Details

Recovery of Byproducts from Acid Mine Drainage Treatment


Recovery of Byproducts from Acid Mine Drainage Treatment


1. Aufl.

von: Elvis Fosso-Kankeu, Christian Wolkersdorfer, Jo Burgess

193,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.09.2020
ISBN/EAN: 9781119620181
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Recent developments have provided the opportunity to recover valuable materials from AMD treatment; this is a sustainable approach that allows to reduce waste while generating incomes that balance the cost of the treatment. This book provides insights to innovative and affordable routes for AMD valorisation that can certainly motivate the mining industry to effectively manage their wastes and minimize environmental impact while generating jobs opportunities.</p>
<p>Preface xiii</p> <p><b>Part 1: Prediction and Prevention of AMD Formation 1</b></p> <p><b>1 Management of Metalliferous Solid Waste and its Potential to Contaminate Groundwater: A Case Study of O’Kiep, Namaqualand South Africa 3<br /></b><i>Innocentia G. Erdogan, Elvis Fosso-Kankeu, Seteno K.O. Ntwampe, Frans B. Waanders and Nils Hoth</i></p> <p>List of Abbreviations 4</p> <p>1.1 Introduction 4</p> <p>1.2 CMMs: Overview and Challenges 5</p> <p>1.3 Metalliferous Solid Waste 6</p> <p>1.3.1 Stockpiled Overburden Materials 6</p> <p>1.3.2 Stockpiled Metalliferous Waste 7</p> <p>1.3.3 Metalliferous Tailings 8</p> <p>1.4 Environmental and Social Impact of CMMs and MSW 10</p> <p>1.5 Soil Contamination 12</p> <p>1.6 Groundwater Contamination 12</p> <p>1.7 Atmospheric Contamination 12</p> <p>1.8 Metalliferous Solid Waste Management 13</p> <p>1.9 Rehabilitation and Restoration Strategies 13</p> <p>1.10 ARD Formation and Groundwater Contamination 14</p> <p>1.11 Overview of Challenges Associated with CMMs 15</p> <p>1.12 Conclusion 16</p> <p>References 16</p> <p><b>2 Mine Water Treatment and the Use of Artificial Intelligence in Acid Mine Drainage Prediction 23<br /></b><i>Viswanath Ravi Kumar Vadapalli, Emmanuel Sakala, Gloria Dube and Henk Coetzee</i></p> <p>List of Abbreviations 23</p> <p>2.1 Acid Mine Drainage (AMD) 24</p> <p>2.1.1 AMD Generation 24</p> <p>2.1.2 Factors Controlling AMD Generation 25</p> <p>2.2 Remediation of AMD 27</p> <p>2.2.1 Introduction 27</p> <p>2.2.2 Passive Treatment of AMD 27</p> <p>2.2.3 Active Treatment of AMD 29</p> <p>2.2.4 Challenges With Current AMD Treatment 32</p> <p>2.2.5 Value Recovery From AMD Treatment 33</p> <p>2.3 Prediction of AMD 34</p> <p>2.3.1 Limitations of Predictive Tools 35</p> <p>2.4 Application of Artificial Intelligence for AMD Quality Prediction 36</p> <p>2.4.1 Introduction 36</p> <p>2.4.2 Different AI Techniques Used to Predict AMD Quality 37</p> <p>2.4.3 Limitations of AI Techniques in Prediction of AMD Quality 38</p> <p>2.4.4 Case Study—Ermelo Coalfield, South Africa 39</p> <p>2.5 Conclusions 40</p> <p>References 41</p> <p><b>3 The Prediction of Acid Mine Drainage Potential Using Mineralogy 49<br /></b><i>Deshenthree Chetty, Olga Bazhko, Veruska Govender and Samuel Ramatsoma</i></p> <p>3.1 Introduction 49</p> <p>3.2 Mineralogical Approach for Prediction of AMD Potential 51</p> <p>3.2.1 AMD Chemistry for Maximum Acid Generation or Consumption Potential 51</p> <p>3.2.2 Mineral Modal Abundance 54</p> <p>3.2.3 Mineral Reactivity 54</p> <p>3.2.4 Mineral Liberation 56</p> <p>3.2.5 Calculation of the AMD Potential 57</p> <p>3.3 Application of the AMD Predictive Protocol 58</p> <p>3.3.1 Experimental Procedures 59</p> <p>3.3.2 Results and Discussion 60</p> <p>3.4 Conclusions and Further Work 67</p> <p>References 68</p> <p><b>4 Oxidation Processes and Formation of Acid Mine Drainage from Gold Mine Tailings: A South African Perspective 73<br /></b><i>Bisrat Yibas</i></p> <p>4.1 Introduction 73</p> <p>4.2 Weathering and Oxidation of the Witwatersrand Gold Tailings 74</p> <p>4.3 Water Infiltration and Oxygen Diffusion <i>vs </i>Oxidation Processes 76</p> <p>4.3.1 Hydrogeology of Tailings Storage Facilities 76</p> <p>4.3.1.1 Introduction 76</p> <p>4.3.1.2 Primary Hydraulic Characteristics 78</p> <p>4.3.1.3 Geological Structures as Preferential Flow Paths 80</p> <p>4.3.2 Oxygen Diffusion 82</p> <p>4.4 Geochemical and Mineralogical Evolution 84</p> <p>4.4.1 Tailings Geochemistry and Mineralogy 84</p> <p>4.4.2 Pore Water Geochemistry 86</p> <p>4.5 Discussion, Conclusion, and Recommendations 89</p> <p>4.5.1 Discussion 89</p> <p>4.5.1.1 Mapping of the Oxidation Zones in Tailings Dams 89</p> <p>4.5.1.2 Hydrogeological Situation 90</p> <p>4.5.1.3 Oxygen Diffusion With Depth 90</p> <p>4.5.1.4 Mineralogical and Geochemical Evolution of Tailings 91</p> <p>4.5.1.5 Evolution of Pore Water Chemistry 91</p> <p>4.5.1.6 Oxidation Processes and Drainage Formation 91</p> <p>4.5.2 Conclusions 92</p> <p>4.5.3 Recommendations 93</p> <p>Acknowledgements 93</p> <p>References 94</p> <p><b>Part 2: AMD Treatment 97</b></p> <p><b>5 Technologies that can be Used for the Treatment of Wastewater and Brine for the Recovery of Drinking Water and Saleable Products 99<br /></b><i>Tumelo Monty Mogashane, Johannes Philippus Maree, Munyaradzi Mujuru and Mabel Mamasegare Mphahlele-Makgwane</i></p> <p>5.1 Introduction 100</p> <p>5.1.1 Formation of Acid Mine Water 100</p> <p>5.1.2 Water Volumes 100</p> <p>5.1.3 Legislation 101</p> <p>5.1.4 Government Initiatives 102</p> <p>5.1.5 Required Criteria 103</p> <p>5.2 Neutralization Technologies 103</p> <p>5.2.1 Neutralization Using Lime 103</p> <p>5.2.1.1 Conventional Treatment With Lime 103</p> <p>5.2.1.2 High-Density Sludge Process 104</p> <p>5.2.2 Limestone Neutralization 105</p> <p>5.2.3 Limestone Handling and Dosing System 106</p> <p>5.2.4 Utilization of Alkali in Mine Water for Removal of Iron(II) 107</p> <p>5.2.5 Modeling 107</p> <p>5.2.6 Lime/Limestone Neutralization 109</p> <p>5.2.6.1 Description of the Process 109</p> <p>5.2.6.2 Removal of H<sub>2</sub>SO<sub>4</sub>, Fe<sup>3+</sup>, and Al<sup>3+</sup> with Limestone 110</p> <p>5.2.6.3 Removal of H<sub>2</sub>SO<sub>4</sub>, Fe3+, Al<sup>3+</sup>, and Fe<sup>2+</sup> with Limestone 111</p> <p>5.3 Chemical Desalination 111</p> <p>5.3.1 SAVMIN 111</p> <p>5.3.2 Barium Sulfate Treatment Process 112</p> <p>5.4 Membrane Processes 115</p> <p>5.4.1 Reverse Osmosis 115</p> <p>5.4.2 NF Technologies 117</p> <p>5.4.3 High Recovery Precipitating Reverse Osmosis (HiPRO<sup>®</sup>) Process 117</p> <p>5.4.4 Electrodialysis 120</p> <p>5.4.5 Vibration Shear Enhanced Process 121</p> <p>5.4.6 Multi-Effect Membrane Distillation 122</p> <p>5.4.7 Forward Osmosis Desalination 122</p> <p>5.4.8 Biomimetic Desalination—Aquaporin Proteins 123</p> <p>5.4.9 Carbon Nanotube Distillation 123</p> <p>5.5 Ion-Exchange Technologies 124</p> <p>5.5.1 Introduction 124</p> <p>5.5.2 Conventional Ion-Exchange 125</p> <p>5.5.3 The GYP-CIX 125</p> <p>5.5.4 KNeW 125</p> <p>5.6 Biological Processes 126</p> <p>5.6.1 Background 126</p> <p>5.6.2 Biological Sulfate Reduction 127</p> <p>5.6.3 Constructed Bioreactors 128</p> <p>5.6.4 Paques Technologies 129</p> <p>5.6.5 BioSURE Technology 130</p> <p>5.6.6 The <i>VitaSOFT </i>Process 131</p> <p>5.6.7 <i>In Situ </i>Reactor 132</p> <p>5.6.8 Constructed Aerobic Wetlands 133</p> <p>5.6.9 Permeable Reactive Barriers 133</p> <p>5.6.10 General Aspects and Various Passive Technologies 133</p> <p>5.7 Electrochemical Processes 135</p> <p>5.7.1 Electrocoagulation 135</p> <p>5.7.2 Nanoelectrochemical Process for the Treatment of AMD 135</p> <p>5.8 Freezing-Based Technologies 136</p> <p>5.8.1 Basics 136</p> <p>5.8.2 Eutectic Freeze Crystallization 136</p> <p>5.8.3 HybridICE™ Technology 136</p> <p>5.9 Sludge Processing 137</p> <p>5.9.1 Background 137</p> <p>5.9.2 Recovery of Saleable Products or Raw Materials 138</p> <p>5.10 Integrated Processes—ROC Process 138</p> <p>5.10.1 Background 138</p> <p>5.10.2 Process Description 139</p> <p>5.11 Feasibility Models 140</p> <p>5.11.1 Introduction 140</p> <p>5.11.2 Feasibility of Individual Stages 142</p> <p>5.11.2.1 Neutralization Technologies 142</p> <p>5.11.2.2 Desalination Technologies 143</p> <p>5.11.2.3 Brine Treatment 149</p> <p>5.11.2.4 Product Recovery 149</p> <p>5.11.3 Feasibility of Various Process Configurations 149</p> <p>5.12 Conclusions 150</p> <p>Acknowledgements 150</p> <p>References 151</p> <p><b>Part 3: Recovery of Values from AMD 157</b></p> <p><b>6 Recovery of Ochers from Acid Mine Drainage Treatment: A Geochemical Modeling and Experimental Approach 159<br /></b><i>Khathutshelo Netshiongolwe, Yongezile Mhlana, Alseno Mosai, Heidi Richards, Luke Chimuka, Ewa Cukrowska and Hlanganani Tutu</i></p> <p>6.1 Introduction 159</p> <p>6.2 Methodology 162</p> <p>6.2.1 Simulation Studies—Model Setup as an Experimental Design Approach 162</p> <p>6.2.2 Experimental Studies 164</p> <p>6.2.2.1 Experiment 1 164</p> <p>6.2.2.2 Using NaOH as a Neutralizing Agent 165</p> <p>6.2.2.3 Addition of Ferrocyanide to Mineral Salts Used to Simulate AMD (Experiment 2) 165</p> <p>6.2.2.4 Using MgCO<sub>3</sub> as a Neutralizing Agent 166</p> <p>6.2.3 Characterization of Fe Oxides 166</p> <p>6.3 Results and Discussion 166</p> <p>6.3.1 Simulation Studies 166</p> <p>6.3.1.1 Individual Neutralizing Agents 166</p> <p>6.3.1.2 Combined Neutralizing Agents 167</p> <p>6.3.1.3 Equilibrating with CO<sub>2</sub> 168</p> <p>6.3.1.4 Equilibrating with O<sub>2</sub> 168</p> <p>6.3.1.5 Fixed pH 169</p> <p>6.3.1.6 Varying Temperature 169</p> <p>6.3.1.7 Varying Concentrations of Neutralizing Agents 169</p> <p>6.3.2 Characterization of HDS 169</p> <p>6.3.2.1 Aims and Dry Matter 169</p> <p>6.3.2.2 Physical Characterization of HDS 170</p> <p>6.3.2.3 Chemical Characterization of HDS 170</p> <p>6.3.2.4 Mineralogy and Chemical Composition of HDS 170</p> <p>6.3.3 Experimental Studies 172</p> <p>6.3.3.1 Procedure Description 172</p> <p>6.3.3.2 Formation of Precipitates 172</p> <p>6.3.3.3 Characterization of Fe Precipitates 182</p> <p>6.3.3.4 Application in Paintings and Artwork 183</p> <p>6.3.3.5 Water Chemistry 183</p> <p>6.4 Indicative Cost Analysis 184</p> <p>6.5 Conclusion 185</p> <p>Acknowledgements 185</p> <p>References 185</p> <p><b>7 Innovative Routes for Acid Mine Drainage (AMD) Valorization: Advocating for a Circular Economy 189<br /></b><i>Vhahangwele Masindi and Memory Tekere</i></p> <p>7.1 Introduction 190</p> <p>7.1.1 Problem Description 190</p> <p>7.1.2 Physico-Chemical-Microbiological Properties of AMD 191</p> <p>7.2 Health Effects Associated with Contaminants in AMD 193</p> <p>7.3 Abatement of AMD 194</p> <p>7.4 Techniques for AMD Treatment 195</p> <p>7.4.1 Overview 195</p> <p>7.4.2 Chemical Precipitation 195</p> <p>7.4.3 Adsorption 197</p> <p>7.4.4 Filtration 198</p> <p>7.4.4.1 Introduction to Membrane Technologies 198</p> <p>7.4.5 Phyto Remediation 201</p> <p>7.4.5.1 Theory of the MD Process 201</p> <p>7.4.6 Phytoremediation 202</p> <p>7.5 Valorization of AMD 202</p> <p>7.5.1 Aims of Valorization 202</p> <p>7.5.2 Reclamation of Drinking Water 203</p> <p>7.5.3 Recovery of Valuable Minerals 203</p> <p>7.5.4 Synthesis of Valuable Minerals 204</p> <p>7.6 Case Study 204</p> <p>7.7 Challenges Relating to Valorization 208</p> <p>7.8 Conclusions and Future Perspectives 208</p> <p>References 209</p> <p><b>8 Recovery of Critical Raw Materials from Acid Mine Drainage (AMD): The EIT-Funded MORECOVERY Project 219<br /></b><i>Carlos Ruiz Cánovas, Jose Miguel Nieto, Francisco Macías, Maria Dolores Basallote, Manuel Olías, Rafael Pérez-López and Carlos Ayora</i></p> <p>8.1 Introduction 219</p> <p>8.2 Recovery of CRMs from AMD 222</p> <p>8.3 Upscaling of Successful Technologies and Economic Suitability 224</p> <p>8.4 Coupling Environmental and Resources Policy: The EIT-Funded MORECOVERY Project 225</p> <p>Acknowledgements 231</p> <p>References 231</p> <p><b>9 Deriving Value from Acid Mine Drainage 235<br /></b><i>M. van Rooyen and P.J. van Staden</i></p> <p>9.1 Introduction 235</p> <p>9.2 AMD Formation 237</p> <p>9.3 AMD Treatment Options 238</p> <p>9.3.1 General Philosophy 238</p> <p>9.3.2 High-Density Sludge Neutralization of AMD 239</p> <p>9.3.3 Sulfate Removal Options 240</p> <p>9.3.3.1 Reverse Osmosis 240</p> <p>9.3.3.2 Ettringite Precipitation 243</p> <p>9.3.3.3 Barium Carbonate Addition 245</p> <p>9.3.3.4 Biological Sulfate Reduction 246</p> <p>9.4 Deriving Value from AMD 247</p> <p>9.4.1 Fit-for-Use Water 247</p> <p>9.4.1.1 The Cascade Model 247</p> <p>9.4.1.2 Water Suitable for Irrigation 248</p> <p>9.4.1.3 Water Suitable for Industrial Use 249</p> <p>9.4.1.4 Water Suitable for Environmental Discharge 249</p> <p>9.4.1.5 Water Suitable for Sanitation 249</p> <p>9.4.1.6 Potable Water 249</p> <p>9.4.1.7 Cooling Water 249</p> <p>9.4.1.8 Boiler Water 250</p> <p>9.4.2 By-Products from AMD Treatment Processes 251</p> <p>9.4.2.1 Overview 251</p> <p>9.4.2.2 Gypsum Containing Products 251</p> <p>9.4.2.3 High-Value Iron-Bearing Products 252</p> <p>9.4.2.4 Uranium and Base Metals 253</p> <p>9.4.2.5 Hydrogen 255</p> <p>9.5 Synopsis 255</p> <p>9.5.1 AMD Remediation 255</p> <p>9.5.2 Deriving Value From AMD 256</p> <p>References 259</p> <p><b>10 Rare Earth Elements—A Treasure Locked in AMD? 263<br /></b><i>Leon Krüger</i></p> <p>10.1 AMD—Annoyance or Resource 263</p> <p>10.2 Rare Earths—The Almost Forgotten Elements! 264</p> <p>10.3 Characteristics—What is with the <i>f</i>-Orbitals? 265</p> <p>10.4 Applications—Sweating the Unique Characteristics 271</p> <p>10.4.1 Introduction 271</p> <p>10.4.2 Rare Earths as Process Enablers 271</p> <p>10.4.2.1 Catalysis 271</p> <p>10.4.2.2 Physical Metallurgy 276</p> <p>10.4.2.3 Glass and Ceramic Industries 277</p> <p>10.4.2.4 Medicine and Health Care 280</p> <p>10.4.3 Rare Earths as Technology Building Blocks 283</p> <p>10.4.3.1 Permanent Magnets 283</p> <p>10.4.3.2 Energy Storage 287</p> <p>10.4.3.3 Phosphors 293</p> <p>10.4.3.4 Glass Additives 295</p> <p>10.4.3.5 Lasers 298</p> <p>10.5 Occurrence—From Magma to AMD 303</p> <p>10.6 REEs—From AMD to High Technology? 308</p> <p>Acknowledgements 308</p> <p>References 309</p> <p><b>11 Opportunities and Challenges of Re-Mining Mine Water for Resources 315<br /></b><i>Martin Mkandawire</i></p> <p>11.1 Introduction 315</p> <p>11.2 Mine Water and Drainages 316</p> <p>11.2.1 Mine Water in Context of This Chapter 316</p> <p>11.2.2 General Mine Water Chemistry 317</p> <p>11.2.3 Types of Mine Water Sources 317</p> <p>11.2.3.1 Overview 317</p> <p>11.2.3.2 Flooded Underground Mine Pool 318</p> <p>11.2.3.3 Flooded Opencast Lakes 318</p> <p>11.2.3.4 Leachates 319</p> <p>11.2.4 Drainages of Mine Water 321</p> <p>11.2.4.1 Acid Mine Drainage 321</p> <p>11.2.4.2 Alkali Mine Drainage 322</p> <p>11.3 Potential Extractable Resources 323</p> <p>11.3.1 Water Supply 323</p> <p>11.3.1.1 Opportunities 323</p> <p>11.3.1.2 Applicable Extraction Methods 323</p> <p>11.3.1.3 Challenges 324</p> <p>11.3.1.4 Counter Options 324</p> <p>11.3.2 Thermal Resource 325</p> <p>11.3.2.1 Opportunities 325</p> <p>11.3.2.2 Applicable Extraction Methods 326</p> <p>11.3.2.3 Challenges 328</p> <p>11.3.2.4 Counter Options 328</p> <p>11.3.3 Electricity Generation Prospects 330</p> <p>11.3.3.1 Opportunities 330</p> <p>11.3.3.2 Applicable Extraction Methods 330</p> <p>11.3.3.3 Challenges 334</p> <p>11.3.3.4 Counter Options 335</p> <p>11.3.4 Mineral Resource Extraction 335</p> <p>11.3.4.1 Opportunities 335</p> <p>11.3.4.2 Applicable Extraction Methods 336</p> <p>11.3.5 Re-Mining Mine Water Treatment Sludge 336</p> <p>11.3.5.1 Opportunities 336</p> <p>11.3.5.2 Applicable Extraction Methods 340</p> <p>11.3.5.3 Challenges 341</p> <p>11.3.5.4 Counter Options 342</p> <p>11.3.6 Mine Methane Gas Extraction 342</p> <p>11.3.6.1 Opportunities 342</p> <p>11.3.6.2 Applicable Extraction Methods 343</p> <p>11.3.6.3 Challenges 346</p> <p>11.3.6.4 Counter Options 347</p> <p>11.4 Conclusion 347</p> <p>References 347</p> <p>Index 351</p>
<p><b>Prof. Elvis Fosso-Kankeu</b> has a doctorate degree from the University of Johannesburg in South Africa. He is currently a Full Professor in the School of Chemical and Mineral Engineering at the North-West University in South Africa. His research focuses on the prediction of pollutants dispersion from industrial areas, and on the development of effective and sustainable methods for the removal of inorganic and organic pollutants from polluted water. He has published more than 200 papers including journal articles, books, book chapters and conference proceeding papers. <p><b>Prof. Christian Wolkersdorfer</b> is a mining hydrogeologist with 27 years of experience in mine water geochemistry, hydrodynamics, geothermal applications and tracer tests. In 2014, he was provided the South African Research Chair for Acid Mine Water Treatment at Tshwane University of Technology and he held the world's first Industrial Research Chair for Mine Water Remediation & Management at Cape Breton University, Nova Scotia, Canada. He is also a "Finnish Distinguished Professor for Mine Water Management" at Lappeenranta University of Technology in Mikkeli, Finland. <p><b>Dr. Jo Burgess</b> is an environmental scientist with 20 years' experience in the water, environment and wastewater sectors. She has held roles as technology specialist, research manager and researcher in South African and British organizations. She has proven experience in research and development of new technologies and their implementation at scale. Her work at the academic / industrial interface has been recognized through international awards, and she has published over 100 books and articles.
<p><b>The book presents 11 chapters focusing on the management of tailing dams, prediction of acidic mine water formation, established treatment methods that have successfully converted acidic mine water to usable water, and approaches to using acidic mine water as a resource for relevant commodities.</b> <p>Recent developments have provided the opportunity to recover valuable materials from Acid Mine Drainage (AMD) treatment, which is a sustainable approach that allows to reduce waste while generating incomes that balance the cost of the treatment. This book provides insights to innovative and affordable routes for AMD valorization that can motivate the mining industry to effectively manage their wastes and minimize environmental impact while generating jobs opportunities. <p>Readers of <i>Recovery of Byproducts from Acid Mine Drainage Treatment</i> will find the following important topics: <ul> <li>Reviews the challenges related to the mine waste deposited in the environment that contribute to pollution such as mine drainages which adversely affects water resources, soil and the surrounding ecosystem.</li> <li>Reviews technologies that have been used traditionally to treat various streams of wastewater as well as emerging technologies which are now being commercialized to recover potable water and valuable products from various types of wastewater, and provides clarification about the equipment and methods used in the process, as well as the advantages and disadvantages of each technology.</li> <li>Provides a state-of-the-art review of sustainable AMD treatment approaches that are likely to effectively foster water reclamation, reuse and recovery.</li> </ul> <p><b>Audience</b> <p>This book will be of interest to researchers in the fields of mining hydrogeology, mine water geochemistry, hydrodynamics, mine water remediation & management, mineralogy, as well as environmental engineers, government regulatory bodies officers and environmentalists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €