Details

Soil Microenvironment for Bioremediation and Polymer Production


Soil Microenvironment for Bioremediation and Polymer Production


1. Aufl.

von: Nazia Jamil, Prasun Kumar, Rida Batool

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 02.12.2019
ISBN/EAN: 9781119592150
Sprache: englisch
Anzahl Seiten: 420

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Describes harmful elements and their bioremediation techniques for tannery waste, oil spills, wastewater, greenhouse gases, plastic and other wastes.</b></p> <p>Microenvironmental conditions in soil provide a natural niche for ultra-structures, microbes and microenvironments. The natural biodiversity of these microenvironments is being disturbed by industrialization and the proliferation of urban centers, and synthetic contaminants found in these micro-places are causing stress and instability in the biochemical systems of microbes. The development of new metabolic pathways from intrinsic metabolic cycles facilitate microbial degradation of diverse resistant synthetic compounds present in soil. These are a vital, competent and cost-effective substitute to conventional treatments. Highly developed techniques for bioremediation of these synthetic compounds are increasing and these techniques facilitate the development of a safe environment using renewable biomaterial for removal of toxic heavy metals and xenobiotics.</p> <p><i>Soil Microenvironment for Bioremediation and Polymer Production</i> consists of 21 chapters by subject matter experts and is divided into four parts: Soil Microenvironment and Biotransformation Mechanisms; Synergistic Effects between Substrates and Microbes; Polyhydroxyalakanoates: Resources, Demands and Sustainability; and Cellulose-Based Biomaterials.</p> <p>This timely and important book highlights</p> <ul> <li>Chapters on classical bioremediation approaches and advances in the use of nanoparticles for removal of radioactive waste</li> <li>Discusses the production of applied emerging biopolymers using diverse microorganisms</li> <li>Provides the most innovative practices in the field of bioremediation</li> <li>Explores new techniques that will help to improve biopolymer production from bacteria</li> <li>Provides novel concepts for the most affordable and economic societal benefits.</li> </ul>
<p>Preface xvii</p> <p><b>Part 1: Soil Microenvironment and Biotransformation Mechanisms 1</b></p> <p><b>1 Applications of Microorganisms in Agriculture for Nutrients Availability 3<br /> </b><i>Fehmida Fasim and Bushra Uziar</i></p> <p>1.1 Introduction 3</p> <p>1.1.1 Land and Soil Deterioration 4</p> <p>1.1.2 Micro-Nutrients Lacks 4</p> <p>1.2 Biofertilizers 4</p> <p>1.3 Rhizosphere 5</p> <p>1.4 Plant Growth Promoting Bacteria 5</p> <p>1.4.1 Nitrogen Fixation 6</p> <p>1.4.2 Phosphate Solubilization 8</p> <p>1.5 Microbial Mechanisms of Phosphate Solubilization 9</p> <p>1.5.1 Organic Phosphate 9</p> <p>1.5.2 Organic Phosphate Solubilization 10</p> <p>1.6 Bacterial and Fungi Coinoculation 11</p> <p>1.7 Conclusion 11</p> <p>References 12</p> <p><b>2 Native Soil Bacteria: Potential Agent for Bioremediation 17<br /> </b><i>Ranjan Kumar Mohapatra, Haragobinda Srichandan, Snehasish Mishra and Pankaj Kumar Parhi</i></p> <p>2.1 Introduction 17</p> <p>2.2 Current Soil Pollution Scenario 19</p> <p>2.2.1 Soil Pollution by Heavy Metals and Xenobiotic Compounds 19</p> <p>2.2.2 Soil Pollution by Extensive Agricultural and Animal Husbandry Practices 20</p> <p>2.2.3 Pollution Due to Emerging Pollutants (Wastes from Pharmaceutical and Personal-Care Products) 21</p> <p>2.2.4 Soil Pollution by Pathogenic Microorganisms 22</p> <p>2.2.5 Soil Pollution Due to Oil and Petroleum Hydrocarbons 23</p> <p>2.2.6 Soil Pollution by the Nuclear and Radioactive Wastes 25</p> <p>2.2.7 Soil Pollution by Military Activities and Warfare 26</p> <p>2.3 Effects of Soil Pollution 26</p> <p>2.3.1 Effects of Soil Pollution on Plants 26</p> <p>2.3.2 Effects of Soil Pollution on Human Health 26</p> <p>2.4 Diversity of Soil Bacteria from Contaminated Sites 27</p> <p>2.5 Bioremediation of Toxic Pollutants 27</p> <p>2.6 Bioremediation Mechanisms 27</p> <p>2.7 Factors Affecting Bioremediation/Biosorption Process 29</p> <p>2.8 Microbial Bioremediation Approaches 30</p> <p>2.8.1 <i>In Situ </i>Bioremediation 30</p> <p>2.8.2 <i>Ex Situ </i>Bioremediation 30</p> <p>2.9 Conclusion and Future Prospective 30</p> <p>Acknowledgements 30</p> <p>References 31</p> <p><b>3 Bacterial Mediated Remediation: A Strategy to Combat Pesticide Residues In Agricultural Soil 35<br /> </b><i>Atia Iqbal</i></p> <p>3.1 Introduction 35</p> <p>3.2 Effects of Pesticides 36</p> <p>3.3 Pesticide Degradation 37</p> <p>3.4 Bacterial Mediated Biodegradation of Various Pesticides 38</p> <p>3.4.1 Organophosphate Pesticides Degrading Bacteria 38</p> <p>3.4.2 Methyl Parathion Mineralizing Bacteria (MP) 39</p> <p>3.4.3 Mesotrione Degrading Bacteria 39</p> <p>3.4.4 Aromatic Hydrocarbons Biodegradation 39</p> <p>3.4.5 Bispyribac Sodium (BS) Degrading Bacteria 40</p> <p>3.4.6 Carbamates (CRBs) Degradation 40</p> <p>3.4.7 Propanil Degradation 40</p> <p>3.4.8 Atrazine Degradation 40</p> <p>3.4.9 Phenanthrene Degradation 40</p> <p>3.4.10 Imidacloprid Degradation 41</p> <p>3.4.11 Endusulfan Degradation 41</p> <p>3.4.12 DDT 42</p> <p>3.5 Conclusion 42</p> <p>References 49</p> <p><b>4 Study of Plant Microbial Interaction in Formation of Cheese Production: A Vegan’s Delight 55<br /> </b><i>Sundaresan Bhavaniramya, Ramar Vanajothi, Selvaraju Vishnupriya and Dharmar Baskaran</i></p> <p>4.1 Introduction 55</p> <p>4.2 Cheese Concern – Vegan’s Delight 57</p> <p>4.3 Microorganism Interaction Pattern 57</p> <p>4.4 Types of Microorganism Involved in Cheese Production 57</p> <p>4.5 Lactic Acid Role in Fermentation 59</p> <p>4.6 Microorganism Involved in Lactic Acid Fermentation 59</p> <p>4.7 Streptococcus 60</p> <p>4.8 Propionibacterium 60</p> <p>4.9 Leuconostoc 60</p> <p>4.10 Microorganisms in Flavor Development 61</p> <p>4.11 Flavor Production 63</p> <p>4.12 Enzymes Interaction during Ripening of Cheese 63</p> <p>4.13 Pathways Involved in Cheese Ripening 64</p> <p>4.14 Microbes of Interest in Flavor Formation 66</p> <p>4.15 Structure of Flavored Compound in Cheese 67</p> <p>4.16 Plant-Based Cheese Analogues 67</p> <p>4.17 Plant-Based Proteins 68</p> <p>4.18 Aspartic Protease 69</p> <p>4.19 Cysteine Protease 69</p> <p>4.20 Plant-Based Milk Alternatives 69</p> <p>4.21 Types of Vegan Cheese 70</p> <p>4.22 Future Scope and Conclusion 71</p> <p>Acknowledgment 71</p> <p>References 71</p> <p><b>5 Microbial Remediation of Pesticide Polluted Soils 75<br /> </b><i>César Quintela and Cristiano Varrone</i></p> <p>5.1 Introduction 75</p> <p>5.2 Types of Pesticides 77</p> <p>5.3 Fate of Pesticides in the Environment 81</p> <p>5.3.1 Factors Affecting Pesticide Fate 81</p> <p>5.3.2 Pesticides Degradation 84</p> <p>5.3.3 Pesticide Remediation 85</p> <p>5.4 Screening for Pesticide Degrading Microorganisms 85</p> <p>5.4.1 Case Study 86</p> <p>5.5 Designing Pesticide Degrading Consortia 87</p> <p>5.5.1 Case Study 88</p> <p>5.6 Challenges to be Addressed and Future Perspectives 88</p> <p>References 90</p> <p><b>6 Eco-Friendly and Economical Method for Detoxification of Pesticides by Microbes 95<br /> </b><i>Anjani Kumar Upadhyay, Abhik Mojumdar, Vishakha Raina and Lopamudra Ray</i></p> <p>6.1 Introduction 95</p> <p>6.2 Classification of Pesticides 96</p> <p>6.3 Fate of Pesticide in Soil 96</p> <p>6.3.1 Transport of Pesticides in the Environment 96</p> <p>6.3.2 Interaction of Pesticides with Soil 98</p> <p>6.4 Microbial and Phytoremediation of Pesticides 99</p> <p>6.4.1 Biodegradation and Bioremediation 99</p> <p>6.4.2 Microbial Remediation of Pesticides 102</p> <p>6.4.3 Phytoremediation of Pesticides 103</p> <p>6.4.4 Strategies to Enhance the Efficiency of Bioremediation 103</p> <p>6.4.5 Metabolic Aspects of Pesticides Bioremediation 105</p> <p>6.5 Effects on Human and Environment 106</p> <p>6.6 Advancement in Pesticide Bioremediation 107</p> <p>6.7 Limitations of Bioremediation 107</p> <p>6.8 Future Perspectives 108</p> <p>Acknowledgement 108</p> <p>References 108</p> <p><b>Part 2: Synergistic Effects Between Substrates and Microbes 115</b></p> <p><b>7 Bioleaching: A Bioremediation Process to Treat Hazardous Wastes 117<br /> </b><i>Haragobinda Srichandan, Ranjan K. Mohapatra, Pankaj K. Parhi and Snehasish Mishra</i></p> <p>7.1 Introduction 117</p> <p>7.2 Microbes in Bioleaching 118</p> <p>7.2.1 Bacteria 118</p> <p>7.2.2 Fungi 119</p> <p>7.3 Acidophilic Bioleaching 119</p> <p>7.3.1 Contact (Direct) Mechanism 119</p> <p>7.3.2 Non-Contact (Indirect) Mechanism 120</p> <p>7.4 Metal Removal Pathways 120</p> <p>7.4.1 Thiosulphate Pathway 120</p> <p>7.4.2 Polysulphide Pathway 121</p> <p>7.5 Fungal Bioleaching 122</p> <p>7.6 Various Hazardous Wastes 122</p> <p>7.6.1 Electronic Wastes (E-Wastes) 123</p> <p>7.6.2 Spent Petroleum Catalyst 123</p> <p>7.6.3 Sludge 123</p> <p>7.6.4 Slag 123</p> <p>7.7 Applications of Bioleaching Approach to Various Hazardous Wastes 123</p> <p>7.7.1 Bioleaching of Electronic Wastes 124</p> <p>7.7.2 Bioleaching of Spent Catalyst 124</p> <p>7.7.3 Bioleaching of Sludge (Containing Heavy or Toxic metals) 125</p> <p>7.7.4 Bioleaching of Slag 125</p> <p>7.8 Conclusion 126</p> <p>Acknowledgements 126</p> <p>References 126</p> <p><b>8 Microbial Bioremediation of Azo Dyes in Textile Industry Effluent: A Review on Bioreactor-Based Studies 131<br /> </b><i>Shweta Agrawal, Devayani Tipre and Shailesh Dave</i></p> <p>8.1 Introduction 131</p> <p>8.2 Microorganism Involved in Dye Bioremediation 132</p> <p>8.2.1 Bacterial Remediation of Dyes 132</p> <p>8.2.2 Mycoremediation 135</p> <p>8.2.3 Phycoremediation 135</p> <p>8.2.4 Consortial (Co-Culture) Dye Bioremediation 135</p> <p>8.3 Mechanism of Dye Biodegradation 139</p> <p>8.3.1 Anaerobic Azo Dye Reduction 139</p> <p>8.3.2 Aerobic Oxidation of Aromatic Amines 140</p> <p>8.3.3 Combined Anaerobic-Aerobic Treatment of Azo Dyes 141</p> <p>8.4 Reactor Design for Dye Bioremediation 141</p> <p>8.4.1 Anaerobic Reactors 142</p> <p>8.4.2 Aerobic Reactors 154</p> <p>8.4.3 Combined (Integrated/Sequential) Bioreactor 157</p> <p>8.4.4 Combinatorial Approaches 162</p> <p>8.5 Limitations and Future Prospects 163</p> <p>8.6 Conclusions 163</p> <p>References 164</p> <p><b>9 Antibiofilm Property of Biosurfactant Produced by <i>Nesterenkonia </i>sp. MCCB 225 Against Shrimp Pathogen, <i>Vibrio harveyi </i>173<br /> </b><i>Gopalakrishnan Menon, Issac Sarojini Bright Singh, Prasannan Geetha Preena and Sumitra Datta</i></p> <p>9.1 Introduction 173</p> <p>9.2 Materials and Methods 174</p> <p>9.2.1 Isolation, Screening and Identification of Bacteria 174</p> <p>9.2.2 Biofilm Disruption Studies 175</p> <p>9.3 Results and Discussion 175</p> <p>9.3.1 Bacterial Identification 175</p> <p>9.3.2 Biofilm Disruption Studies 175</p> <p>9.4 Conclusion 178</p> <p>Acknowledgements 178</p> <p>References 178</p> <p><b>10 Role of Cr (VI) Resistant <i>Bacillus megaterium </i>in Phytoremediation 181<br /> </b><i>Rabia Faryad Khan and Rida Batool</i></p> <p>10.1 Introduction 181</p> <p>10.2 Materials and Methods 183</p> <p>10.2.1 Isolation and Characterization of Chromate Resistant Bacteria 183</p> <p>10.2.2 Determination of MIC (Minimum Inhibitory Concentration) of Chromate 183</p> <p>10.2.3 Ribo-Typing of Bacterial Isolate rCrI 183</p> <p>10.2.4 Estimation of Chromate Reduction Potential 183</p> <p>10.2.5 Antibiotic and Heavy Metal Resistance Profiling 183</p> <p>10.2.6 Growth Curve Studies 184</p> <p>10.2.7 Chromium Uptake Estimation 185</p> <p>10.2.8 Statistical Analysis 185</p> <p>10.3 Results 185</p> <p>10.3.1 Isolation and Characterization of Cr(VI) Resistant Bacterial Isolates 185</p> <p>10.3.2 Antibiotic and Heavy Metal Resistance Profiling 186</p> <p>10.3.3 Estimation of Cr(VI) Reduction Potential 186</p> <p>10.3.4 Ribo-Typing of Bacterial Isolate 186</p> <p>10.3.5 Growth Curve Studies 186</p> <p>10.3.6 Plant Microbe Interaction Studies Under Laboratory Conditions 187</p> <p>10.3.7 Biochemical Parameters 188</p> <p>10.3.8 Plant Microbe Interaction Studies Under Field Conditions 190</p> <p>10.3.8.4 Number of Roots 190</p> <p>10.3.9 Biochemical Parameters 190</p> <p>10.4 Discussion 191</p> <p>10.5 Conclusion 193</p> <p>Acknowledgment 193</p> <p>References 193</p> <p><b>11 Conjugate Magnetic Nanoparticles and Microbial Remediation, a Genuine Technology to Remediate Radioactive Waste 197<br /> </b><i>Bushra Uzair, Anum Shaukat, Fehmida Fasim, Sadaf Maqbool</i></p> <p>11.1 Introduction 197</p> <p>11.2 Use of Magnetic Nanoparticles Conjugates 199</p> <p>11.2.1 Potential Benefits 199</p> <p>11.2.2 Synthesis and Application 200</p> <p>11.2.3 Factors Affecting Sorption 200</p> <p>11.2.4 Limitations 203</p> <p>11.3 Microbial Communities 203</p> <p>11.3.1 Fungi as Radio-Nuclides Remade 203</p> <p>11.3.2 Immobilization of Radionuclide Through Enzymatic Reduction 204</p> <p>11.3.3 Immobilization Through Non-Enzymatic Reduction 204</p> <p>11.3.4 Bio-Sorption of Radio-Nuclides 205</p> <p>11.3.5 Biostimulation 206</p> <p>11.3.6 Genetically Modified Microbes 206</p> <p>11.3.7 Constraints 207</p> <p>11.4 Conclusion 207</p> <p>References 208</p> <p><b>Part 3: Polyhydroxyalakanoates: Resources, Demands and Sustainability 213</b></p> <p><b>12 Microbial Degradation of Plastics: New Plastic Degraders, Mixed Cultures and Engineering Strategies 215<br /> </b><i>Samantha Jenkins, Alba Martínez i Quer, César Fonseca and Cristiano Varrone</i></p> <p>12.1 Introduction 215</p> <p>12.2 Plastics 216</p> <p>12.2.1 Polyethylene Terephthalate (PET) 217</p> <p>12.2.2 Low-Density Polyethylene (LDPE) 217</p> <p>12.3 Plastic Disposal, Reuse and Recycling 218</p> <p>12.4 Plastic Biodegradation 219</p> <p>12.4.1 Plastic-Degrading Microorganisms and Enzymes 221</p> <p>12.4.2 Biofilms and Plastic Biodegradation 224</p> <p>12.4.3 Boosting Plastic Biodegradation by Physical and Chemical Processes 225</p> <p>12.4.4 Pathway and Protein Engineering for Enhanced Plastic Biodegradation 226</p> <p>12.4.5 Designing Plastic Degrading Consortia 229</p> <p>12.5 Analytical Techniques to Study Plastic Degradation 230</p> <p>12.6 Future Perspectives 232</p> <p>References 233</p> <p><b>13 Fatty acids as Novel Building-Blocks for Biomaterial Synthesis 239<br /> </b><i>Prasun Kumar</i></p> <p>13.1 Introduction 239</p> <p>13.2 Polyurethane (PUs) 241</p> <p>13.3 Polyhydroxyalkanoates (PHAs) 243</p> <p>13.4 Other Functional Attributes 246</p> <p>13.4.1 Biosurfactants 246</p> <p>13.4.2 Antibacterials and Biocontrol Agents 246</p> <p>13.5 Future Perspectives 249</p> <p>References 249</p> <p><b>14 Polyhydroxyalkanoates: Resources, Demands and Sustainability 253<br /> </b><i>Binita Bhattacharyya, Himadri Tanaya Behera, Abhik Mojumdar, Vishakha Raina and Lopamudra Ray</i></p> <p>14.1 Introduction 253</p> <p>14.2 Polyhydroxyalkanoates 255</p> <p>14.2.1 Properties of PHAs 258</p> <p>14.2.2 Production of PHA 261</p> <p>14.2.3 PHA Biosynthesis in Natural Isolates 261</p> <p>14.2.4 Production of PHA by Digestion of Biological Wastes 262</p> <p>14.2.5 PHA Production by Recombinant Bacteria 262</p> <p>14..2.6 Production of PHA by Genetically Engineered Plants 264</p> <p>14.2.7 PHA Production by Methylotrophs 264</p> <p>14.2.8 PHA Production Using Waste Vegetable Oil by <i>Pseudomonas sp</i>. Strain DR2 264</p> <p>14.2.9 Mass Production of PHA 265</p> <p>14.3 Applications of PHA 266</p> <p>14.4 Future Prospects 267</p> <p>References 267</p> <p><b>15 Polyhydroxyalkanoates Synthesis by <i>Bacillus aryabhattai </i>C48 Isolated from Cassava Dumpsites in South-Western, Nigeria 271<br /> </b><i>Fadipe Temitope O., Nazia Jamil and Lawal Adekunle K.</i></p> <p>15.1 Introduction 271</p> <p>15.2 Materials and Methods 272</p> <p>15.2.1 Morphological, Biochemical and Molecular Characterisation 272</p> <p>15.2.2 Detection of PHA Production 273</p> <p>15.2.3 Evaluation of PHA Production 273</p> <p>15.2.4 Extraction of PHA 273</p> <p>15.2.5 Fourier Transform Infrared Spectroscopy of Extracted PHA 274</p> <p>15.2.6 Amplification of <i>PhaC </i>and <i>PhaR </i>Genes of <i>Bacillus aryabhattai </i>C48 274</p> <p>15.3 Results and Discussion 274</p> <p>15.4 Conclusion 280</p> <p>Acknowledgements 280</p> <p>References 280</p> <p><b>Part 4: Cellulose-Based Biomaterials: Benefits and Challenges 283</b></p> <p><b>16 Cellulose Nanocrystals-Based Composites 285<br /> </b><i>Teboho Clement Mokhena, Maya Jacob John, Mokgaotsa Jonas Mochane, Asanda Mtibe, Teboho Simon Motsoeneng, Thabang Hendrica Mokhothu and Cyrus Alushavhiwi Tshifularo</i></p> <p>16.1 Introduction 285</p> <p>16.2 Classification of Polymers 286</p> <p>16.3 Preparation of Cellulose Nanocrystals Composites 286</p> <p>16.3.1 Solution Casting 287</p> <p>16.3.2 Three Dimensional Printing (3D-Printing) 292</p> <p>16.3.3 Electrospinning 294</p> <p>16.3.4 Other Processing Techniques 294</p> <p>16.4 Cellulose Nanocrystals Reinforced Biopolymers 294</p> <p>16.4.1 Starch 294</p> <p>16.4.2 Alginate 295</p> <p>16.4.3 Chitosan 296</p> <p>16.4.4 Cellulose 297</p> <p>16.4.5 Other Biopolymers 298</p> <p>16.5 Hybrids 298</p> <p>16.6 Conclusion and Future Trends 300</p> <p>Acknowledgements 300</p> <p>References 300</p> <p><b>17 Progress on Production of Cellulose from Bacteria 307<br /> </b><i>Tladi Gideon Mofokeng, Mokgaotsa Jonas Mochane, Vincent Ojijo, Suprakas Sinha Ray and Teboho Clement Mokhena</i></p> <p>17.1 Introduction 307</p> <p>17.2 Production of Microbial Cellulose (MC) 308</p> <p>17.3 Applications of Microbial Cellulose (MC) 312</p> <p>17.3.1 Skin Therapy and Wound Healing System 313</p> <p>17.3.2 Scaffolds for Artificial Cornea 314</p> <p>17.3.3 Cardiovascular Implants 315</p> <p>Future Perspective 315</p> <p>References 316</p> <p><b>18 Recent Developments of Cellulose-Based Biomaterials 319<br /> </b><i>Asanda Mtibe, Teboho Clement Mokhena, Thabang Hendrica Mokhothu and Mokgaotsa Jonas Mochane</i></p> <p>18.1 Introduction 319</p> <p>18.2 Extraction of Cellulose Fibers 320</p> <p>18.3 Nanocellulose 324</p> <p>18.4 Surface Modification 327</p> <p>18.4.1 Alkali Treatment (Mercerization) 327</p> <p>18.4.2 Silane Treatment 328</p> <p>18.4.3 Acetylation 328</p> <p>18.5 Cellulose<b>-</b>Based Biomaterials 329</p> <p>18.5.1 Cellulose-Based Biomaterials for Tissue Engineering 329</p> <p>18.5.2 Cellulose-Based Biomaterials for Drug Delivery 331</p> <p>18.5.3 Cellulose-Based Biomaterials for Wound Dressing 332</p> <p>18.6 Summary and Future Prospect of Cellulose<b>-</b>Based Biomaterials 333</p> <p>Reference 334</p> <p><b>19 Insights of Bacterial Cellulose: Bio and Nano-Polymer Composites Towards Industrial Application 339<br /> </b><i>Vishnupriya Selvaraju, Bhavaniramya Sundaresan, Baskaran Dharmar</i></p> <p>19.1 Introduction 339</p> <p>19.1.1 Nanocellulose 340</p> <p>19.2 Bacterial Cellulose 343</p> <p>19.2.1 Bacterial Strains Producing Cellulose 343</p> <p>19.2.2 Different Methods of Bacterial Cellulose Production 344</p> <p>19.3 Nanocomposites 346</p> <p>19.3.1 Bio-Nanocomposite-Based on CNF 346</p> <p>19.3.2 Bio-Nanocomposite-Based on CNC 346</p> <p>19.3.3 Bacterial Cellulose Nanocomposites 346</p> <p>19.4 Methods of Synthesis of Bacterial Cellulose Composites 347</p> <p>19.5 Combination of Bacterial Cellulose with Other Materials 349</p> <p>19.5.1 Polymer 349</p> <p>19.5.2 Metals and Solid Materials 350</p> <p>19.6 Industrial Applications of Bacterial Cellulose Composites 350</p> <p>19.6.1 Biomedical Applications 350</p> <p>19.6.2 Food Application 351</p> <p>19.6.3 Electrical Industry 351</p> <p>19.7 Future Scope and Conclusion 352</p> <p>Acknowledgement 352</p> <p>References 352</p> <p><b>20 Biodegradable Polymers Reinforced with Lignin and Lignocellulosic Materials 357<br /> </b><i>M.A. Sibeko, V.C. Agbakoba, T.C. Mokhena, P.S. Hlangothi</i></p> <p>20.1 Introduction 357</p> <p>20.2 Biodegradable Polymers 358</p> <p>20.2.1 Natural Polymers 359</p> <p>20.2.2 Biodegradable Polyesters 360</p> <p>20.2.3 Biodegradation 362</p> <p>20.3 Biodegradable Fillers 362</p> <p>20.3.1 Plant Fibers as Biodegradable Fillers 363</p> <p>20.3.2 Cellulose as Biodegradable Fillers 364</p> <p>20.3.3 Lignin as Biodegradable Fillers 364</p> <p>20.4 Properties of Different Biopolymers Reinforced with Lignin 365</p> <p>20.4.1 Surface Morphology 365</p> <p>20.4.2 Mechanical Properties 366</p> <p>20.4.3 Thermal Properties 368</p> <p>20.5 Applications of Bio-Nanocomposites 369</p> <p>Concluding Remarks 369</p> <p>Acknowledgements 370</p> <p>References 370</p> <p><b>21 Structure and Properties of Lignin-Based Biopolymers in Polymer Production 375<br /> </b><i>Teboho Simon Motsoeneng, Mokgaotsa Jonas Mochane, Teboho Clement Mokhena and Maya Jacob John</i></p> <p>21.1 Introduction 375</p> <p>21.2 An Insight on the Biopolymers 376</p> <p>21.2.1 Natural Lignin Biopolymer 377</p> <p>21.2.2 Drawbacks of Lignin Biopolymer 378</p> <p>21.3 Extraction and Post-Treatment of Lignin Biomaterial 378</p> <p>21.3.1 Extraction Methods and their Effect on the Recovery and Functionality 379</p> <p>21.3.2 Modification of Lignin Functional Groups 381</p> <p>21.3.3 Preparation of Lignin-Based Biopolymers Blends (LBBs) 383</p> <p>21.4 Characterization Methods and Validation of Lignin-Biopolymers 386</p> <p>21.4.1 Chemical Interaction Between Lignin and Synthetic Polymers 386</p> <p>21.4.2 Morphology-Property Relationship of the LBB 387</p> <p>21.5 Indispensability of LBB on the Chemical Release Control in the Environment 388</p> <p>21.6 Conclusion and Future Remarks 388</p> <p>References 389</p> <p>Index 393</p>
<p><b>Nazia Jamil</b> holds a PhD in genetics from the University of Karachi, Pakistan. Her research as a microbiologist and geneticist centers on investigating the synthesis of biodegradable plastic by indigenous bacteria from renewable sources. She has international and national funded projects from IFS-Sweden and HEC Pakistan to carry out research on biopolymers and antimicrobial compounds. She has authored 60 national and international research papers in peer-reviewed journals. <p><b>Prasun Kumar</b> is an applied microbiologist and biotechnologist and his main areas of research are microbial biodiversity, bioenergy, and biopolymers. Dr. Prasun holds a PhD in biotechnology from CSIR-Institute of Genomics and Integrative Biology, Delhi, India. He has over seven years of experience in applied microbiological research and bioprocessing including over 2 years of post-doctoral research experience at Chungbuk National University, Republic of Korea. He made significant contributions while working on valorising lignocellulosic biowastes of cheap raw materials into value-added products including bioenergy, biopolymers, polyhydroxyalkanoates etc. He has more than 27 articles published in various peer-reviewed SCI journals and has authored 1 book. <p><b>Rida Batool</b> PhD is an Assistant Professor in the Department of Microbiology and Molecular Genetics at University of the Punjab, Lahore, Pakistan. Her main research interests are in environmental microbiology/biotechnology with a focus on metal-microbe interaction, wastewater treatment, biosorption and mechanisms of metal resistance. Other aspects of her research involve the isolation and characterization of bioactive compounds of indigenous plant and bacterial origin. She has authored more than 20 national and international journal articles.
<p><b>Describes harmful elements and their bioremediation techniques for tannery waste, oil spills, wastewater, greenhouse gases, plastic and other wastes.</b> <p>Microenvironmental conditions in soil provide a natural niche for ultra-structures, microbes and microenvironments. The natural biodiversity of these microenvironments is being disturbed by industrialization and the proliferation of urban centers, and synthetic contaminants found in these micro-places are causing stress and instability in the biochemical systems of microbes. The development of new metabolic pathways from intrinsic metabolic cycles facilitate microbial degradation of diverse resistant synthetic compounds present in soil. These are a vital, competent and cost-effective substitute to conventional treatments. Highly developed techniques for bioremediation of these synthetic compounds are increasing and these techniques facilitate the development of a safe environment using renewable biomaterial for removal of toxic heavy metals and xenobiotics. <p><i>Soil Microenvironment for Bioremediation and Polymer Production</i> consists of 21 chapters by subject matter experts and is divided into four parts: Soil Microenvironment and Biotransformation Mechanisms; Synergistic Effects between Substrates and Microbes; Polyhydroxyalakanoates: Resources, Demands and Sustainability; and Cellulose-Based Biomaterials. <p>This timely and important book highlights <ul> <li>Chapters on classical bioremediation approaches and advances in the use of nanoparticles for removal of radioactive waste</li> <li>Discusses the production of applied emerging biopolymers using diverse microorganisms</li> <li>Provides the most innovative practices in the field of bioremediation</li> <li>Explores new techniques that will help to improve biopolymer production from bacteria</li> <li>Provides novel concepts for the most affordable and economic societal benefits.</li> </ul> <p><b>Audience</b> <p>Researchers, professionals, and graduate students in applied microbiology, green product biotechnology, environmental, toxicology and soil micro sciences. It will also be useful to industrial and government researchers who need to know about the latest developments in biodegradation, bioremediation and biopolymers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €