371</p> <p>14.2.8 AIE-active Fluorescence Probes for Esterase 372</p> <p>14.2.8.1 AIE-active Fluorescence Probes for CaE 372</p> <p>14.2.8.2 AIE-active Fluorescence Probes for Lipase 375</p> <p>14.2.9 AIE-active Fluorescence Probes for Histone Deacetylase 376</p> <p>14.2.10 AIE-active Fluorescence Probes for MMP-2 379</p> <p>14.2.11 AIE-active Fluorescence Probes for Furin 380</p> <p>14.2.12 AIE-active Fluorescence Probes for Trypsin 380</p> <p>14.2.13 AIE-active Fluorescence Probes for Telomerase 385</p> <p>14.2.14 AIE-active Fluorescence Probes for DPP-4 386</p> <p>14.3 Summary and Outlook 387</p> <p>References 388</p> <p><b>15 AIE Nanoprobes for NIR-II Fluorescence In Vivo Functional Bioimaging </b><b>399<br /></b><i>Zhe Feng, Xiaoming Yu, and Jun Qian</i></p> <p>15.1 Introduction 399</p> <p>15.2 NIR-II Fluorescence Macroimaging In Vivo 400</p> <p>15.3 NIR-II Fluorescence Wide-field Microscopic Imaging In Vivo 436</p> <p>15.4 NIR-II Fluorescence Confocal Microscopic Imaging In Vivo 440</p> <p>15.5 Summary and Perspectives 441</p> <p>References 444</p> <p><b>16 In Vivo Phototheranostics Application of AIEgen-based Probes </b><b>447<br /></b><i>Zhiyuan Gao, Heqi Gao, and Dan Ding</i></p> <p>16.1 Introduction 447</p> <p>16.2 AIE Fluorescent Probe with Photodynamic Therapy Function 448</p> <p>16.3 AIE Photoacoustic Probe with Photothermal Therapy Function 451</p> <p>16.4 Application of AIE Fluorescent Probe in Synergistic Therapy 454</p> <p>16.5 AIE Fluorescent Probe with Immunotherapy Function 458</p> <p>16.6 Conclusions and Perspectives 460</p> <p>References 460</p> <p><b>17 Red-emissive AIEgens Based on Tetraphenylethylene for Biological Applications </b><b>465<br /></b><i>Yanyan Huang, Fang Hu, and Deqing Zhang</i></p> <p>17.1 Introduction 465</p> <p>17.2 TPE-based AIEgens with Dicyanovinyl Group 466</p> <p>17.2.1 Design of Red-emissive AIEgens with Dicyanovinyl Group 466</p> <p>17.2.2 Red-emissive AIEgens as Photosensitizers 469</p> <p>17.2.3 Photosensitization Enhancement of AIEgens with Dicyanovinyl Group 471</p> <p>17.2.4 Self-assembly of AIEgens with Dicyanovinyl Groups 473</p> <p>17.3 Pyridinium-based AIEgens 475</p> <p>17.3.1 Photophysical Properties of Pyridinium-based AIEgens 475</p> <p>17.3.2 Bio-sensing Applications of Pyridinium-substituted Tetraphenylethylenes 477</p> <p>17.3.3 Bacterial Imaging and Ablation 479</p> <p>17.3.4 Imaging and Interrupting Mitochondria and Related Biological Processes with Pyridinium-based AIEgens 480</p> <p>17.4 Summary and Perspectives 485</p> <p>References 485</p> <p><b>18 Smart Luminogens for the Detection of Organic Volatile Contaminants </b><b>491<br /></b><i>Niranjan Meher and Parameswar Krishnan Iyer</i></p> <p>18.1 Introduction 491</p> <p>18.2 Smart AIE Nanomaterials and their Sensing Applications for OVCs 493</p> <p>18.2.1 Organic Framework 493</p> <p>18.2.2 Molecular Rotors 499</p> <p>18.2.3 Other Small Molecule 502</p> <p>18.3 Summary and Outlook 506</p> <p>References 506</p> <p><b>19 Bulky Hydrophobic Counterions for Suppressing Aggregation-caused Quenching of Ionic Dyes in Fluorescent Nanoparticles </b><b>511<br /></b><i>Ilya O. Aparin, Nagappanpillai Adarsh, Andreas Reisch, and Andrey S. Klymchenko</i></p> <p>19.1 Introduction 511</p> <p>19.2 Counterion Effect in Nanomaterials Based on Conventional Bright Fluorophores 513</p> <p>19.3 Counterions and Aggregation-induced Emission 516</p> <p>19.3.1 Counterion Effect in AIE Dyes 517</p> <p>19.3.2 Ionic AIE: Lighting Up Environment-sensitive Ionic Dyes in Nanomaterials 519</p> <p>19.4 Dye-loaded Polymeric NPs and the Crucial Role of Bulky Counterions 523</p> <p>19.4.1 Principle 523</p> <p>19.4.2 The Role of the Polymer 525</p> <p>19.4.3 The Role of the Counterion 525</p> <p>19.4.4 Dye Nature 528</p> <p>19.4.5 Energy Transfer, Collective Behavior of Dyes and Biosensing 531</p> <p>19.5 Conclusions 532</p> <p>References 534</p> <p><b>20 Fluorescent Silver Staining Based on a Fluorogenic Ag<sup>+</sup> Probe with Aggregation-induced Emission Properties </b><b>541<br /></b><i>Chuen Kam, Sheng Xie, Alex Y. H. Wong, and Sijie Chen</i></p> <p>20.1 Introduction 541</p> <p>20.2 Historical Background of Silver Staining 541</p> <p>20.2.1 Silver Staining for Neurological Studies 542</p> <p>20.2.2 Silver Staining from Neuroscience to Proteomics 544</p> <p>20.3 Conventional Silver Staining Methods 544</p> <p>20.4 Fluorogenic Probes for Ag<sup>+</sup> Detection 546</p> <p>20.5 Fluorogenic Silver Staining in Polyacrylamide Gel 550</p> <p>20.6 Concluding Remarks 554</p> <p>References 554</p> <p>Index 559</p>
<p><b>Youhong Tang</b> is a Professor at Flinders University, Australia and actively works in aggregation-induced emission areas. </p> <p><b>Ben Zhong Tang</b> is a Chair Professor at the Chinese University of Hong Kong, Shenzhen. He is widely known as the pioneer of the study of aggregation-induced emission.
<p><b>The third volume of the ultimate reference on the science and applications of aggregation-induced emission</b></p> <p>The <i>Handbook of Aggregation-Induced Emission</i> explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. <p> In <i>Volume 3: Emerging Applications</i>, the editors address the applications of AIEgens in several fields, including bio-imaging, fluorescent molecular switches, electrochromic materials, regenerative medicine, detection of organic volatile contaminants, hydrogels, and organogels. Topics covered include: <ul><li>AIE-active emitters and their applications in OLEDs, and circularly polarized luminescence of aggregation-induced emission materials</li> <li>AIE polymer films for optical sensing and energy harvesting, aggregation-induced electrochemiluminescence, and mechanoluminescence materials with aggregation-induced emission</li> <li>Dynamic super-resolution fluorescence imaging based on photoswitchable fluorescent spiropyran</li> <li>Visualization of polymer microstructures</li> <li>Self-assembly of micelle and vesicles</li> <li>New strategies for biosensing and cell imaging</li></ul> <p>Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €