Details

Handbook of Aggregation-Induced Emission, Volume 2


Handbook of Aggregation-Induced Emission, Volume 2

Typical AIEgens Design
1. Aufl.

von: Youhong Tang, Ben Zhong Tang

201,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.04.2022
ISBN/EAN: 9781119642961
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The second volume of the ultimate reference on the science and applications of aggregation-induced emission </b></p> <p><i>The Handbook of Aggregation-Induced Emission</i> explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. </p> <p>In <i>Volume 2: Typical AIEgens Design</i>, the editors address the design and synthesis of typical AIEgens that have made significant contributions to aggregation-induced emission research. Recent advances in the development of aggregation-induced emission systems are discussed and the book covers novel aggregation-induced emission systems in small molecule organogels, polymersomes, metal-organic coordination complexes and metal nanoclusters. Readers will also discover: </p> <ul> <li>A thorough introduction to the synthesis and applications of tetraphenylpyrazine-based AIEgens, AIEgens based on 9,10-distyrylanthracene , and the Salicylaldehyde Schiff base </li> <li>Practical discussions of aggregation-induced emission from the sixth main group and fluorescence detection of dynamic aggregation processes using AIEgens </li> <li>Coverage of cyclic triimidazole derivatives and the synthesis of multi-phenyl-substituted pyrrole based materials and their applications  </li> </ul> <p>Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences. </p>
<p>List of Contributors xvii</p> <p>Preface to Handbook of Aggregation-Induced Emission xxiii</p> <p>Preface to Volume 2: Typical AIEgens Design xxv</p> <p><b>1 Tetraphenylpyrazine-based AIEgens: Synthesis and Applications </b><b>1<br /></b><i>Ming Chen, Anjun Qin, and Ben Zhong Tang</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis of TPP-based AIEgens 3</p> <p>1.2.1 Cyclization Reaction 3</p> <p>1.2.2 Suzuki–Miyaura Reaction 7</p> <p>1.3 Functionalities of TPP-based AIEgens 8</p> <p>1.3.1 Organic Light-emitting Diodes 8</p> <p>1.3.2 Fluorescent Sensors 9</p> <p>1.3.3 Chiral Cage for Self-assembly to Achieve White-light Emission 13</p> <p>1.3.4 Metal–organic Framework 15</p> <p>1.4 Conclusion 17</p> <p>References 18</p> <p><b>2 AIEgens Based on 9,10-Distyrylanthracene (DSA): From Small Molecules to Macromolecules 23<br /></b><i>Leijing Liu, Bin Xu, and Wenjing Tian</i></p> <p>2.1 Introduction 23</p> <p>2.2 Application of AIE Luminogens Based on 9,10-Distyrylanthracene 24</p> <p>2.2.1 Smart Materials with Stimulus Response 24</p> <p>2.2.1.1 Piezofluorochromic Materials 24</p> <p>2.2.1.2 Photochromic Materials 27</p> <p>2.2.1.3 Thermochromic Materials 27</p> <p>2.2.1.4 Acidichromic Materials 27</p> <p>2.2.1.5 Multistimuli-responsive Materials 30</p> <p>2.2.2 High Solid-state Luminescent Materials 30</p> <p>2.2.3 Fluorescent Materials for Bioimaging 35</p> <p>2.2.4 Fluorescent Probes for Chemical and Biological Sensing 41</p> <p>2.2.4.1 Fluorescent Probes for Chemical Sensing 41</p> <p>2.2.4.2 Fluorescent Probes for Biological Sensing 44</p> <p>2.3 Conclusions and Outlook 46</p> <p>Acknowledgments 47</p> <p>References 47</p> <p><b>3 Typical AIEgens Design: Salicylaldehyde Schiff Base 53<br /></b><i>Yue Zheng and Aijun Tong</i></p> <p>3.1 Introduction 53</p> <p>3.1.1 AIE and ESIPT of Salicylaldehyde Schiff Base 53</p> <p>3.1.2 Universal Design of SSB-based AIEgens 55</p> <p>3.2 Fluorescent Probes 55</p> <p>3.2.1 Metal Ion Detection and Imaging 55</p> <p>3.2.2 Biologically and Environmentally Related Molecular Detection and Imaging 63</p> <p>3.2.3 Ratiometric pH Probes 76</p> <p>3.2.4 Bioimaging 76</p> <p>3.3 Fluorescent Materials 81</p> <p>3.3.1 Solid Fluorescence Emitting and Stimuli-Responsive Materials 81</p> <p>3.3.2 Nanoparticles 88</p> <p>3.4 Summary and Perspectives 91</p> <p>References 92</p> <p><b>4 Diaminodicyanoquinodimethanes: Fluorescence Emission Enhancement  in Aggregates and Solids 97<br /></b><i>N. Senthilnathan and T. P. Radhakrishnan</i></p> <p>4.1 Introduction 97</p> <p>4.1.1 Molecular Materials 97</p> <p>4.1.2 ‘Push–Pull’ Molecules 97</p> <p>4.1.3 Diaminodicyanoquinodimethanes 98</p> <p>4.2 Nonlinear Optical Materials based on DADQs 100</p> <p>4.2.1 Molecular Hyperpolarizability 100</p> <p>4.2.2 SHG Materials 100</p> <p>4.2.3 Structure–Property Correlations 101</p> <p>4.3 Enhanced Fluorescence in Aggregates and Solids Based on DADQs 102</p> <p>4.3.1 Remote Functionalized Systems 102</p> <p>4.3.2 Color Tuning, Nanocrystals, and Colloids 103</p> <p>4.3.3 Ultrathin Films 105</p> <p>4.3.4 New Directions 105</p> <p>4.4 Mechanistic Insights into the Enhanced Fluorescence 106</p> <p>4.4.1 Relevance of Intramolecular Effects 106</p> <p>4.4.2 Role of Intermolecular Effects 106</p> <p>4.5 Impact of Crystallinity on the Fluorescence Response 108</p> <p>4.5.1 Amorphous-to-Crystalline Transformation: Fluorescence Switching and Tuning 108</p> <p>4.5.2 Reversible Amorphous–Crystalline Transformations: Phase Change Materials 108</p> <p>4.5.3 Impact of External Stimuli 110</p> <p>4.6 Emergent and Potential Applications of DADQs 110</p> <p>4.6.1 Electroluminescence and Nonlinear Optics 110</p> <p>4.6.2 Bioimaging 110</p> <p>4.6.3 Photoelectrochemical and Photobioelectrochemical Applications 112</p> <p>4.6.4 Memory Devices 112</p> <p>4.7 Concluding</p> <p>Remarks 113</p> <p>Acknowledgements 114</p> <p>References 114</p> <p><b>5 Aggregation-induced Emission from the Sixth Main Group </b><b>119<br /></b><i>Jan Balszuweit, Bibhisan Roy, and Jens Voskuhl</i></p> <p>5.1 Introduction 119</p> <p>5.2 Oxygen 119</p> <p>5.2.1 Oxygen-Containing Heterocycles 120</p> <p>5.2.2 Oxo-ether Containing AIE-Active Luminogens 122</p> <p>5.3 Sulfur 126</p> <p>5.3.1 Luminogens Based on Thiophenes 126</p> <p>5.3.2 Thioethers with Aggregation-Induced Emission Properties 129</p> <p>5.3.3 Emissive Sulfones 131</p> <p>5.4 Selenium and Tellurium 132</p> <p>5.4.1 Selenium-Containing Luminophores 132</p> <p>5.4.2 Tellurium-Containing Luminophores 134</p> <p>5.5 Conclusion 138</p> <p>Acknowledgment 138</p> <p>References 138</p> <p><b>6 Fluorescence Detection of Dynamic Aggregation Processes Using AIEgens: Hexaphenylsilole and Cyanostilbene </b><b>143<br /></b><i>Fuyuki Ito</i></p> <p>6.1 Introduction 143</p> <p>6.2 Selective Detection of Phase Transformation During Evaporative Crystallization of Hexaphenylsilole 145</p> <p>6.3 Observation of the Initial Stage of Organic Crystal Formation During Solvent Evaporation Using a Cyanostilbene Derivative 149</p> <p>6.4 Chemometrix Analysis of the Aggregated Structure of Cyanostilbene in a Reprecipitation Solution Using Fluorescence Excitation Spectroscopy 152</p> <p>6.5 UV-triggered Fluorescence Enhancement of a Dicyanostilbene Derivative Film Cast from an Ethanol Solution 158</p> <p>6.6 Concluding Remarks 162</p> <p>Acknowledgments 162</p> <p>References 162</p> <p><b>7 Cyclic Triimidazole Derivatives: An Intriguing Family of Multifaceted Emitters </b><b>165<br /></b><i>Elena Cariati, Elena Lucenti, Andrea Previtali, and Alessandra Forni</i></p> <p>7.1 Introduction 165</p> <p>7.2 The Protoype: Cyclic Triimidazole 166</p> <p>7.3 Halogenated Derivatives of Cyclic Triimidazole 175</p> <p>7.3.1 Bromine Derivatives 176</p> <p>7.3.2 Iodine Derivatives 179</p> <p>7.4 Organic Derivatives 184</p> <p>7.4.1 2-Fluoropyridine Derivative 185</p> <p>7.4.2 Tribenzoimidazole Derivative 186</p> <p>7.5 Hybrid Inorganic/Organic Derivatives 188</p> <p>7.6 Conclusions 191</p> <p>Acknowledgments 191</p> <p>References 191</p> <p><b>8 Synthesis of Multi-phenyl-substituted Pyrrole (MPP)-based AIE Materials and Their Applications </b><b>195<br /></b><i>Zhengxu Cai, Yunxiang Lei, and Yuping Dong</i></p> <p>8.1 Introduction 195</p> <p>8.2 Modular Approach: Systematic Synthesis of MPPs 196</p> <p>8.3 Structures and Photophysical Properties 198</p> <p>8.4 Applications of MPP-based Materials 204</p> <p>8.4.1 Chemical/Biological Sensing 204</p> <p>8.4.2 Multi-stimulus Response Materials 208</p> <p>8.4.3 Optoelectronic Systems 210</p> <p>8.4.4 Biological Application 213</p> <p>8.5 Conclusion and Outlook 216</p> <p>References 216</p> <p><b>9 Development of a New Class of AIEgens: Tetraarylpyrrolo [3,2-<i>b</i>] Pyrroles (TAPPs) </b><b>221<br /></b><i>Vishal G. More, Ratan W. Jadhav, Mohammad Al Kobaisi, Lathe A. Jones, and Sheshanath V. Bhosale</i></p> <p>9.1 Introduction 221</p> <p>9.2 The Accidental Discovery of TAPP 223</p> <p>9.3 Synthesis of TAPP 223</p> <p>9.4 Possible Mechanism of TAPP Synthesis 227</p> <p>9.5 Reactivity of TAPP 228</p> <p>9.6 π-Expansion of TAPP 229</p> <p>9.7 π-Expanded 1,4-dihydropyrrolo[3,2-<i>b</i>] pyrrole 231</p> <p>9.8 Photophysical Optical Properties of TAPP 239</p> <p>9.9 Conclusion and Outlook 245</p> <p>Acknowledgments 247</p> <p>References 247</p> <p><b>10 Small Molecule Organogels from AIE Active α-Cyanostilbenes </b><b>255<br /></b><i>Jagadish Katla, Beena Kumari, and Sriram Kanvah</i></p> <p>10.1 Introduction 255</p> <p>10.2 Organogels with Trifluoromethyl Substitution 256</p> <p>10.3 Organogels with Chiral Units/Chiral Hosts 260</p> <p>10.4 Stimuli–Responsive Organogels 262</p> <p>10.5 Organogels with Sensing Applications 266</p> <p>10.6 Concluding Remarks 271</p> <p>Acknowledgments 271</p> <p>References 271</p> <p><b>11 Stimuli-responsive Pure Organic Luminescent Supramolecules </b><b>277<br /></b><i>Siyu Sun and Xiang Ma</i></p> <p>11.1 Introduction 277</p> <p>11.2 Pure Organic Fluorescent Supramolecules 280</p> <p>11.2.1 Pure Organic Fluorescent Supramolecules Containing Macrocycles 280</p> <p>11.2.1.1 Pure Organic Fluorescent Supramolecules Containing Cyclodextrins 280</p> <p>11.2.1.2 Pure Organic Fluorescent Supramolecules Containing Calixarenes 284</p> <p>11.2.1.3 Pure Organic Fluorescent Supramolecules Containing Cucurbiturils 284</p> <p>11.2.1.4 Pure Organic Fluorescent Supramolecules Containing Pillararene 288</p> <p>11.2.1.5 Pure Organic Fluorescent Supramolecules Containing Crown Ether 290</p> <p>11.2.2 Pure Organic Fluorescent Supramolecules Without Macrocycles 291</p> <p>11.3 Pure Organic Phosphorescent Supramolecules 293</p> <p>11.3.1 Pure Organic Phosphorescent Supramolecules Based on Macrocyclic Molecules 293</p> <p>11.3.1.1 Pure Organic Phosphorescent Supramolecules Containing Cyclodextrin 293</p> <p>11.3.1.2 Pure Organic Phosphorescent Supramolecules Containing Cucurbiturils 297</p> <p>11.3.1.3 Pure Organic Phosphorescent Supramolecules Containing Calixarenes 297</p> <p>11.3.1.4 Pure Organic Phosphorescent Supramolecules Containing Crown Ether 297</p> <p>11.3.2 Pure Organic Phosphorescent Supramolecules Without Macrocyclic Molecules 299</p> <p>11.3.2.1 Pure Organic Supramolecular Phosphorescence System With Doping-Based Host–Guest Interaction 299</p> <p>11.3.2.2 Other Pure Organic Phosphorescent Supramolecules 301</p> <p>11.4 Conclusions 306</p> <p>Acknowledgments 306</p> <p>References 307</p> <p><b>12 AIE Fluorescent Polymersomes </b><b>311<br /></b><i>Hui Chen and Min-Hui Li</i></p> <p>12.1 Introduction 311</p> <p>12.2 Structural Consideration of Block Copolymers for Polymersome Formation 314</p> <p>12.3 Methods of Polymersome Preparation 315</p> <p>12.4 Techniques of Polymersome Characterization 317</p> <p>12.5 AIE Polymersomes Based on PEG-<i>b</i>-POSS 317</p> <p>12.6 AIE Polymersomes Based on Amphiphilic Polypeptoids 319</p> <p>12.7 AIE Polymersomes Based on PEG-<i>b</i>-Polycarbonate 321</p> <p>12.8 AIE Polymersomes Based on Amphiphilic Polynorbornene 323</p> <p>12.9 AIE Polymersomes Based on Amphiphilic Block Copolymers by RAFT Polymerization 326</p> <p>12.10 Summary and Perspectives 330</p> <p>References 334</p> <p><b>13 Designs for AIE Molecules and Functional Luminescent Materials Based on Boron-containing Element-blocks </b><b>341<br /></b><i>Kazuo Tanaka, Masayuki Gon, Shunichiro Ito, and Yoshiki Chujo</i></p> <p>13.1 Introduction 341</p> <p>13.1.1 Generals of Commodity Luminescent Boron Complexes 341</p> <p>13.1.2 Trends in the Development of Advanced Organic Electronic Devices 342</p> <p>13.1.3 Strategies for Obtaining Solid-state Luminescence and Stimuli-responsiveness 343</p> <p>13.1.4 New Ideas for Material Design Based on “Element-blocks” 343</p> <p>13.2 Solid-state Luminescence and Luminochromism of <i>o</i>-Carboranes 344</p> <p>13.2.1 Emission Mechanism of Aryl-modified <i>o</i>-Carboranes 344</p> <p>13.2.2 AIE Behavior of <i>o</i>-Carborane Materials 344</p> <p>13.2.3 Formation of Twisted Intramolecular Charge Transfer (TICT) State in the Crystalline State of <i>o</i>-Carboranes 346</p> <p>13.2.4 Thermochromic Luminescence of <i>o</i>-Carboranes 346</p> <p>13.2.5 Intense Solid-state Luminescent Molecules 347</p> <p>13.2.6 Solid-state Excimer Emission 348</p> <p>13.3 Boron Complexes with β-Ketimine and β-Diketimine Ligands 349</p> <p>13.3.1 Generals of Boron Ketiminates and Diketiminates 349</p> <p>13.3.2 Unique Solid-state Luminescent Properties of Conjugated Boron Complexes 350</p> <p>13.3.3 Thermally Stable Mechanochromic Luminescent Hybrid with the Siloxane Unit 350</p> <p>13.3.4 Luminescent Properties of β-Diketiminate Complexes 352</p> <p>13.3.5 AIE-active Conjugated Polymers 352</p> <p>13.3.6 Design for Film-type Sensors 353</p> <p>13.3.7 Sensitive Luminochromic Sensors with Gallium Complexes 354</p> <p>13.4 Rational Design for AIE-active Molecules Based on “Flexible” Boron Complexes 355</p> <p>13.4.1 Concept for Rational Design 355</p> <p>13.4.2 Ring-fused or Nonring-fused Molecules 355</p> <p>13.4.3 Thermosalient-active Molecules 357</p> <p>13.4.4 Solid-state Luminescent π-Conjugated Polymer 358</p> <p>13.5 Conclusion 359</p> <p>References 359</p> <p><b>14 Aggregation-induced Emission (AIE) Active Metal–Organic Coordination Complexes </b><b>367<br /></b><i>Xueliang Shi, Xuzhou Yan, and Hai-Bo Yang</i></p> <p>14.1 Introduction 367</p> <p>14.2 Conception and Design Strategy 368</p> <p>14.3 AIE Active Metallacycles 371</p> <p>14.3.1 AIE Active Simple Metallacycles 371</p> <p>14.3.2 AIE Active Fused Metallacycles 378</p> <p>14.3.3 AIE Active Metallacycle Polymers 382</p> <p>14.4 AIE Active Metallacages 389</p> <p>14.5 AIE Active Metal–organic Frameworks (MOFs) 397</p> <p>14.6 Summary and Outlook 405</p> <p>Acknowledgments 406</p> <p>References 406</p> <p><b>15 AIE-type Luminescent Metal Nanoclusters </b><b>411<br /></b><i>Zhennan Wu, Qiaofeng Yao, and Jianping Xie</i></p> <p>15.1 Introduction 411</p> <p>15.2 In the “Single-cluster” Scenario 412</p> <p>15.2.1 AIE-type Luminescent Metal NCs 412</p> <p>15.2.2 Atomically Precise AIE-type Luminescent Metal NCs 416</p> <p>15.2.3 Approaches to Luminescence Enhancement of Metal NCs in the Scheme of AIE 418</p> <p>15.2.3.1 Surface Engineering 418</p> <p>15.2.3.2 Roles of the Core 422</p> <p>15.3 Beyond the “Single-cluster” Scenario 423</p> <p>15.3.1 Poor-solvent-induced AIE of Metal NCs 423</p> <p>15.3.2 Ion-induced AIE of Metal NCs 423</p> <p>15.3.3 Supramolecular Interactions Induced AIE of Metal NCs 426</p> <p>15.3.4 Spatial Confinement-induced AIE of Metal NCs 429</p> <p>15.4 Application of the AIE-type Luminescent Metal NCs 433</p> <p>15.4.1 Chemical Sensing 433</p> <p>15.4.2 Biological Applications 434</p> <p>15.4.3 Photosensitizer 434</p> <p>15.4.4 Light-emitting Diodes (LEDs) 434</p> <p>15.5 Conclusion and Outlook 436</p> <p>References 437</p> <p><b>16 Aggregation-induced Emission in Coinage Metal Clusters </b><b>443<br /></b><i>Shuang-Quan Zang and Kai Li</i></p> <p>16.1 Introduction 443</p> <p>16.2 AIE-active Gold Cluster 444</p> <p>16.3 AIE-active Silver Cluster 450</p> <p>16.4 AIE-active Copper Cluster 454</p> <p>16.5 AIE-active Bimetallic Cluster 462</p> <p>16.6 Conclusions 465</p> <p>References 466</p> <p><b>17 Activated Alkynes in Metal-free Bioconjugation </b><b>471<br /></b><i>Xianglong Hu and Ben Zhong Tang</i></p> <p>17.1 Introduction 471</p> <p>17.2 Alkyne–Azide-based Bioconjugation 472</p> <p>17.3 Activated Alkyne–Amine-based Bioconjugation 473</p> <p>17.4 Activated Alkyne–Thiol-based Bioconjugation 480</p> <p>17.5 Activated Alkyne–Hydroxyl-based Bioconjugation 483</p> <p>17.6 Activated Alkyne-based Bioconjugation and Polymerization in Living Cells and Pathogens 484</p> <p>17.7 Conclusion 488</p> <p>References 488</p> <p><b>18 AIE-active BODIPY Derivatives </b><b>493<br /></b><i>Yali Liu, Yuzhang Huang, Rongrong Hu, and Ben Zhong Tang</i></p> <p>18.1 Introduction 493</p> <p>18.2 Structures of BODIPY Derivatives 495</p> <p>18.2.1 BODIPY Derivatives Without Other Chromophore 495</p> <p>18.2.2 TPE-containing BODIPYs 496</p> <p>18.2.3 TPA-containing BODIPYs 498</p> <p>18.2.4 Benzodithiophene-containing BODIPYs 499</p> <p>18.2.5 Chiral BODIPYs 500</p> <p>18.2.6 Metal-containing BODIPYs 502</p> <p>18.2.7 BODIPY-containing Polymers 503</p> <p>18.2.8 Other BODIPY Derivatives 504</p> <p>18.3 Structural–property Relationship 508</p> <p>18.3.1 Conjugation Effect 508</p> <p>18.3.2 Number and Position of Substitutes 508</p> <p>18.3.3 Substitution Group 513</p> <p>18.3.4 Alkyl Substitutes on BODIPY Core 516</p> <p>18.3.5 AIEgens Attached Through Nonconjugated Spacers 518</p> <p>18.3.6 Other Substitution Structures 519</p> <p>18.4 Application 522</p> <p>18.4.1 Chemosensor 522</p> <p>18.4.2 Bioimaging 526</p> <p>18.5 Conclusion 532</p> <p>References 532</p> <p><b>19 Photochemistry-regulated AIEgens and Their Applications </b><b>537<br /></b><i>Xia Ling and Meng Gao</i></p> <p>19.1 Introduction 537</p> <p>19.2 Photocleavage Reaction 537</p> <p>19.3 Photoreduction Reaction 539</p> <p>19.4 Photocyclodehydrogenation Reaction 540</p> <p>19.5 Photooxidative Dehydrogenation Reaction 543</p> <p>19.6 Spiropyran-merocyanine Reversible Conversion 544</p> <p>19.7 Dithienylethene-based Ring-open/-closing Reaction 545</p> <p>19.8 Enol–Keto Isomerization Reaction 550</p> <p>19.9 <i>E/Z </i>Isomerization Reaction 552</p> <p>19.10 Photo-induced [2 + 2] Cycloaddition 554</p> <p>19.11 Combinational Photoreactions 554</p> <p>19.12 Conclusion and Outlook 556</p> <p>References 556</p> <p><b>20 Design and Development of Naphthalimide Luminogens </b><b>559<br /></b><i>Niranjan Meher and Parameswar Krishnan Iyer</i></p> <p>20.1 Introduction 559</p> <p>20.2 Naphthalimides with N-Functionalization (I) 564</p> <p>20.3 Naphthalimides Substituted at the 4th Position with Oxygen Atom (II) 567</p> <p>20.4 Naphthalimides Substituted at the 4th Position with Nitrogen Atom (III) 570</p> <p>20.5 Naphthalimides with C−C Aromatic Substitution (IV) 571</p> <p>20.6 Naphthalimides with C−C Double-and Triple-Bond Substitutions (V and VI) 574</p> <p>20.7 Naphthalimides with the Significant Role of Multifunctionalization (VII) 576</p> <p>20.8 Conclusion and Outlooks 580</p> <p>References 581</p> <p>Index 587</p>
<p><b>Youhong Tang</b> is a Professor at Flinders University, Australia and actively works in aggregation-induced emission areas. </p> <p><b>Ben Zhong Tang</b> is a Chair Professor at the Chinese University of Hong Kong, Shenzhen. He is widely known as the pioneer of the study of aggregation-induced emission.
<p><b>The second volume of the ultimate reference on the science and applications of aggregation-induced emission </b></p> <p>The <i>Handbook of Aggregation-Induced Emission</i> explores foundational and advanced topics in aggregation-induced emission, as well as cutting-edge developments in the field, celebrating twenty years of progress and achievement in this important and interdisciplinary field. The three volumes combine to offer readers a comprehensive and insightful interpretation accessible to both new and experienced researchers working on aggregation-induced emission. <p>In <i>Volume 2: Typical AIEgens Design</i>, the editors address the design and synthesis of typical AIEgens that have made significant contributions to aggregation-induced emission research. Recent advances in the development of aggregation-induced emission systems are discussed and the book covers novel aggregation-induced emission systems in small molecule organogels, polymersomes, metal-organic coordination complexes and metal nanoclusters. Readers will also discover: <ul><li>A thorough introduction to the synthesis and applications of tetraphenylpyrazine-based AIEgens, AIEgens based on 9,10-distyrylanthracene, and the Salicylaldehyde Schiff base</li> <li>Practical discussions of aggregation-induced emission from the sixth main group and fluorescence detection of dynamic aggregation processes using AIEgens</li> <li>Coverage of cyclic triimidazole derivatives and the synthesis of multi-phenyl-substituted pyrrole based materials and their applications</li></ul> <p>Perfect for academic researchers working on aggregation-induced emission, this set of volumes is also ideal for professionals and students in the fields of photophysics, photochemistry, materials science, optoelectronic materials, synthetic organic chemistry, macromolecular chemistry, polymer science, and biological sciences.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €