Details

Advances in Contact Angle, Wettability and Adhesion, Volume 4


Advances in Contact Angle, Wettability and Adhesion, Volume 4


1. Aufl.

von: K. L. Mittal

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 16.10.2019
ISBN/EAN: 9781119593300
Sprache: englisch
Anzahl Seiten: 348

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This is the fourth volume in the series "Advances in Contact Angle, Wettability and Adhesion" initiated to consolidate information and provide commentary on certain recent research aspects dealing with this important topic. Its predecessor Volumes 1, 2 and 3 were published in 2013, 2015 and 2018 respectively.</p> <p>This new book comprising 14 research and review articles is divided into four parts: Part 1: Contact Angle and Wettability Aspects;</p> <p>Part 2: Surface Free Energy and Surface Tension Determination; Part 3: Applied Aspects. The topics covered include:</p> <ul> <li>Contact Angle Determination of Talc Powders from Heat of Immersion</li> <li>Surface Wetting at Macro and Nanoscale</li> <li>Wettability of Wood Surfaces with Waterborne Acrylic Lacquer Stains Modulated by DBD Plasma Treatment in Air at Atmospheric Pressure</li> <li>Wettability of Ultrafiltration Membranes     </li> <li>Determination of the Surface Free Energy of Solid Surfaces: Can the Best Model be Found</li> <li>Surface Free Energy Characterization of Talc Powders</li> <li>Determination of the Surface Free Energy of Skin and the Factors Affecting it by the Contact Angle Method</li> <li>Determination of Surface Tension Components of Aqueous Solutions using Fomblin HC/25 R Perfluoropolyether Liquid Film as a Solid Substrate</li> <li>Enhancing the Wettability of Polybenzimidazole (PBI) to Improve Fuel Cell Performance</li> <li>Evaluation of Sebum Resistance for Long-Wear Face Make-Up Products Using Contact Angle Measurements</li> <li>Contact Angle Hysteresis of Pressure-Sensitive Adhesives due to Adhesion Tension Relaxation</li> <li>The Potential of Surface Nano-Engineering and Superhydrophobic Surfaces in Drag Reduction</li> <li>Laser Surface Engineering of Polymeric Materials for Enhanced Mesenchymal Stem Cell Adhesion and Growth</li> <li>Sisal-Green Resin Interfaces in Green Composites.</li> </ul>
<p>Preface xiii</p> <p><b>1 Contact Angle Determination of Talc Powders from Heat of Immersion 1<br /> </b><i>Ismail Yildirim and Roe-Hoan Yoon</i></p> <p>1.1 Introduction 1</p> <p>1.2 Theoretical Background 3</p> <p>1.3 Experimental 5</p> <p>1.3.1 Materials 5</p> <p>1.3.2 Experimental Apparatus and Procedures 6</p> <p>1.4 Results and Discussion 7</p> <p>1.5 Summary 15</p> <p>References 15</p> <p><b>2 Surface Wetting at Macro and Nanoscale 17<br /> </b><i>Meenakshi Annamalai, Saurav Prakash, Siddhartha Ghosh, Abhijeet Patra and T. Venkatesan</i></p> <p>2.1 Introduction 17</p> <p>2.2 Intrinsic Wetting Properties of REOs 20</p> <p>2.3 Nanoscale Approach to Measuring Wettability 25</p> <p>2.4 On the Nature of Wettability of van der Waals Heterostructures 28</p> <p>2.5 Summary 33</p> <p>References 34</p> <p><b>3 Wettability of Wood Surfaces with Waterborne Acrylic Lacquer Stains Modulated by DBD Plasma Treatment in Air at Atmospheric Pressure 41<br /> </b><i>Jure ?igon, Marko Petrič and Sebastian Dahle</i></p> <p>3.1 Introduction 41</p> <p>3.2 Materials and Methods 43</p> <p>3.2.1 Materials 43</p> <p>3.2.2 Plasma Treatment 43</p> <p>3.2.3 Contact Angle (CA) Measurements and Surface Free Energy (SFE) Determination 44</p> <p>3.2.4 Spreading Area Determination 45</p> <p>3.2.5 Application of Coatings on Sample Surfaces 45</p> <p>3.2.6 Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy 46</p> <p>3.2.7 Confocal Laser Scanning Microscopy 46</p> <p>3.2.8 Pull-Off Adhesion Strength of the Coatings 46</p> <p>3.2.9 Cross-Cut Test 46</p> <p>3.3 Results and Discussion 47</p> <p>3.3.1 Contact Angles and Surface Free Energy 47</p> <p>3.3.2 Spreading of Colored Water Droplets on Untreated and Plasma Treated Wood Surfaces 47</p> <p>3.3.3 Surface Roughness 50</p> <p>3.3.4 Contact Angles of Primer and Topcoat 50</p> <p>3.3.5 Adhesion Strength Determined by the Pull-Off Test Method 52</p> <p>3.3.6 The Results of the Cross-Cut Tests 53</p> <p>3.4 Summary and Conclusions 53</p> <p>Acknowledgements 54</p> <p>References 54</p> <p><b>4 Wettability of Ultrafiltration Membranes 57<br /> </b><i>Konrad Terpiłowski, Małgorzata Bielska, Krystyna Prochaska and Emil Chibowski</i></p> <p>4.1 Introduction 57</p> <p>4.2 Apparent Surface Free Energy Determination 58</p> <p>4.2.1 Contact Angle Hysteresis Approach 59</p> <p>4.2.2 Neumann Equation-of-State Approach 59</p> <p>4.2.3 Equilibrium Contact Angle Approach 59</p> <p>4.2.4 van Oss, Chaudhury and Good Approach 60</p> <p>4.3 Experimental 60</p> <p>4.3.1 Materials 60</p> <p>4.3.2 Methods 61</p> <p>4.4 Results and Discussion 61</p> <p>4.4.1 Surface Topography 61</p> <p>4.4.2 Contact Angle Measurements 65</p> <p>4.5 Conclusions 70</p> <p>References 71</p> <p><b>5 Determination of the Surface Free Energy of Solid Surfaces: Can the Best Model be Found 73<br /> </b><i>Frank M. Etzler</i></p> <p>5.1 Introduction 74</p> <p>5.1.1 Zisman Critical Surface Tension 74</p> <p>5.1.2 Neumann’s Method 75</p> <p>5.1.3 van Oss, Chaudhury and Good Approach 77</p> <p>5.1.4 Chen and Chang Model 80</p> <p>5.2 The Present Study 82</p> <p>5.2.1 Statistical Methods 82</p> <p>5.2.2 Dalal’s Data 85</p> <p>5.3 Data Analysis 86</p> <p>5.3.1 Fittting of PVC Data 86</p> <p>5.3.2 Fitting of PMMA Data 88</p> <p>5.3.3 Assessing Which Model is Best 92</p> <p>5.4 Summary and Conclusions 95</p> <p>References 96</p> <p><b>6 Surface Free Energy Characterization of Talc Particles 99<br /> </b><i>Ismail Yildirim and Roe-Hoan Yoon</i></p> <p>6.1 Introduction 99</p> <p>6.2 Theoretical Background 100</p> <p>6.2.1 vOCG Equation 100</p> <p>6.2.2 Contact Angle Measurements 102</p> <p>6.3 Experimental 104</p> <p>6.3.1 Talc Samples 104</p> <p>6.3.2 Liquids 104</p> <p>6.3.3 Capillary Rise Method 104</p> <p>6.3.4 Thin Layer Wicking Method 105</p> <p>6.3.5 Heat of Immersion Method 105</p> <p>6.4 Results and Discussion 106</p> <p>6.4.1 Heat of Immersion 106</p> <p>6.4.2 Contact Angles 107</p> <p>6.4.3 Talc Surface Free Energy and Its Components 110</p> <p>6.5 Summary and Conclusions 112</p> <p>References 113</p> <p><b>7 Determination of the Surface Free Energy of Skin and the Factors Affecting it by the Contact Angle Method 115<br /> </b><i>Davide Rossi and Antonio Bettero</i></p> <p>7.1 Introduction 116</p> <p>7.2 Experimental 118</p> <p>7.2.1 Method for Preparation of <i>Ex Vivo </i>Skin 120</p> <p>7.2.2 Preparation of Liposomal Dispersion by the Bettero/Gazzaniga Method 120</p> <p>7.2.3 Preparation of Test Liquids for the Surface Free Energy Analysis of <i>In Vivo </i>and <i>Ex Vivo </i>Skin 120</p> <p>7.2.4 Determination of SFE of <i>In Vivo </i>and <i>Ex Vivo </i>Skin using the SFECA Method 121</p> <p>7.2.5 Evaluation of the Epidermic Hydration State by Corneometric Approach 123</p> <p>7.2.6 Determination of the Epidermic Hydration State by the SFECA Method 123</p> <p>7.2.7 Correlation Analyses and Mathematical Means 125</p> <p>7.3 Results and Discussion 125</p> <p>7.3.1 Determination of the SFE of <i>Ex Vivo </i>Skin by the SFECA Method 126</p> <p>7.3.1.1 Comparison between Surface Free Energy and Corneometric Data for the <i>In Vivo </i>Skin Hydration State Evaluation 129</p> <p>7.3.1.2 Determination of the Hydration State of <i>In Vivo </i>Skin 130</p> <p>7.3.2 Characterization of SFE, DC and PC of <i>In Vivo </i>Skin by the SFECA Method 132</p> <p>7.3.3 Determination of SFE<sub>SKIN</sub> and Applicability of TVS Skin Test by the SFECA Method 135</p> <p>7.4 Summary and Conclusions 139</p> <p>Acknowledgments 141</p> <p>References 141</p> <p><b>8 Determination of Surface Tension Components of Aqueous Solutions Using Fomblin HC/25</b><sup>® </sup><b>Perfluoropolyether Liquid Film as a Solid Substrate 145<br /> </b><i>D. Rossi, S. Rossi and N. Realdon</i></p> <p>8.1 Introduction 146</p> <p>8.2 Materials Used 151</p> <p>8.3 Fomblin HC-25<sup>® </sup>Perfluoropolyether Liquid Film Preparation (Solid-Like Methodology) 153</p> <p>8.4 Determination of Surface Free Energy (SFE) 153</p> <p>8.4.1 Determination of Surface Free Energy (SFE) of PermaFoam 154</p> <p>8.4.2 Determination of Surface Tension (ST) of MilliQ Water 155</p> <p>8.4.3 Determination of Surface Tension (ST) of Aqueous Solutions in DW 158</p> <p>8.4.3.1 Sodium Chloride Solutions 160</p> <p>8.4.3.2 Glycerol Solutions 162</p> <p>8.4.3.3 Sucrose Solutions 163</p> <p>8.4.3.4 Ternary Sugar Solutions 167</p> <p>8.5 Analysis of Correlations 170</p> <p>8.6 Summary and Conclusions 171</p> <p>8.7 Acknowledgements 174</p> <p>List of Abbreviations 174</p> <p>References 175</p> <p><b>9 Enhancing the Wettability of Polybenzimidazole (PBI) to Improve Fuel Cell Performance 179<br /> </b><i>Katerine Vega, Matthew Cocca, Han Le, Marc Toro, Anthony Garcia, Andrew Fleischer, Alla Bailey, Joel Shertok, Michael Mehan, Surendra K. Gupta and Gerald A. Takacs</i></p> <p>9.1 Introduction 180</p> <p>9.2 Experimental 181</p> <p>9.2.1 Materials 181</p> <p>9.2.2 Production of O Atoms 181</p> <p>9.2.3 X-Ray Photoelectron Spectroscopy (XPS) 181</p> <p>9.2.4 Contact Angle Goniometry 182</p> <p>9.2.5 Atomic Force Microscopy (AFM) 182</p> <p>9.2.6 Thermal Gravimetric Analysis (TGA) 182</p> <p>9.3 Results and Discussion 183</p> <p>9.3.1 XPS Analysis 183</p> <p>9.3.1.1 XPS Quantitative Analyses and Contact Angle Measurements 183</p> <p>9.3.1.2 XPS Chemical State Analysis 184</p> <p>9.3.2 Surface Topography of PBI Treated with O Atoms 185</p> <p>9.3.3 TGA Analysis of PBI Samples Treated with O Atoms and Doped with H<sub>3</sub>PO<sub>4 </sub>186</p> <p>9.4 Discussion 188</p> <p>9.5 Conclusions 189</p> <p>Acknowledgments 189</p> <p>References 190</p> <p><b>10 Evaluation of Sebum Resistance for Long-Wear Face Make-Up Products Using Contact Angle Measurements 193<br /> </b><i>Hy Si Bui, Mariko Hasebe and Jody Ebanks</i></p> <p>10.1 Introduction 193</p> <p>10.1.1 Long-Wear Foundation 193</p> <p>10.1.2 Wetting and Spreading 195</p> <p>10.2 Experiments 196</p> <p>10.2.1 Foundation Samples and Bio Skin Plate 196</p> <p>10.2.2 Rheology of Foundation Samples 196</p> <p>10.2.3 Surface Roughness 197</p> <p>10.2.4 Contact Angle Measurements 197</p> <p>10.3 Results and Discussion 198</p> <p>10.3.1 Rheology of Foundation Samples 198</p> <p>10.3.2 Surface Roughness 200</p> <p>10.3.3 Surface Free Energy of Bio Skin Substrate and Foundation Films 203</p> <p>10.4 Contact Angles of Foundations with Water 207</p> <p>10.5 Contact Angles of Foundations with Sebum 209</p> <p>10.6 Effect of Sebum on Color Transfer and Film Integrity 214</p> <p>10.7 Summary and Prospects 215</p> <p>Acknowledgements 217</p> <p>References 217</p> <p><b>11 Contact Angle Hysteresis of Pressure Sensitive Adhesives due to Adhesion Tension Relaxation 223<br /> </b><i>Naoto Shiomura, Takashi Sekine and Dehua Yang</i></p> <p>11.1 Introduction 223</p> <p>11.2 Theoretical Background 224</p> <p>11.3 Experimental 228</p> <p>11.3.1 Preparation of Samples and Experimental Conditions 228</p> <p>11.3.2 Static Contact Angle Measurement 228</p> <p>11.3.3 Surface Free Energy (SFE) Analysis 228</p> <p>11.3.4 Dynamic Contact Angle as a Function of Time 229</p> <p>11.3.5 Dynamic Contact Angle Hysteresis with the Wilhelmy Plate Method 229</p> <p>11.3.6 Adhesion Tension Relaxation (ATR) 229</p> <p>11.3.7 Peel Force Measurement 230</p> <p>11.4 Results and Discussion 230</p> <p>11.4.1 Static Contact Angles and SFE Analysis 230</p> <p>11.4.2 Dynamic Contact Angle as a Function of Time 232</p> <p>11.4.3 Dynamic Contact Angle Hysteresis 232</p> <p>11.4.4 Adhesion Tension Relaxation (ATR) 233</p> <p>11.4.5 Peel Force 235</p> <p>11.5 Conclusion 236</p> <p>References 237</p> <p><b>12 The Potential of Surface Nano-Engineering and Superhydrophobic Surfaces in Drag Reduction 239<br /> </b><i>Ali Shahsavari, Amir Nejat and Seyed Farshid Chini</i></p> <p>Nomenclature 240</p> <p>Greek Letters 240</p> <p>Subscripts 241</p> <p>Superscript 241</p> <p>12.1 Introduction 241</p> <p>12.2 Parameters Affecting the Slip Length 246</p> <p>12.3 Slip Length Measurement on Superhydrophobic Surfaces 249</p> <p>12.4 Drag Reduction of Superhydrophobic Surfaces 250</p> <p>12.4.1 Wettability Parameters 250</p> <p>12.4.2 Reynolds Number and Shear Rate 251</p> <p>12.4.2.1 Turbulent Structure 251</p> <p>12.5 Effect of Superhydrophobicity on External Flow 252</p> <p>12.5.1 Flat Plate 253</p> <p>12.5.2 Bluff Body 253</p> <p>12.5.3 Superhydrophobic Streamline Body 254</p> <p>12.5.4 Partial Superhydrophobicity of NACA 0012 Hydrofoil 255</p> <p>12.6 Conclusion 258</p> <p>References 258</p> <p><b>13 Laser Surface Engineering of Polymeric Materials for Enhanced Mesenchymal Stem Cell Adhesion and Growth 267<br /> </b><i>D.G. Waugh, D. Cosgrove, I. Hussain and J. Lawrence</i></p> <p>13.1 Introduction 268</p> <p>13.2 Mesenchymal Stem Cells (MSCs) 269</p> <p>13.3 Poly(ether ether ketone) 273</p> <p>13.4 Laser Surface Engineering 274</p> <p>13.4.1 Laser-Induced Surface Patterning 275</p> <p>13.4.2 Pulsed Laser Deposition of Polymeric Biomaterials 276</p> <p>13.4.3 Laser-Induced Surface Chemistry Modification 277</p> <p>13.5 CO<sub>2</sub> Laser Surface Engineering of Poly(ether ether ketone) 277</p> <p>13.5.1 Material Selection and Laser Surface Engineering 278</p> <p>13.5.2 Surface Roughness, Topography and Wettability Characteristics Analysis 280</p> <p>13.5.3 Surface Chemical Properties 281</p> <p>13.5.4 <i>In Vitro </i>Cell Experimentation 282</p> <p>13.6 Effects of CO<sub>2 </sub>Laser Surface Engineering on Surface Parameters of Poly(ether ether ketone) 283</p> <p>13.7 Effects of CO<sub>2 </sub>Laser Surface Engineering on Mesenchymal Stem Cell Response to Poly(ether ether ketone) 285</p> <p>13.8 Poly(ether ether ketone) and other Polymers as Bio-Composite Materials 286</p> <p>13.9 Summary 290</p> <p>References 290</p> <p><b>14 Sisal-Green Resin Interfaces in Green Composites 299<br /> </b><i>A. N. Netravali</i></p> <p>14.1 Introduction 299</p> <p>14.2 Sustainable ‘Green’ Composites 301</p> <p>14.3 Sisal Fiber Composites 302</p> <p>14.4 Fiber/Resin Interface 303</p> <p>14.4.1 Sisal/Green Resin Interface Strength 305</p> <p>14.5 Modification of Cellulosic Fibers for Enhancing Fiber/Resin Interfacial Bonding 307</p> <p>14.6 Summary 311</p> <p>References 312</p> <p>Index 319</p>
<p><b>Kashmiri Lal Mittal</b> was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor <i>honoris causa</i> from Maria Curie-Skodowska University, Lublin, Poland. He is the editor of more than 130 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal <i>Reviews of Adhesion and Adhesives</i>.</p>
<p><b>With 14 chapters from world-renowned researchers, this book offers an extraordinary commentary on the burgeoning current research activity in contact angle and wettability</b> <p>The present volume constitutes Volume 4 in the ongoing series <i>Advances in Contact Angle, Wettability and Adhesion</i> which was conceived with the intent to provide periodic updates on the research activity and salient developments in the fascinating arena of contact angle, wettability and adhesion. <p>The book is divided into three parts: Part 1: Contact Angle and Wettability Aspects; Part 2: Surface Free Energy and Surface Tension Determination; and Part 3: Applied Aspects. The topics covered include: contact angle determination of talc powders; surface wetting at macro and nanoscale; wettability of plasma treated wood surfaces; wettability of ultrafiltration membranes; discussion of various models to determine the surface free energy of solid surfaces with the hope to find the best model; determination of surface free energy of skin and factors affecting it; determination of surface tension components of aqueous solutions using liquid film as a solid substrate; wetting of polybenzimidazole (PBI) and fuel cell performance; evaluation of sebum resistance of make-up products using contact angle measurements; contact angle hysteresis of pressure-sensitive adhesives; potential of surface nano-engineering and superhydrophobic surface in drag reduction; laser surface engineering of polymeric surfaces to enhance cell adhesion; sisal-green resin interfaces in green composites. <p><b>Audience</b> <p>The information provided in this book will be of great interest and value to materials scientists, surface and chemical engineers as well as R&D, manufacturing, and quality control personnel in a host of industries and technological areas such as printing, textile, adhesive bonding, packaging, automotive, aerospace, composites, microfluidics, biomedical, paint, microelectronics, and nanotechnology.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €