Details

Electric Power Principles


Electric Power Principles

Sources, Conversion, Distribution and Use
2. Aufl.

von: James L. Kirtley

86,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 17.12.2019
ISBN/EAN: 9781119585213
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A revised and updated text that explores the fundamentals of the physics of electric power handling systems</b></p> <p>The revised and updated second edition of <i>Electric Power Principles: Sources, Conversion, Distribution and Use </i>offers an innovative and comprehensive approach to the fundamentals of electric power. The author – a noted expert on the topic – provides a thorough grounding in electric power systems, with an informative discussion on per-unit normalisations, symmetrical components and iterative load flow calculations. The text covers the most important topics within the power system, such as protection and DC transmission, and examines both traditional power plants and those used for extracting sustainable energy from wind and sunlight.</p> <p>The text explores the principles of electromechanical energy conversion and magnetic circuits and synchronous machines – the most important generators of electric power. The book also contains information on power electronics, induction and direct current motors. This new second edition includes:</p> <ul> <li>A new chapter on energy storage, including battery modeling and how energy storage and associated power electronics can be used to modify system dynamics</li> <li>Information on voltage stability and bifurcation</li> <li>The addition of Newton’s Method for load flow calculations</li> <li>Material on the grounding transformer connections added to the section on three phase transformer</li> <li>An example of the unified power flow controller for voltage support</li> </ul> <p>Written for students studying electric power systems and electrical engineering, the updated second edition of <i>Electric Power Principles: Sources, Conversion, Distribution and Use</i> is the classroom-tested text that offers an understanding of the basics of the physics of electric power handling systems.</p>
<p>Preface xv</p> <p>About the Companion Website xvii</p> <p><b>1 Electric Power Systems </b><b>1</b></p> <p>1.1 Electric Utility Systems 2</p> <p>1.2 Energy and Power 3</p> <p>1.2.1 Basics and Units 3</p> <p>1.3 Sources of Electric Power 5</p> <p>1.3.1 Heat Engines 5</p> <p>1.3.2 Power Plants 6</p> <p>1.3.2.1 Environmental Impact of Burning Fossil Fuels 7</p> <p>1.3.3 Nuclear Power Plants 8</p> <p>1.3.4 Hydroelectric Power 9</p> <p>1.3.5 Wind Turbines 10</p> <p>1.3.6 Solar Power Generation 12</p> <p>1.4 Electric Power Plants and Generation 14</p> <p>1.5 Problems 15</p> <p><b>2 AC Voltage, Current, and Power </b><b>17</b></p> <p>2.1 Sources and Power 17</p> <p>2.1.1 Voltage and Current Sources 17</p> <p>2.1.2 Power 18</p> <p>2.1.3 Sinusoidal Steady State 18</p> <p>2.1.4 Phasor Notation 19</p> <p>2.1.5 Real and Reactive Power 19</p> <p>2.1.5.1 Root Mean Square (RMS) Amplitude 20</p> <p>2.2 Resistors, Inductors, and Capacitors 20</p> <p>2.2.1 Reactive Power and Voltage 22</p> <p>2.2.1.1 Example 22</p> <p>2.2.2 Reactive Power Voltage Support 22</p> <p>2.3 Voltage Stability and Bifurcation 23</p> <p>2.3.1 Voltage Calculation 24</p> <p>2.3.2 Voltage Solution and Effect of Reactive Power 25</p> <p>2.4 Problems 26</p> <p><b>3 Transmission Lines </b><b>33</b></p> <p>3.1 Modeling: Telegrapher’s Equations 33</p> <p>3.1.1 Traveling Waves 35</p> <p>3.1.2 Characteristic Impedance 35</p> <p>3.1.3 Power 36</p> <p>3.1.4 Line Terminations and Reflections 36</p> <p>3.1.4.1 Examples 37</p> <p>3.1.4.2 Lightning 38</p> <p>3.1.4.3 Inductive Termination 39</p> <p>3.1.5 Sinusoidal Steady State 41</p> <p>3.2 Problems 44</p> <p><b>4 Polyphase Systems </b><b>47</b></p> <p>4.1 Two-phase Systems 47</p> <p>4.2 Three-phase Systems 48</p> <p>4.3 Line–Line Voltages 51</p> <p>4.3.1 Example: Wye- and Delta-connected Loads 52</p> <p>4.3.2 Example: Use of Wye–Delta for Unbalanced Loads 53</p> <p>4.4 Problems 55</p> <p><b>5 Electrical and Magnetic Circuits </b><b>59</b></p> <p>5.1 Electric Circuits 59</p> <p>5.1.1 Kirchhoff’s Current Law 59</p> <p>5.1.2 Kirchhoff’s Voltage Law 60</p> <p>5.1.3 Constitutive Relationship: Ohm’s Law 60</p> <p>5.2 Magnetic Circuit Analogies 62</p> <p>5.2.1 Analogy to KCL 62</p> <p>5.2.2 Analogy to KVL: Magnetomotive Force 62</p> <p>5.2.3 Analogy to Ohm’s Law: Reluctance 63</p> <p>5.2.4 Simple Case 64</p> <p>5.2.5 Flux Confinement 64</p> <p>5.2.6 Example: C-Core 65</p> <p>5.2.7 Example: Core with Different Gaps 66</p> <p>5.3 Problems 66</p> <p><b>6 Transformers </b><b>71</b></p> <p>6.1 Single-phase Transformers 71</p> <p>6.1.1 Ideal Transformers 72</p> <p>6.1.2 Deviations from an Ideal Transformer 73</p> <p>6.1.3 Autotransformers 75</p> <p>6.2 Three-phase Transformers 76</p> <p>6.2.1 Example 78</p> <p>6.2.2 Example: Grounding or Zigzag Transformer 80</p> <p>6.3 Problems 81</p> <p><b>7 Polyphase Lines and Single-phase Equivalents </b><b>87</b></p> <p>7.1 Polyphase Transmission and Distribution Lines 87</p> <p>7.1.1 Example 89</p> <p>7.2 Introduction to Per-unit Systems 90</p> <p>7.2.1 Normalization of Voltage and Current 90</p> <p>7.2.2 Three-phase Systems 91</p> <p>7.2.3 Networks with Transformers 92</p> <p>7.2.4 Transforming from One Base to Another 92</p> <p>7.2.5 Example: Fault Study 93</p> <p>7.2.5.1 One-line Diagram of the Situation 93</p> <p>7.3 Appendix: Inductances of Transmission Lines 95</p> <p>7.3.1 Single Wire 95</p> <p>7.3.2 Mutual Inductance 96</p> <p>7.3.3 Bundles of Conductors 97</p> <p>7.3.4 Transposed Lines 98</p> <p>7.4 Problems 98</p> <p><b>8 Electromagnetic Forces and Loss Mechanisms </b><b>103</b></p> <p>8.1 Energy Conversion Process 103</p> <p>8.1.1 Principle of Virtual Work 104</p> <p>8.1.1.1 Example: Lifting Magnet 106</p> <p>8.1.2 Co-energy 107</p> <p>8.1.2.1 Example: Co-energy Force Problem 107</p> <p>8.1.2.2 Electric Machine Model 108</p> <p>8.2 Continuum Energy Flow 109</p> <p>8.2.1 Material Motion 110</p> <p>8.2.2 Additional Issues in Energy Methods 111</p> <p>8.2.2.1 Co-energy in Continuous Media 111</p> <p>8.2.2.2 Permanent Magnets 112</p> <p>8.2.2.3 Energy in the Flux–Current Plane 113</p> <p>8.2.3 Electric Machine Description 115</p> <p>8.2.4 Field Description of Electromagnetic Force: The Maxwell Stress Tensor 117</p> <p>8.2.5 Tying the Maxwell Stress Tensor and Poynting Approaches Together 119</p> <p>8.2.5.1 Simple Description of a Linear Induction Motor 120</p> <p>8.3 Surface Impedance of Uniform Conductors 122</p> <p>8.3.1 Linear Case 123</p> <p>8.3.2 Iron 125</p> <p>8.3.3 Magnetization 126</p> <p>8.3.4 Saturation and Hysteresis 126</p> <p>8.3.5 Conduction, Eddy Currents, and Laminations 129</p> <p>8.3.5.1 Complete Penetration Case 129</p> <p>8.3.6 Eddy Currents in Saturating Iron 131</p> <p>8.4 Semi-empirical Method of Handling Iron Loss 133</p> <p>8.5 Problems 136</p> <p>References 141</p> <p><b>9 Synchronous Machines </b><b>143</b></p> <p>9.1 Round Rotor Machines: Basics 144</p> <p>9.1.1 Operation with a Balanced Current Source 145</p> <p>9.1.2 Operation with a Voltage Source 145</p> <p>9.2 Reconciliation of Models 147</p> <p>9.2.1 Torque Angles 148</p> <p>9.3 Per-unit Systems 148</p> <p>9.4 Normal Operation 149</p> <p>9.4.1 Capability Diagram 150</p> <p>9.4.2 Vee Curve 150</p> <p>9.5 Salient Pole Machines: Two-reaction Theory 151</p> <p>9.6 Synchronous Machine Dynamics 155</p> <p>9.7 Synchronous Machine Dynamic Model 155</p> <p>9.7.1 Electromagnetic Model 156</p> <p>9.7.2 Park’s Equations 157</p> <p>9.7.3 Power and Torque 160</p> <p>9.7.4 Per-unit Normalization 160</p> <p>9.7.5 Equivalent Circuits 163</p> <p>9.7.6 Transient Reactances and Time Constants 164</p> <p>9.8 Statement of Simulation Model 165</p> <p>9.8.1 Example: Transient Stability 166</p> <p>9.8.2 Equal Area Transient Stability Criterion 166</p> <p>9.9 Appendix 1: Transient Stability Code 169</p> <p>9.10 Appendix 2: Winding Inductance Calculation 172</p> <p>9.10.1 Pitch Factor 175</p> <p>9.10.2 Breadth Factor 175</p> <p>9.11 Problems 177</p> <p><b>10 System Analysis and Protection </b><b>181</b></p> <p>10.1 The Symmetrical Component Transformation 181</p> <p>10.2 Sequence Impedances 184</p> <p>10.2.1 Balanced Transmission Lines 184</p> <p>10.2.2 Balanced Load 185</p> <p>10.2.3 Possibly Unbalanced Loads 186</p> <p>10.2.4 Unbalanced Sources 187</p> <p>10.2.5 Rotating Machines 189</p> <p>10.2.6 Transformers 189</p> <p>10.2.6.1 Example: Rotation of Symmetrical Component Currents 190</p> <p>10.2.6.2 Example: Reconstruction of Currents 191</p> <p>10.3 Fault Analysis 192</p> <p>10.3.1 Single Line–Neutral Fault 192</p> <p>10.3.2 Double Line–Neutral Fault 193</p> <p>10.3.3 Line–Line Fault 193</p> <p>10.3.4 Example of Fault Calculations 194</p> <p>10.3.4.1 Symmetrical Fault 195</p> <p>10.3.4.2 Single Line–Neutral Fault 195</p> <p>10.3.4.3 Double Line–Neutral Fault 196</p> <p>10.3.4.4 Line–Line Fault 197</p> <p>10.3.4.5 Conversion to Amperes 198</p> <p>10.4 System Protection 198</p> <p>10.4.1 Fuses 199</p> <p>10.5 Switches 199</p> <p>10.6 Coordination 200</p> <p>10.6.1 Ground Overcurrent 200</p> <p>10.7 Impedance Relays 201</p> <p>10.7.1 Directional Elements 202</p> <p>10.8 Differential Relays 202</p> <p>10.8.1 Ground Fault Protection for Personnel 203</p> <p>10.9 Zones of System Protection 203</p> <p>10.10 Problems 204</p> <p><b>11 Load Flow </b><b>211</b></p> <p>11.1 Two Ports and Lines 211</p> <p>11.1.1 Power Circles 212</p> <p>11.2 Load Flow in a Network 214</p> <p>11.3 Gauss–Seidel Iterative Technique 216</p> <p>11.4 Bus Types 217</p> <p>11.5 Bus Admittance 217</p> <p>11.5.1 Bus Incidence 217</p> <p>11.5.2 Example Network 218</p> <p>11.5.3 Alternative Assembly of Bus Admittance 219</p> <p>11.6 Newton–Raphson Method for Load Flow 220</p> <p>11.6.1 Generator Buses 222</p> <p>11.6.2 Decoupling 222</p> <p>11.6.3 Example Calculations 223</p> <p>11.7 Problems 223</p> <p>11.8 Appendix: Matlab Scripts to Implement Load Flow Techniques 226</p> <p>11.8.1 Gauss–Seidel Routine 226</p> <p>11.8.2 Newton–Raphson Routine 228</p> <p>11.8.3 Decoupled Newton–Raphson Routine 230</p> <p><b>12 Power Electronics and Converters in Power Systems </b><b>233</b></p> <p>12.1 Switching Devices 233</p> <p>12.1.1 Diodes 234</p> <p>12.1.2 Thyristors 234</p> <p>12.1.3 Bipolar Transistors 235</p> <p>12.2 Rectifier Circuits 236</p> <p>12.2.1 Full-wave Rectifier 237</p> <p>12.2.1.1 Full-wave Bridge with Resistive Load 237</p> <p>12.2.1.2 Phase-control Rectifier 238</p> <p>12.2.1.3 Phase Control into an Inductive Load 240</p> <p>12.2.1.4 AC Phase Control 242</p> <p>12.2.1.5 Rectifiers for DC Power Supplies 242</p> <p>12.3 DC–DC Converters 243</p> <p>12.3.1 Pulse Width Modulation 246</p> <p>12.3.2 Boost Converter 247</p> <p>12.3.2.1 Continuous Conduction 247</p> <p>12.3.2.2 Discontinuous Conduction 249</p> <p>12.3.2.3 Unity Power Factor Supplies 250</p> <p>12.4 Canonical Cell 251</p> <p>12.4.1 Bidirectional Converter 251</p> <p>12.4.2 H-Bridge 252</p> <p>12.5 Three-phase Bridge Circuits 254</p> <p>12.5.1 Rectifier Operation 254</p> <p>12.5.2 Phase Control 257</p> <p>12.5.3 Commutation Overlap 257</p> <p>12.5.4 AC Side Current Harmonics 259</p> <p>12.5.4.1 Power Supply Rectifiers 261</p> <p>12.5.4.2 PWM Capable Switch Bridge 262</p> <p>12.6 Unified Power Flow Controller 264</p> <p>12.7 High-voltage DC Transmission 267</p> <p>12.8 Basic Operation of a Converter Bridge 268</p> <p>12.8.1 Turn-on Switch 268</p> <p>12.8.2 Inverter Terminal 269</p> <p>12.9 Achieving High Voltage 270</p> <p>12.10 Problems 271</p> <p><b>13 System Dynamics and Energy Storage </b><b>277</b></p> <p>13.1 Load–Frequency Relationship 277</p> <p>13.2 Energy Balance 277</p> <p>13.2.1 Natural Response 278</p> <p>13.2.2 Feedback Control 279</p> <p>13.2.3 Droop Control 280</p> <p>13.2.4 Isochronous Control 281</p> <p>13.3 Synchronized Areas 282</p> <p>13.3.1 Area Control Error 282</p> <p>13.3.2 Synchronizing Dynamics 283</p> <p>13.3.3 Feedback Control to Drive ACE to Zero 284</p> <p>13.4 Inverter Connection 285</p> <p>13.4.1 Overview of Connection 286</p> <p>13.4.2 Filters 287</p> <p>13.4.3 Measurement 288</p> <p>13.4.4 Phase Locked Loop 289</p> <p>13.4.5 Control Loops 290</p> <p>13.4.6 Grid-following (Slave) Inverter 291</p> <p>13.4.7 Grid-forming (Master) Inverter 291</p> <p>13.4.8 Droop-controlled Inverter 292</p> <p>13.5 Energy Storage 292</p> <p>13.5.1 Time Scales 293</p> <p>13.5.2 Batteries 293</p> <p>13.5.2.1 Simplest Battery Model 294</p> <p>13.5.2.2 Diffusion Model 294</p> <p>13.5.2.3 Model Including State of Charge 295</p> <p>13.6 Problems 296</p> <p><b>14 Induction Machines </b><b>299</b></p> <p>14.1 Introduction 299</p> <p>14.2 Induction Machine Transformer Model 301</p> <p>14.2.1 Operation: Energy Balance 307</p> <p>14.2.1.1 Simplified Torque Estimation 309</p> <p>14.2.1.2 Torque Summary 310</p> <p>14.2.2 Example of Operation 310</p> <p>14.2.3 Motor Performance Requirements 312</p> <p>14.2.3.1 Effect of Rotor Resistance 312</p> <p>14.3 Squirrel-cage Machines 313</p> <p>14.4 Single-phase Induction Motors 314</p> <p>14.4.1 Rotating Fields 314</p> <p>14.4.2 Power Conversion in the Single-phase Induction Machine 315</p> <p>14.4.3 Starting of Single-phase Induction Motors 316</p> <p>14.4.3.1 Shaded Pole Motors 317</p> <p>14.4.3.2 Split-phase Motors 317</p> <p>14.4.4 Split-phase Operation 318</p> <p>14.4.4.1 Example Motor 319</p> <p>14.5 Induction Generators 321</p> <p>14.6 Induction Motor Control 322</p> <p>14.6.1 Volts/Hz Control 323</p> <p>14.6.2 Field-oriented Control 323</p> <p>14.6.3 Elementary Model 324</p> <p>14.6.4 Simulation Model 325</p> <p>14.6.5 Control Model 326</p> <p>14.6.6 Field-oriented Strategy 327</p> <p>14.7 Doubly-fed Induction Machines 329</p> <p>14.7.1 Steady-state Operation 331</p> <p>14.8 Appendix 1: Squirrel-cage Machine Model 334</p> <p>14.8.1 Rotor Currents and Induced Flux 334</p> <p>14.8.2 Squirrel-cage Currents 335</p> <p>14.9 Appendix 2: Single-phase Squirrel-cage Model 339</p> <p>14.10 Appendix 3: Induction Machine Winding Schemes 341</p> <p>14.10.1 Winding Factor for Concentric Windings 344</p> <p>14.11 Problems 345</p> <p>References 350</p> <p><b>15 DC (Commutator) Machines </b><b>351</b></p> <p>15.1 Geometry 351</p> <p>15.2 Torque Production 352</p> <p>15.3 Back Voltage 353</p> <p>15.4 Operation 354</p> <p>15.4.1 Shunt Operation 355</p> <p>15.4.2 Separately Excited 356</p> <p>15.4.2.1 Armature Voltage Control 357</p> <p>15.4.2.2 Field Weakening Control 357</p> <p>15.4.2.3 Dynamic Braking 358</p> <p>15.4.3 Machine Capability 358</p> <p>15.5 Series Connection 359</p> <p>15.6 Universal Motors 361</p> <p>15.7 Commutator 362</p> <p>15.7.1 Commutation Interpoles 362</p> <p>15.7.2 Compensation 364</p> <p>15.8 Compound-wound DC Machines 365</p> <p>15.9 Problems 367</p> <p><b>16 Permanent Magnets in Electric Machines </b><b>371</b></p> <p>16.1 Permanent Magnets 371</p> <p>16.1.1 Permanent Magnets in Magnetic Circuits 373</p> <p>16.1.2 Load Line Analysis 373</p> <p>16.1.2.1 Very Hard Magnets 374</p> <p>16.1.2.2 Surface Magnet Analysis 375</p> <p>16.1.2.3 Amperian Currents 376</p> <p>16.2 Commutator Machines 376</p> <p>16.2.1 Voltage 378</p> <p>16.2.2 Armature Resistance 379</p> <p>16.3 Brushless PM Machines 380</p> <p>16.4 Motor Morphologies 380</p> <p>16.4.1 Surface Magnet Machines 380</p> <p>16.4.2 Interior Magnet, Flux-concentrating Machines 381</p> <p>16.4.3 Operation 382</p> <p>16.4.3.1 Voltage and Current: Round Rotor 382</p> <p>16.4.4 A Little Two-reaction Theory 384</p> <p>16.4.5 Finding Torque Capability 387</p> <p>16.4.5.1 Optimal Currents 388</p> <p>16.4.5.2 Rating 389</p> <p>16.5 Problems 393</p> <p>Reference 396</p> <p>Index 397</p>
<p>It is a must-read book for everyone who feels interested in area of electric power system. This book covers almost every essential item that falls in this area. By reading this book, you can expect to explore all the key components in electric power system, such as energy source, transmission line, protection mechanism, load flow, electric machine, etc. All the key concepts are discussed from fundamental physics and elaborated steps by steps. Real world examples with pictures are given in the right place to visualize the discussed items. Problem sets are included in each chapter to strengthen the learnt concepts. I am quite sure everyone from all levels can follow and understand all the contents without much difficulty.<p> <p>In this second edition, a new chapter on energy storage and some other updated information are added. As a teacher and researcher in power engineering, I would say this book must be one of the best books in this area.<p> <i>Christopher H. T. Lee, Assistant Professor, Nanyang Technological University, Singapore<i>
<p><b>JAMES L. KIRTLEY</b> is Professor of Electrical Engineering at the Massachusetts Institute of Technology, USA. He has also worked for General Electric, Large Steam Turbine Generator Department, as an Electrical Engineer, for Satcon Technology Corporation as Vice President, Chief Scientist and General Manager of the Tech Center, USA, and was Gastdozent at the Swiss Federal Institute of Technology, Switzerland.
<p><b>A revised and updated text that explores the fundamentals of the physics of electric power handling systems</b> <p>The revised and updated second edition of <i>Electric Power Principles: Sources, Conversion, Distribution and Use</i> offers an innovative and comprehensive approach to the fundamentals of electric power. The author – a noted expert on the topic – provides a thorough grounding in electric power systems, with an informative discussion on per-unit normalisations, symmetrical components and iterative load flow calculations. The text covers the most important topics within the power system, such as protection and DC transmission, and examines both traditional power plants and those used for extracting sustainable energy from wind and sunlight. <p>The text explores the principles of electromechanical energy conversion and magnetic circuits and synchronous machines – the most important generators of electric power. The book also contains information on power electronics, induction and direct current motors. This new second edition includes: <ul> <li>A new chapter on energy storage, including battery modeling and how energy storage and associated power electronics can be used to modify system dynamics</li> <li>Information on voltage stability and bifurcation</li> <li>The addition of Newton's Method for load flow calculations</li> <li>Material on the grounding transformer connections added to the section on three phase transformer</li> <li>An example of the unified power flow controller for voltage support</li> </ul> <p>Written for students studying electric power systems and electrical engineering, the updated second edition of <i>Electric Power Principles: Sources, Conversion, Distribution and Use</i> is the classroom-tested text that offers an understanding of the basics of the physics of electric power handling systems.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €