Details

The ELSI Handbook of Nanotechnology


The ELSI Handbook of Nanotechnology

Risk, Safety, ELSI and Commercialization
1. Aufl.

von: Chaudhery Mustansar Hussain

206,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 31.03.2020
ISBN/EAN: 9781119592969
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology.  Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology.  Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections:  Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
<p>Preface xv</p> <p><b>1 Nanomaterials and the Environment 1<br /></b><i>Shivani Rastogi, Gaurav Sharma and Balasubramanian Kandasubramanian</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Overview of Nanomaterials 1</p> <p>1.1.2 Overview of Environmental Health 4</p> <p>1.1.2.1 Use of NMs in Environmental Health (Nanoremediation) 4</p> <p>1.2 Applications of Nanomaterials for Environment 6</p> <p>1.2.1 Nanomaterials for Detection of Environmental Contaminants 6</p> <p>1.2.2 Nanomaterials for Air Purification 9</p> <p>1.2.3 Nanomaterials for Water Treatment 10</p> <p>1.2.4 Nanomaterials for Energy Storage 11</p> <p>1.2.5 Nanomaterials for Degradation of Land Waste 12</p> <p>1.3 Limitations of Environmental Nanomaterials 13</p> <p>1.3.1 Toxicity of Nanomaterials 13</p> <p>1.3.2 Toxic Effect on Environmental Health 14</p> <p>1.3.3 Effect of Toxicity on Human Health 15</p> <p>1.4 Future Scope of Environmental Nanomaterials 17</p> <p>1.4.1 In Wastewater and Land Waste Treatment 17</p> <p>1.4.2 In Biomedicine and Air Purification 17</p> <p>1.4.3 In Electronics and IT Applications 18</p> <p>1.5 Conclusion 18</p> <p>References 19</p> <p><b>2 Highly Efficient Graphene-Based Nanocomposites for Environmental Application 25<br /></b><i>A.E. Burakov, I.V. Burakova, E.V. Galunin, E.S. Mkrtchyan and A.V. Melezhik</i></p> <p>2.1 Features of the Organic Pollutants Adsorption 25</p> <p>2.1.1 Introduction 25</p> <p>2.1.2 Types of Organic Pollutants 26</p> <p>2.1.3 Methods for Removing Organic Pollutants 27</p> <p>2.1.4 Materials to Extract Organic Pollutants 28</p> <p>2.2 Adsorption Materials – Graphene-Based Nanocomposites 37</p> <p>2.2.1 Synthesis of the Sorption Materials 37</p> <p>2.2.2 Physicochemical Properties of the Sorption Materials 38</p> <p>2.3 Determining the Adsorption Activity 41</p> <p>2.3.1 Kinetic Studies under Static Conditions 41</p> <p>2.3.2 Kinetic Studies under Dynamic Conditions 41</p> <p>2.3.3 Mathematical Processing of Experimental Data 42</p> <p>2.4 Conclusion 44</p> <p>Acknowledgment 44</p> <p>References 44</p> <p><b>3 A Concise Account of the Studies Conducted on the Transport, Fate, Transformation and Toxicity of Engineered Nanomaterials 51<br /></b><i>Sauvik Raha and Md. Ahmaruzzam</i></p> <p>3.1 Introduction 52</p> <p>3.2 Transport of Engineered Nanomaterials 52</p> <p>3.2.1 Transport in Air 52</p> <p>3.2.2 Transport in Water 53</p> <p>3.2.3 Transport in Terrestrial Compartment 54</p> <p>3.3 Fate and Transformation of Engineered Nanomaterials 55</p> <p>3.3.1 Fate and Transformation in Air 55</p> <p>3.3.2 Fate and Transformation in Terrestrial and Aquatic Compartments 56</p> <p>3.4 Toxicity 57</p> <p>3.4.1 Toxicity in Aquatic Biomes 57</p> <p>3.4.2 Toxicity in Terrestrial Biomes 58</p> <p>3.5 Existing Challenges 58</p> <p>3.6 Conclusion 59</p> <p>References 59</p> <p><b>4 Nanotechnologies and Advanced Smart Materials: The Case of Architecture and Civil Engineering 67<br /></b><i>Paolo Di Sia</i></p> <p>4.1 Introduction 67</p> <p>4.2 Management of Complexity 69</p> <p>4.3 Advanced Materials: Definitions, Characteristics, Properties 71</p> <p>4.4 Classification Criteria: High Performance and Smart Materials 73</p> <p>4.5 Innovations in the Nanotechnology Field for Building Materials 76</p> <p>4.6 Applications of Nanostructured Materials in Architecture 79</p> <p>4.7 Nanostructured Cementitious Materials: High Performance and Ecoefficiency 81</p> <p>4.8 Conclusions 84</p> <p>References 85</p> <p><b>5 Life Cycle Environmental Implications of Nanomanufacturing 89<br /></b><i>Asmaa Nady Mohammed</i></p> <p>5.1 Introduction 89</p> <p>5.2 Manufacturing of Nanomaterials 90</p> <p>5.3 Nanomaterials and Their Entry into the Environment 91</p> <p>5.4 How is the Environment Subjected to Nanomaterials? 91</p> <p>5.5 Implications of Nanomaterials in the Environment 92</p> <p>5.6 Potential Health Risks and Environmental Impact of Nanomaterials 92</p> <p>5.7 Impact of Long-Term Exposure to Graphene-Based Materials <i>In Vivo </i>93</p> <p>5.8 Antimicrobial Activity of Graphene and Graphene Oxide Particles 93</p> <p>5.9 Interaction between Two-Dimension (2D) Nanomaterials and the Environment 93</p> <p>5.10 Positive Effects of Nanomaterials on the Environment 94</p> <p>5.11 Negative Effects of Nanomaterials on the Environment 94</p> <p>5.12 Life Cycle Assessment (LCA) 94</p> <p>5.13 Four Phases of Life Cycle Assessment (LCA) 95</p> <p>5.14 Environmental Nanomaterials (ENMs) Life Cycle 97</p> <p>5.15 Application of LCA to Nanomaterials 97</p> <p>5.16 Conclusions 98</p> <p>References 98</p> <p><b>6 Addressing Nanotoxicity: Green Nanotechnology for a Sustainable Future 103<br /></b><i>Dipyaman Mohanta and Md. Ahmaruzzaman</i></p> <p>6.1 Introduction 103</p> <p>6.2 Nanotoxicity: A Multifaceted Challenge 104</p> <p>6.3 Physicochemical Properties of Nanomaterials Influencing Nanotoxicity 105</p> <p>6.4 Green Nanotechnology: A Proactive Approach to Minimize Nanotoxicity 106</p> <p>6.4.1 Biosynthesis of Nanomaterials 107</p> <p>6.4.2 Surface Coating of Nanomaterials to Minimize Biological Interaction 107</p> <p>6.4.3 Sulfidation of Metal Nanoparticles 108</p> <p>6.5 Conclusion 108</p> <p>Acknowledgment 109</p> <p>References 109</p> <p><b>7 Nanotechnology: Occupational Health Hazards of Nanoparticles and Legalization Challenges 113<br /></b><i>Mohadeseh Zarei Ghobadi, Elaheh Afsaneh and Hedayatolah Ghourchian</i></p> <p>7.1 Introduction 113</p> <p>7.2 Hazard and Toxicology of Nanoparticles 115</p> <p>7.2.1 Size 115</p> <p>7.2.2 Shape 116</p> <p>7.2.3 Specific Surface Area 116</p> <p>7.2.4 Aggregation/Agglomeration 116</p> <p>7.2.5 Crystallinity 116</p> <p>7.2.6 Chemical Composition 117</p> <p>7.2.7 Surface Charge and Modification 117</p> <p>7.3 Nanoparticle Absorption 117</p> <p>7.3.1 Dermal Absorption 117</p> <p>7.3.2 Pulmonary Absorption 118</p> <p>7.3.3 Eye Absorption 119</p> <p>7.4 Instruments and Methods for Detection of Nanoparticles 119</p> <p>7.4.1 Direct Methods 120</p> <p>7.4.1.1 Optical Particle Sizer (OPS) 120</p> <p>7.4.1.2 Condensation Particle Counter (CPC) 120</p> <p>7.4.1.3 Fast Mobility Particle Sizer (FMPS) 120</p> <p>7.4.1.4 Size-Selective Static Sampler 120</p> <p>7.4.1.5 Diffusion Charger (DC) 120</p> <p>7.4.1.6 Electrostatic Low Pressure Impactor (ELPI) 121</p> <p>7.4.1.7 Electron Microscopy 121</p> <p>7.4.2 Indirect Methods 121</p> <p>7.5 Hazard Assessment of Nanoparticles 121</p> <p>7.6 Risk Assessment and Management of Nanoparticles 122</p> <p>7.7 Hazard Control 124</p> <p>7.8 Federal Regulatory Compliance 128</p> <p>7.8.1 OSHA 128</p> <p>7.8.2 EPA 129</p> <p>7.8.3 REACH 129</p> <p>7.8.4 NIOSH 130</p> <p>7.9 Summary 130</p> <p>References 130</p> <p><b>8 Bringing Awareness to the Darker Side of Nanoparticles 135<br /></b><i>Paramita Karfa, Kartick Chandra Majhi and Rashmi Madhuri</i></p> <p>8.1 What is Nano-Sized Particle or Nanoparticle? 136</p> <p>8.1.1 Classification and Wide Applications of Nanoparticles 137</p> <p>8.1.1.1 Classification of Nanoparticles According to Their Origin 138</p> <p>8.1.1.2 Classification of Nanoparticles According to Dimension 138</p> <p>8.1.1.3 Classification of Nanoparticles According to Their Composition 139</p> <p>8.1.1.4 Classification of Nanoparticles According to Their Size/Shape/Morphology 139</p> <p>8.1.2 Synthesis of Nanoparticles 140</p> <p>8.1.3 The Other Side of the Coin: Darker Side of Nanoparticles 141</p> <p>8.1.3.1 Size of the Nanoparticle 143</p> <p>8.1.3.2 Morphology of the Nanoparticle 143</p> <p>8.1.3.3 Composition of the Nanoparticle 144</p> <p>8.1.3.4 Surface Charge of the Nanoparticle 144</p> <p>8.2 Interaction of Nanoparticle with Living System: Its Effects and Mechanism 144</p> <p>8.2.1 Generation of Reactive Oxygen Species (ROS) or Oxidative Stress 145</p> <p>8.2.2 Inflammation in the Exposed Body Part 145</p> <p>8.2.3 Genotoxicity 146</p> <p>8.2.4 Probable Mechanism for Toxicity of Nanoparticle 147</p> <p>8.3 Toxicological Study of Different Nanoparticles 148</p> <p>8.3.1 Effect of Silver Nanoparticles (AgNPs) 148</p> <p>8.3.2 Effect of Gold Nanoparticles (AuNPs) 150</p> <p>8.3.3 Effect of TiO<sub>2</sub> Nanoparticles (TiO<sub>2</sub> NPs) 153</p> <p>8.3.4 Effect of Carbon-Based Nanoparticles 154</p> <p>8.4 Future Aspect 157</p> <p>Acknowledgment 158</p> <p>References 158</p> <p><b>9 Mode of Transfer, Toxicity and Negative Impacts of Engineered Nanoparticles on Environment, Human and Animal Health 165<br /></b><i>Duraiarasan Surendhiran, Haiying Cui and Lin Lin</i></p> <p>9.1 Introduction 165</p> <p>9.2 Different Engineered Nanoparticles (ENPs) and Their Commercial Uses 166</p> <p>9.3 Exposure of ENPs to the Environment 167</p> <p>9.3.1 Exposure of ENPs to Air 172</p> <p>9.3.2 Exposure of ENPs to Soil 173</p> <p>9.3.3 Exposure of ENPs to Water 174</p> <p>9.4 Hazards and Nanotoxicity of ENPs on Soil Communities 175</p> <p>9.4.1 Microorganisms 175</p> <p>9.4.2 Earthworms 180</p> <p>9.4.3 Plants 181</p> <p>9.5 Health Effects on Humans and Animals 187</p> <p>9.5.1 Dermal 187</p> <p>9.5.2 Inhalation 188</p> <p>9.5.3 Ingestion 190</p> <p>9.6 Detection of Nanotoxicity and Its Challenges 192</p> <p>9.7 Conclusion and Future Needs 194</p> <p>References 194</p> <p><b>10 The Impact of Nanomaterials in Aquatic Systems 205<br /></b><i>Nhamo Chaukura, Tatenda C Madzokere, Nyembezi Mgochekim and Thato M Masilompane</i></p> <p>10.1 Introduction 205</p> <p>10.2 Sources of Nanomaterials 207</p> <p>10.2.1 Engineered and Non-Engineered Nanomaterials 207</p> <p>10.2.2 Carbon- and Metal-Based Nanomaterials –Synthesis and Applications 208</p> <p>10.3 Transport and Environmental Fate of Nanomaterials 209</p> <p>10.4 The Toxicity of Nanomaterials in Aquatic Systems 210</p> <p>10.4.1 Toxicity in Plants 211</p> <p>10.4.2 Toxicity in Animals 212</p> <p>10.4.3 Methods for the Evaluation of Nanotoxicity 213</p> <p>10.4.4 Toxicity Mechanisms 215</p> <p>10.5 Future Research Directions 216</p> <p>10.6 Conclusion 217</p> <p>References 217</p> <p><b>11 Nanotechnology in the Dairy Industry: Benefits and Risks 223<br /></b><i>I.T. Smykov</i></p> <p>11.1 Introduction 223</p> <p>11.2 Associated Colloids (Micelles) 227</p> <p>11.3 Nanoemulsions 227</p> <p>11.4 Nanoparticles 228</p> <p>11.5 Biopolymers 229</p> <p>11.6 Nanofibers 229</p> <p>11.7 Nanocapsules 230</p> <p>11.8 Nanotubes 230</p> <p>11.9 Nanofilter and Nanofiltration 231</p> <p>11.10 Food Packaging 232</p> <p>11.10.1 Nanosensors 233</p> <p>11.10.2 Nano-Coatings 234</p> <p>11.11 Toxicity and Risks 234</p> <p>11.12 Part 1: Dairy Production Using Natural Nanoparticles 238</p> <p>11.12.1 Casein Micelles 238</p> <p>11.12.2 Milk Fat Globule 240</p> <p>11.13 Part 2: The Use of Nanoparticles of Abiotic Origin for Dairy Production 250</p> <p>11.13.1 Hydroxyapatite Nanoparticles 250</p> <p>11.13.2 Silver Nanoparticles 253</p> <p>11.13.3 Radiation Technologies in the Food Industry 256</p> <p>11.14 Part 3: Toxicity and Risks Related to Nanotechnology 258</p> <p>11.14.1 Block Morphometric Risks 262</p> <p>11.14.2 Block Physicochemical Risks 263</p> <p>11.14.3 Block Molecular Biological Risks 264</p> <p>11.14.4 Block Cytological Risks 264</p> <p>11.14.5 Block Physiological Risks 264</p> <p>11.14.6 Block Environmental Risks 265</p> <p>11.14.7 Block Risk Analysis 266</p> <p>Acknowledgment 267</p> <p>References 267</p> <p><b>12 A Survey of Nanotechnology for Rocket Propulsion: Promises and Challenges 277<br /></b><i>Luigi T. DeLuca</i></p> <p>Glossary 277</p> <p>12.1 Background 280</p> <p>12.2 Introduction to Nanoenergetic Materials 281</p> <p>12.2.1 Historical Excursus and Chemical Energy 281</p> <p>12.2.2 Ultrafine vs. Nano-Sized Particles 281</p> <p>12.2.3 Scope of Energetic Applications 282</p> <p>12.2.4 A Word of Caution 282</p> <p>12.3 Objectives and Contents 282</p> <p>12.3.1 Reading Map 284</p> <p>12.3.2 First Generation vs. Advanced nEM 285</p> <p>12.4 nMe Production and Active Al Content 285</p> <p>12.4.1 Active Al Content 286</p> <p>12.4.2 Comments on Active Al Content 286</p> <p>12.5 Particle Passivation and Coating 286</p> <p>12.5.1 Native Al2O3 Thickness 288</p> <p>12.5.2 Particle Passivation 288</p> <p>12.5.3 Particle Coating 290</p> <p>12.5.4 Comments on Particle Passivation and Coating 292</p> <p>12.6 Chemical and Mechanical Activation 292</p> <p>12.6.1 Roadmap on Chemical Activation 293</p> <p>12.6.2 Roadmap on Chemical Self-Activation 293</p> <p>12.6.3 Roadmap on Mechanical Activation 294</p> <p>12.6.4 Comments on Chemical and Mechanical Activation 296</p> <p>12.7 Rheology and Mechanical Properties 296</p> <p>12.7.1 Roadmap on Rheology and Mechanical Properties 296</p> <p>12.7.2 Comments on Rheology and Mechanical Properties 300</p> <p>12.8 CCP Formation, Agglomeration, and Clustering 300</p> <p>12.8.1 Roadmap on CCP Formation, Agglomeration, and Clustering 301</p> <p>12.8.2 Comments on CCP Formation, Agglomeration, and Clustering 304</p> <p>12.9 Augmented Steady Ballistic Properties 304</p> <p>12.10 Effects of nAl on Unsteady Burning and Ignition 307</p> <p>12.10.1 Unsteady Propellant Burning 307</p> <p>12.10.2 Ignition of Energetic Particles and Formulations 308</p> <p>12.11 Safety of Energetic Particles and Formulations 309</p> <p>12.11.1 nMe and Metalized Energetic Formulations 309</p> <p>12.11.2 AP/HTPB-Based Solid Propellants 310</p> <p>12.11.3 Advanced Compositions 311</p> <p>12.11.4 ESD Hazards 312</p> <p>12.11.5 Comments on Safety 314</p> <p>12.12 Aging of Energetic Particles and Formulations 315</p> <p>12.12.1 Background on Aging 315</p> <p>12.12.2 nMe 315</p> <p>12.12.3 Solid Propellants 318</p> <p>12.12.4 Comments on Aging 319</p> <p>12.13 Concluding Remarks 319</p> <p>Acknowledgments 321</p> <p>References 321</p> <p><b>13 Toxicity and Regulatory Concerns for Nanoformulations in Medicine 333<br /></b><i>Nimisha Gaur, Navneet Sharma, Aditya Dahiya, Pooja Yadav, Himanshu Ojha, Ramesh K Goyal and Rakesh Kumar Sharma</i></p> <p>13.1 Introduction 334</p> <p>13.2 Definition of Nanomedicine – Crucial for Regulation 334</p> <p>13.3 Epidemiological Studies on the Health Hazard 336</p> <p>13.4 Deposition of Particles in the Organism 336</p> <p>13.5 Occupational Safety in Medical Facilities 338</p> <p>13.6 Studies on Biological Effects of TiO<sub>2</sub> Nanoparticles 340</p> <p>13.7 Studies on Biological Effects of Fe<sub>2</sub>O<sub>3</sub> Nanoparticles 340</p> <p>13.8 Studies on Biological Effects of SiO<sub>2</sub> Particles 340</p> <p>13.9 Effect of Nanoparticles at the Cellular and Molecular Level 341</p> <p>13.10 Toxicity of Dendrimers 342</p> <p>13.11 Toxicity of Quantum Dots 343</p> <p>13.12 Environmental Issues 343</p> <p>13.12.1 Handling Solid Waste 344</p> <p>13.12.2 Wastewater Treatment 344</p> <p>13.12.3 Combustion 345</p> <p>13.13 Regulatory Measures 345</p> <p>13.13.1 Medicines or Medical Devices 345</p> <p>13.13.2 Register and Labeling 346</p> <p>13.13.3 Better Work Safety 346</p> <p>13.13.4 Nanowaste 347</p> <p>13.13.5 Future Directions Required for Developing Regulations 347</p> <p>13.14 Conclusions 349</p> <p>References 350</p> <p><b>14 A Way to Create Sustainable Environment: Green Nanotechnology –With an Emphasis on Noble Metals 359<br /></b><i>Sirajunnisa Abdul Razack and Surendhiran Duraiarasan</i></p> <p>14.1 Introduction 360</p> <p>14.2 Nanoparticles 360</p> <p>14.2.1 Properties of Nanoparticles 361</p> <p>14.2.1.1 Electronic and Optical Properties 362</p> <p>14.2.1.2 Mechanical Properties 362</p> <p>14.2.1.3 Thermal Properties 363</p> <p>14.2.2 Characterization of Nanoparticles 364</p> <p>14.3 Fabrication 366</p> <p>14.3.1 Chemical Synthesis 367</p> <p>14.3.2 Biological Synthesis 370</p> <p>14.3.2.1 Silver 371</p> <p>14.3.2.2 Gold 379</p> <p>14.3.2.3 Platinum 391</p> <p>14.3.2.4 Platinum Group Metals 394</p> <p>14.4 Applications of Noble NPs 396</p> <p>14.4.1 Gold Nanoparticles 396</p> <p>14.4.2 Silver Nanoparticles 402</p> <p>14.4.3 Platinum and Platinum Group Metals 404</p> <p>14.5 Conclusion and Future Perspectives 405</p> <p>References 406</p> <p><b>15 Modern Development with Green Polymer Nanocomposites: An Overview 427<br /></b><i>Pratibha Singh, Chandra Shekhar Kushwaha and S.K. Shukla</i></p> <p>15.1 Introduction 427</p> <p>15.2 Classification 428</p> <p>15.2.1 Natural Polymer 429</p> <p>15.2.1.1 Cellulose 429</p> <p>15.2.1.2 Chitin 430</p> <p>15.2.1.3 Chitosan 431</p> <p>15.2.2 Synthetic Green Polymer 431</p> <p>15.2.2.1 PLA 431</p> <p>15.2.2.2 PVA 432</p> <p>15.3 Methods of Preparation 432</p> <p>15.4 Properties 433</p> <p>15.4.1 Biological Properties 433</p> <p>15.4.1.1 Biocompatibility 433</p> <p>15.4.1.2 Biodegradation 434</p> <p>15.4.1.3 Antimicrobial 434</p> <p>15.4.2 Physical Properties 435</p> <p>15.4.2.1 Mechanical Properties 435</p> <p>15.4.2.2 Magnetic Properties 435</p> <p>15.5 Applications of Green Polymer Nanocomposite 437</p> <p>15.5.1 Food Packaging 437</p> <p>15.5.2 Biomedical 438</p> <p>15.5.2.1 Biosensor 438</p> <p>15.5.2.2 Tissue Engineering 441</p> <p>15.5.2.3 Drug Delivery 443</p> <p>15.5.2.4 Bone and Cartilage Tissue Regeneration 444</p> <p>15.5.3 Water Treatment 445</p> <p>15.5.4 Crop Protection 445</p> <p>15.5.5 Electronic Devices 447</p> <p>15.6 Conclusion and Future Prospects 448</p> <p>Acknowledgments 448</p> <p>References 448</p> <p>Index 459</p>
<p><b>Chaudhery Mustansar Hussain</b>, PhD is an Adjunct Professor, Academic Advisor and Lab Director in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA. His research is focused on the applications of nanotechnology & advanced materials in environment, analytical chemistry and various industries. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as a prolific author and editor of several scientific monographs and handbooks in his research areas.
<p><b>This ground-breaking handbook uniquely addresses challenges of nanotechnology with respect to safety, risk and ethical, society and legal implications (ELSI) along with the commercialization aspects.</b> <p>This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. <p>Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: <ul> <li>Nanomaterials and the Environment;</li> <li>Life Cycle Environmental Implications of Nanomanufacturing;</li> <li>Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments;</li> <li>Occupational Health Hazards of Nanoparticles;</li> <li>Ethical Issues in Nanotechnology;</li> <li>Commercialization of Nanotechnology;</li> <li>Legalization of Nanotechnology.</li> </ul> <p><b>Audience</b><br> This handbook will be of significant interest to scientists and researchers working on nanoscience and nanotechnology, materials scientists, chemists, pharmacists, biologists and chemical engineers. In addition, it will provide essential information to consultants and regulators about nanotechnology applications and processes helpful in their evaluation and decision-making procedures. University graduate and post-graduate students taking advance level of nanoscience and technology courses will find this handbook easy to use and understandable.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €